
Automatic Dynamic Load Balancing for a Crack
Propagation Application

Gengbin Zheng†, Michael S. Breitenfeld‡, Hari Govind†, Philippe Geubelle‡, Laxmikant V. Kaĺe†∗
†Department of Compute Science, University of Illinois at Urbana-Champaign

‡Department of Aerospace Engineering, University of Illinois at Urbana-Champaign
∗Corresponding Author: kale@uiuc.edu

Abstract— Automatic, adaptive load balancing is essential for
handling load imbalance that may occur during parallel finite
element simulations involving mesh adaptivity, nonlinear material
behavior and other localized effects. This paper demonstrates
the successful application of a measurement-based dynamic load
balancing concept to the finite element analysis of elasto-plastic
wave propagation and dynamic fracture events. The simulations
are performed with the aid of a parallel framework for un-
structured meshes called ParFUM, which is based on Charm++
and Adaptive MPI (AMPI) and involves migratable user-level
threads. The performance was analyzed using Projections, a
performance analysis and post factum visualization tool. The
bottlenecks to scalability are identified and eliminated using a
variety of strategies resulting in performance gains ranging from
moderate to highly significant.

I. I NTRODUCTION

Researchers in the field of structural mechanics have often
turned to parallel finite element modeling to model physical
phenomena with more detail, sophistication, and accuracy.
While parallel computing can provide large amounts of com-
putational power, developing parallel software requires sub-
stantial efforts to leverage parallel computers efficiently.

Among the challenges associated with the parallelization
of finite element codes, achieving load balance is the key to
scaling a dynamic application to a large number of processors.
This is especially true for dynamic structural mechanics codes
where simulations involve rapidly evolving geometry and
physics, often resulting in a load imbalance between proces-
sors. As a result of this load imbalance, the application has to
run at the speed of the slowest processor with deteriorated
performance. Solving load imbalance has triggered various
research activities in load balancing techniques [1], [2], [3],
[4]. Dynamic load balancing attempts to solve the load balance
problem at run-time according to the most up-to-date load
situation.

Dynamic load balancing is a challenging software design
issue and generally creates a burden for the application devel-
opers. For example, a computational analyst working on com-
putational fracture mechanics must include the mechanism to
inform the decision-making module concerning load balance
the estimated CPU load and the communication structure. In
addition, once load imbalance is detected and data migration
is requested, a developer has to write complicated code for
moving data across processors. The ideal load balancing
framework should hide the details of load balancing so that the

application developer can concentrate on modeling the physics
of the problem.

In this paper, we present an automatic load balancing
method and its application in wave propagation and dynamic
crack propagation applications. The parallelization model used
in this application is the processor virtualization supported
by migratable MPI threads. The application runs on a large
number of MPI threads (that exceeds the actual physical
number of processors), allowing to perform run-time load
balancing by migrating MPI threads. The MPI run-time system
automatically collects load information from the execution of
the application. Based on this instrumented load data, the run-
time module makes decisions on migrating MPI threads from
heavily loaded processors to underloaded ones. This approach
thus requires minimal efforts from the application developer.

The remainder of the paper is organized as follows: Section
II presents the finite element formulation used in this paper,
with emphasis on the viscoplastic model and cohesive finite
element scheme adopted here to model the dynamic propaga-
tion of a crack in a ductile medium. Section III describes the
parallelization method and programming environment used to
implement the structural mechanics application, while Section
IV describes ParFUM, the high-level domain specific library
introduced to help developer with the parallelization aspect
of the application. ParFUM is based on the CHARM++ load
balancing framework summarized in Section V. Sections VI
and VII respectively describe the performance of parallel
adaptive finite element simulations of an elasto-plastic wave
propagation problem and of a dynamic fracture event. Sec-
tion VIII discusses related work in load balancing research.
Finally, Section IX concludes with some future plans.

II. COHESIVE FINITE ELEMENT MODEL OF FRACTURE

To simulate the spontaneous initiation and propagation of a
crack in a discretized domain, we use an explicit cohesive-
volumetric finite element (CVFE) scheme [5], [6], [7]. As
its name indicates, the scheme relies on a combination of
volumetric elements used to capture the constitutive response
of the continuum medium, and of cohesive interfacial elements
used to model the failure process taking place in the vicinity
of the advancing crack front. The CVFE concept is illustrated
in Figure 1, which presents two 4-node tetrahedral volumetric
elements tied together by a 6-node cohesive element shown in

its deformed configuration, as the adjacent nodes are initially
superposed and the cohesive element has no volume.

Fig. 1. Two 4-node tetrahedral volumetric elements linked by a 6-node
cohesive element.

In the present study, the mechanical response of the cohesive
elements is described by the bilinear traction-separation law
illustrated in Figure 2 for the case of tensile (Mode I) failure.
After an initial stiffening (rising) phase, the cohesive traction
Tn reaches a maximum corresponding to the failure strength
σmax of the material, followed by a downward phase that
represents the progressive failure of the material. Once the
critical value ∆nc of the displacement jump is reached, no
more traction is exerted across the cohesive interface and a
traction-free surface (i.e., a crack) is created in the discretized
domain. The emphasis of the dynamic fracture study summa-
rized hereafter is on the simulation of purely mode I failure,
although cohesive models have also been proposed for the
simulation of mixed-mode fracture events. Also illustrated in
Figure 2 is an unloading and reloading path followed by the
cohesive traction during an unloading event taking place while
the material fails.

Fig. 2. Bilinear traction-separation law for mode I failure modeling.

The finite element formulation of the CVFE scheme is
derived from the following form of the principle of virtual
work:

∫
V

(ρüi δui + Sij δEij) dV =
∫

ST

T ex
i δui dST +

∫
Sc

Ti δ∆i dSc,

(1)
where the left-hand-side corresponds to the virtual work done
by the inertial forces (ρüi) and the internal stresses (Sij), and
the right-hand side denotes the virtual work associated with
the externally applied traction (T ex

i) and cohesive traction (Ti)
acting along their respective surfaces of applicationST andSc.
In Equation (1),ρ denotes the material density,ui and Eij

are the displacement and strain fields, respectively, and∆i

denotes the displacement jump across the cohesive surfaces.
The implementation relies on an explicit time stepping scheme
based on the central difference formulation [5]. A nonlinear
kinematics description is used to capture the large deformation
and rotation associated with the propagation of the crack. The
strain measure used here is the Lagrangian strain tensorE.

To complete the CVFE scheme, we need to model the
constitutive response of the material, i.e., to describe the
response of the volumetric elements. In the present study,
we use an explicit elasto-visco-plastic update scheme, which
is compatible with the nonlinear kinematic description and
relies on the multiplicative decomposition of the deformation
gradientF into elastic and plastic parts as

F = FeFp. (2)

The update of the plastic componentFp of the deformation
gradient at the(n + 1)th time step is obtained by

Fp
n+1 = exp

[∑
A

∆γ√
2σ̃

(
σA − Iσ

1

3

)
NA ⊗NA

]
• Fp

n, (3)

whereNA (A=1, 2, 3) denote the Lagrangian axes defined in
the initial configuration,∆γ is the discretized plastic strain
increment,Iσ

1 is the first Cauchy stress invariant, andσ̃ =√
(σ′ : σ′)/2 is the effective stress, withσ′ denoting the

Cauchy stress deviator whose spectral decomposition is

σ′ =
∑
A

(
σA − Iσ

1

3

)
NA ⊗NA. (4)

The plastic strain increment is given by∆γ = ∆t γ̇, where
the plastic strain rate is described in this study by the classical
Persyna two-parameter model

γ̇ = η

(
f(σ)
σY

)n

, (5)

in which n and η are material constants,σY is the current
yield stress, andf(σ) = (σ̃ − σY) is the overstress. Strain
hardening is captured by introducing a tangent modulusEt

relating the increment of the yield stress,∆σY , to the plastic
strain increment∆γ. Finally, the linear relation

S = LE (6)

between the second Piola-Kirchhoff stressesS and the La-
grangian strainsE is used to describe the elastic response.
Assuming material isotropy, the stiffness tensorL is defined
by the Young’s modulusE and Poisson’s ratioν.

The main source of load imbalance comes from the very
different computational costs associated with the elastic and
visco-plastic constitutive updates. As long as the effective
stress remains below a given level (chosen in this paper
as 80% of the yield stress), only the elastic relation (6) is
computed. Once this threshold is reached for the first time, the
visco-plastic update is performed, which typically represents
a doubling in the computational cost. As the crack propagates
through the discretized domain, the load associated with each
processor can be substantially heterogeneous, suggesting the
need for the robust dynamic load balancing scheme described
in Section V.

III. PARALLELIZATION WITH AMPI

The parallel program for simulation of fracture dynamics is
written and parallelized using Adaptive MPI.

Adaptive MPI (AMPI) [8], [9] is an MPI implementa-
tion and extension based on CHARM++ [10] programming
model. CHARM++ is a parallel C++ programming language
that embodies the concept ofprocessor virtualization[11].
This idea of processor virtualization is that the programmer
decomposes the computation, without regard to the physical
number of processors available, into a large number of logical
work units and data units, which are encapsulated invirtual
processors(VPs) [11]. The programmer leaves the assignment
of VPs to physical processors to the run-time system, which
incorporates intelligent optimization strategies and automatic
runtime adaptation. These virtual processors themselves can be
programmed using any programming paradigm: e.g. they can
be organized as indexed collections of C++ objects that interact
via asynchronous method invocations, as in CHARM++ [12].
Alternatively, they can be MPI virtual processors implemented
as user-level, extremely lightweight threads (NOT to be con-
fused with system level threads or Pthreads), that interact with
each other via messages, as in AMPI (illustrated in Figure 3).

Fig. 3. Implementation of AMPI virtual processors

This idea of processor virtualization brings significant ben-
efits to both parallel programming productivity and parallel

performance [13]. It empowers the run-time system to incorpo-
rate intelligent optimization strategies and automatic runtime
adaptation. The following is a list of the benefits we have
demonstrated in many projects.

Automatic load balancing: AMPI threads (the virtual
processors) are decoupled from real processors, thus they
are location independent and can migrate from processors
to processors. Thread migration provides basic mechanism
for load balancing — if some of the physical processors
become overloaded, the run-time system can migrate a few
of their AMPI threads to underloaded physical processors.
The AMPI run-time system provides transparent support of
message forwarding after thread migration.

Adaptive overlapping of communication and computa-
tion: If one of the AMPI threads is blocked on a receive,
another AMPI thread on the same physical processor can
run. This largely eliminates the need for the programmer
to manually specify some static computation/communication
overlapping, as is often required in MPI.

Optimized communication library support: Besides
the communication optimization inherited from CHARM++,
AMPI supports asynchronous, or non-blocking interfaces to
collective communication operations. This allows the overlap-
ping between time-consuming collective operations and other
useful computation.

Better cache performance: A virtual processor handles
a smaller set of data than a physical processor, so a virtual
processor will have better memory locality. This blocking
effect is the same method manyserial cache optimizations
employ, and AMPI programs get this benefit automatically.

Flexibility to run on an arbitrary number of processors:
Since more than one VPs can be executed on one physical
processor, AMPI is capable of running MPI programs on
any arbitrary number of processors. This feature proves to be
useful in application development and debugging phases.

In many applications, we have demonstrated that the pro-
cessor virtualization does not incur much cost in parallel
performance [13], due to low scheduling overheads of user-
level threads. In fact, it often improves cache performance
significantly because of its blocking effect.

CHARM++ and AMPI have been used as mature paralleliza-
tion tools and run-time systems for a variety of real world
applications for scalability [14], [15], [16], [17]. To further
enhance programmer productivity, we have developed domain-
specific frameworks on top of CHARM++ and AMPI to
automate the parallelization process, which produces reusable
libraries for parallel algorithms. A parallel framework for
unstructured meshing called ParFUM that this work is based
on is described in the next section.

IV. PARALLEL FRAMEWORK FORUNSTRUCTURED

MESHES

A wide variety of applications involve explicit computations
on unstructured grids. As described earlier, one of the key
objectives of this work is to create a flexible framework to

perform this type of simulations on parallel computing plat-
forms. Parallel programming introduces several complications:

• Simply expressing a computation in parallel requires the
use of either a specialized language such as HPF [18] or
an additional library such as MPI.

• Parallel execution makes race conditions and nondeter-
ministic execution possible. Some languages, such as
HPF, have a simple lockstep control structure and are
thus relatively immune to this problem; while in others,
such as pthreads, they are more common.

• Computation and communication must be overlapped to
achieve optimal performance. However, few languages
provide good support for this overlap, and even simple
static schemes can be painfully difficult to implement.

• Load imbalance can severely restrict performance, espe-
cially for dynamic applications. Automatic or application-
independent load-balancing capabilities are rare (Sec-
tion VIII).

Our approach to managing the complexity of parallel pro-
gramming is based on a simple division of labor. In this
approach, parallel programming specialists in computer sci-
ence provide a simple but efficientparallel frameworkfor the
computation; while application specialists provide the numer-
ics and physics. The parallel framework described hereafter
abstracts away the details of its parallel implementation.

Since the parallel framework is application independent, it
can be reused across multiple projects. This reuse amortizes
the effort and time spent developing the framework and makes
it feasible to invest in sophisticated capabilities such as adap-
tive computation and communication overlap and automatic
measurement-based load balancing. Overall, this approach has
proven quite effective, leveraging skills in both computer
science and engineering to solve problems neither could solve
independently.

A. ParFUM Framework

This section describes our parallel framework (called Par-
FUM) for performing explicit computations on unstructured
grids. The framework has been used for finite-element com-
putations, solving partial differential equations, computational
fluid dynamics, and other problems.

The basic abstraction provided is very simple — the com-
putational domain consists of an irregular mesh of nodes and
elements. The elements are divided into partitions or chunks,
normally using the graph partitioning library Metis [19], or
ParMetis [20]. These chunks reside in AMPI migratable virtual
processors, thereby taking advantage of run-time optimizations
including dynamic load balancing. The chunks of meshes
and AMPI virtual processors are then distributed across the
processors of the parallel machine. There is normally at least
one chunk per processor; and often even more. Nodes can be
either private, adjacent to the elements of a single partition;
or shared, adjacent to the elements of different partitions.

ParFUM application has two main subroutines: theinit and
the driver. The init subroutine executes only on processor 0
and is used to read the input mesh and physical data and

register it with the framework. The framework then partitions
the mesh into as many regions as requested, each partition
being a virtual processor. It then executes thedriver routine
on each virtual processor. This routine computes the solution
over the local partition of the mesh.

The solution loop for most applications involves a cal-
culation in which each node or element requires data from
its neighboring entities. Thus entities on the boundary of a
partition need data from entities on other partitions. ParFUM
provides a flexible and scalable approach to meet an ap-
plication’s communication requirements. ParFUM adds local
read-only copies of remote entities to the partition boundary.
These read-only copies are referred to asghosts. A single
collective call to ParFUM allows the user to update all ghost
entities with data from the original copies on neighboring
partitions. This lets application code have effortless access to
data from neighboring entities on other partitions. Since the
definition of “neighboring” can vary from one application to
another, ParFUM provides a flexible mechanism for generating
ghost layers. For example, an application might consider
two tetrahedra that share a face as neighbors. In another
application, tetrahedra that share edges might be considered
neighbors. ParFUM users can specify the type of ghost layer
required by defining the “neighboring” relationship in the
init routine and adding multiple layers of ghosts according
to the neighboring relationship for applications that require
them. In addition, the definition of “neighboring” can vary for
different layers. User-specified ghost layers are automatically
added after partitioning the input mesh provided during theinit
routine. ParFUM also updates the connectivity and adjacency
information of a partition’s entities to reflect the additional
layers of ghosts. Thus ParFUM satisfies the communication
needs of a wide range of applications by allowing the user to
add arbitrary ghost layers. After the communication for ghost
layers, each local partition is nearly self contained; a serial
numerics routine can be run on the partition with only a minor
modification to the boundary conditions.

With the above design, ParFUM framework enables straight-
forward conversion of serial codes into parallel applications.
For example, in an explicit structural dynamics computation,
each iteration of the time loop has the following structure:

1) Compute element strains based on nodal displacements.
2) Compute element stresses based on element strains.
3) Compute nodal forces based on element stresses.
4) Apply external boundary conditions.
5) Compute new nodal displacements based on Newtonian

physics.
In a serial code, these operations apply over the entire mesh.

However, since each operation is local, depending only on a
node or element’s immediate neighbors, we can partition the
mesh and run the same code on each partition.

The only problem is ensuring that the boundary conditions
of the different partitions match. The solution we choose is
to duplicate the nodes along the boundary and then sum up
the nodal forces during step 3, which amounts to this simple
change:

1) Compute element strains based on nodal displacements.
2) Compute element stresses based on element strains.
3) Compute nodal forces based on element stresses.
4) Apply externaland internalboundary conditions.
5) Compute new nodal displacements based on Newtonian

physics.

For existing codes that have already parallelized with MPI,
the conversion to ParFUM is even faster, thereby taking
advantage of features including dynamic load balancing.

V. L OAD BALANCING FRAMEWORK

Many ParFUM applications involve simulations with dy-
namic geometry, and use adaptive techniques to solve highly
irregular problems. In these applications, load balancing is
required to achieve the desired high performance on large
parallel machines. It is especially essential for applications
where the amount of computation on a mesh partition can
increase significantly as the number of elements comprising
the partition increases with refinement and/or cohesive element
insertion. It is also useful in applications where the computa-
tional load for subsets of elements varies over the duration of
the simulation.

ParFUM directly utilizes the load balancing framework in
CHARM++ and AMPI load balancing framework [3], [21]. The
load balancing involves four distinct steps: (1) load evaluation;
(2) load balancing initiation which determines when to start a
new load balancing; (3) load balancing decision making and
(4) task and data migration. These steps are automatic and
require minimal effort from the developers.

CHARM++ load balancing framework adopts a unique
measurement-based strategy for load evaluation. This scheme
is based on the run-time instrumentation, which is feasible
due to theprinciple of persistencethat can be found in most
physical simulations: the communication patterns between
objects as well as the computational load of each of them tend
to persist over time, even in the case of dynamic applications.
This implies that the recent past behavior of a system can
be used as a good predictor of the near future. The load
instrumentation is fully automatic at runtime. During the
execution of a ParFUM application, the run-time times the
computation load for each object and records communication
pattern into a load “database” on each processor.

The runtime then assesses the load database periodically
and determines if load imbalance occurs. The load imbalance
can be computed as:

σ =
Lmax

Lavg
− 1, (7)

whereLmax is the maximum load across all processors, and
Lavg is the average load of all the processors. Note that even
when load imbalance occurs (σ > 0), it may not be profitable
to start a new load balancing step due to the overhead of load
balancing itself. In practice, a load imbalance threshold can be
chosen based on a heuristic that the gain of the load balancing
(Lmax−Lavg) after the load balancing is at least greater than

the estimated cost of load balancing (Clb). That is:

σ >
Clb

Lavg
. (8)

When load balancing is triggered, the load balancing de-
cision module uses the load database to compute a new
assignment of virtual processors to physical processors and
informs the run-time to execute the migration decision.

A. Run-time Support for Thread Migration

In ParFUM applications, load balancing is achieved by
migrating AMPI threads that host mesh partitions from over-
loaded processors to underloaded ones. When an AMPI
thread migrates between processors, it must move all the
associated data, including its stack and heap-allocated data.
The CHARM++ runtime supports both fully automated thread
migration and flexible user-controlled migration of data by
additional helper functions.

In fully automatic mode, the AMPI run-time system auto-
matically transfers a thread’s stack and heap data which are
allocated by special memory allocator calledisomalloc [9]
in a manner similar to that ofPM2 [2]. It is portable on
most platforms except for those where themmap system
call is unavailable. Isomalloc allocates data with a globally
unique virtual address, reserving the same virtual space on
all processors. With this mechanism, isomalloced data can be
moved to a new processor without changing the address. This
provides a clean way to move a thread’s stack and heap data
to a new machine automatically. In this case, migration is
transparent to the user code.

Alternatively, users can write their own helper functions to
pack and unpack heap data for migrating an AMPI thread.
This is useful when application developers wish to have more
control in reducing the data volume by using application spe-
cific knowledge and/or by packing only variables that are live
at the time of migration. The PUP (Pack/UnPack) library [22]
was written to simplify this process and reduce the amount of
code the developers have to write. The developers only need
to write a single PUP routine to traverse the data structure and
this routine is used for both packing and unpacking.

B. Load Balancing Strategies

In the step that makes the load balancing decision, the
CHARM++ run-time assigns AMPI threads on physical pro-
cessors, so as to minimize the maximum load (makespan)
on the processors. This is known as the Makespan mini-
mization problem, which has been shown as anNP -hard
optimization problem [23]. However, many combinatiorial
algorithms have been developed that find a reasonably good
approximate solution. CHARM++ load balancing framework
provides a spectrum of simple to sophisticated heuristic-based
load balancing algorithms, some of which are described in
more details below:

• Greedy Strategy: This simple strategy organizes all the
objects in decreasing order of their computation times.
The algorithm repeatedly selects the heaviest un-assigned

object, and assigns it to the least loaded processor. This
algorithm may lead to a large number of migrations.
However, it works effectively in most cases.

• Refinement Strategy: The refinement strategy is an algo-
rithm which improves the load balance by incrementally
adjusting the existing object distribution, especially on
highly loaded processors. The computational cost of this
algorithm is low because only a subset of processors are
examined. Further, this algorithm results in only a few
objects being migrated, which makes it suitable for fine-
tuning the load balance.

• Metis-based Strategy: This strategy uses the METIS
graph partitioning library [24] to partition the object-
communication graph. The objective of this strategy is
to find a reasonable load balance, while minimizing the
communication among processors.

CHARM++ load balancing framework also allows a devel-
oper to implement his own load balancing strategies based
on heuristics specific to the target application (such as in
NAMD [14] molecular simulation code).

Load balancing can be done in either centralized or dis-
tributed approach depending on how the load balancing de-
cisions are made. In the centralized approach, one central
processor makes the decisions globally. The load databases of
all processors are collected to the central processor, which may
incur high communication overhead and memory usage for the
central processor. In the distributed approach, load balance
decisions are made in distributed fashion. The load databases
are only exchanged among neighboring processors. Due to the
lack of the global information and aging of the load data,
distributed load balancing inherently is difficult to achieve
good load balance as quickly as the centralized approach. In
this paper, we use a centralized load balancing strategy.

C. Agile Load Balancing

Applications with fast changing load requires frequent load
balancing, which demands fast load balancing with minimal
overhead. Normal load balancing strategies in CHARM++

occur in synchronousmode, as shown in Figure 4. At load
balancing time, the application on each processor stops after
it finishes its designated iterations and hands over the control
to the load balancing framework to make load balancing
decisions. The application can only resume when the load
balancing step finishes and all AMPI threads migrate to
the destination processors. In practice, this “stop and go”
load balancing scheme is simple to implement, and has one
important advantage — the AMPI thread migration happens
under user control, so that a user can choose a convenient time
for the thread migration to possibly minimize the migration
data size. However, this scheme is not efficient due to the
effect of the global barrier. It suffers from high overhead due
to the fact that load balancing process on the central processor
has to wait for the slowest processor to join load balancing, and
thus wasting CPU cycles on other processors. This motivated
us to develop an agile load balancing strategy that performs

asynchronousload balancing which allows overlapping of load
balancing time and normal computation.

���������
���������
���������

���������
���������
���������

�����
�����
�����
�����

Processor 0

Processor 1

Processor 2

2 3 4

6

1 2

3 4

5 6

i

i i i

i i

i+1 i+1

i+1 i+1

i+1 i+1

5

computing object of i_th iteration1

i

load balancing strategy

1

Fig. 4. Traditional synchronous load balancing

The asynchronous load balancing scheme fully takes ad-
vantage of CHARM++’s intelligent run-time support for con-
current compositionality [13] that allows dynamic overlapping
of the execution of different composed modules in time and
space. In the asynchronous scheme, load balancing process oc-
curs concurrently or in the background of normal computation.
When it is time for load balancing, each processor sends its
load database to the central processor and continues its normal
computation without waiting for load balancing to start. When
a migration decision is calculated at the background on the
central processor, the AMPI threads are instructed to migrate
to their new processors in the middle of their computation.

There are a few advantages of asynchronous load balancing
over the synchronous scheme. First, eliminating the global
barrier helps reducing the idle time on faster processors which
otherwise would have to wait for the slower processors to join
the load balancing step. Second, it allows the overlapping of
load balancing decision making time and computation in an
application, which potentially could help improve the overall
performance. Finally, each thread can have more flexible
control on when to migrate to the designated processor. For
example, a thread can choose to migrate when it is about to
be idle, which potentially allows overlapping of the thread
migration and computation of other threads.

Asynchronous load balancing however imposes a significant
challenge to the thread migration in the AMPI run-time
system. AMPI threads may migrateat any time, whenever
they receive the migration notification. In practice, it is not
trivial for an AMPI thread to migrate at any time due to the
complex run-time state involved, for example when a thread
is suspended in the middle of pending receives. In order to
support any-time migration of AMPI threads, we extended
the AMPI run-time to be able to transfer a complete runtime
state associated with the AMPI threads including the pending
receive requests and buffered messages for future receives.
With the help of isomalloc stack and heap, AMPI threads
can be migrated to a new processor transparently at any time
without worrying about the scenario that the stack becomes
invalid when the threads are resumed on a different processor.
For AMPI threads with pending receives, incoming messages
are redirected automatically to the destination processors by

the run-time system.
In the next two sections, we present two case studies

of simulations to demonstrate the effectiveness of our load
balancing strategies.

VI. CASE STUDY 1: ELASTO-PLASTIC WAVE PROPAGATION

The first application is the quasi-one-dimensional elasto-
plastic wave propagation problem depicted in Figure 5. It
consists of a rectangular bar of lengthL = 10 m and cross-
sectionA = 1m2. The bar is initially at rest and stress free. It
is fixed at one end and subjected at the other end to an applied
velocity V ramped linearly from 0 to 20m/s over .16ms and
held constant thereafter. The material properties are chosen as
follows: yield stressσY = 480 MPa, stiffnessE = 73 GPa
and Et = 7.3 GPa, exponentn = 0.5, fluidity η = 10−6/s,
Poisson’s ratioν = .33 and densityρ = 2800 kg/m3.

The applied velocity generates a one-dimensional stress
wave that propagates through the bar and reflects from the
fixed end. At every wave reflection, the stress level in the
bar increases as the end of the bar is continuously pulled at
a velocity V . During the initial stage of the dynamic event,
the material response is elastic as the first stress wave travels
through the bar at the dilatational wave speedCd = 6215 m/s
with an amplitude

σ = ρCdV = 348 MPa < σY . (9)

After one reflection of the wave from the fixed end, the
stress level in the bar exceeds the yield stress of the material
and the material becomes plastic. A snapshot of the location
of the elasto-plastic stress wave is shown in Figure 5. The
computational overload associated with the plastic update
routine (approximately a factor of two increase compared to
the elastic case) leads to a significant dynamic load imbalance
while the bar transforms from elastic to plastic. In these
simulations, the plastic check and update subroutine is called
upon when the equivalent stress level exceeds 80% of the yield
stress.

The unstructured 400,000-element tetrahedral mesh that
spans the bar is initially partitioned into chunks using METIS
and these chunks are then mapped to the processors. During
the simulation, the processors advance in lockstep with fre-
quent synchronizing communications required by exchanging
of boundary conditions, which may lead to bad performance
when load imbalance occurs.

The simulation was run on Tungsten Xeon Linux cluster at
the National Center for Supercomputing Applications (NCSA).
This cluster is based on Dell PowerEdge 1750 servers, each
with two Intel Xeon 3.2 GHz processors, running Red Hat
Linux and Myrinet interconnect network. The test ran on
32 processors with 160 AMPI virtual processors. Figure 7
shows the results without load balancing in aProjections
CPU utilization graph over a certain time interval. The figure
was generated byProjections [25], which is a performance
visualization and analysis tool associated with CHARM++ that
supplies application-level visual and analytical performance

Fig. 5. Location of the traveling elasto-plastic wave at timeCdt/L = 1.3.

feedback. This utilization graph shows how the overall uti-
lization changes as the wave propagates through the bar. The
total run time was 177 seconds for this run.

0 200 400 600 800 1000
Time Step Number

0

2e+05

4e+05

6e+05

8e+05

1e+06
N

um
be

r
of

 P
la

st
ic

 E
le

m
en

ts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
im

es
te

p’
s

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Fig. 6. Evolution of the number of plastic elements.

A separate interest, although not investigated further in this
paper, is the period of initial load imbalance (as shown in
Figure 7) caused by the quiet generation of subnormal numbers
(floating-point numbers that are very close to zero) during
the initial propagation of the elastic wave along the initially
quiescent bar. This phenomenon is discussed by Lawloret
al. [26], who propose an approach to mitigate such perfor-
mance effects caused by the inherent processor design. This
paper is only concerned with the load imbalance associated
with the transformation of the bar from elastic to plastic.

As indicated earlier, the load imbalance in this problem is
highly transient, as elements at the wave front change from an
elastic to a plastic state. In Figure 6, the effects of the plasticity
calculations are clearly noticeable in terms of execution time
which linearly ramps from the condition of fully elastic to
fully plastic resulting in a doubling of the execution time.
This leads to a load imbalance between the processor when
the simulation is within this linearly ramping region. The load

CP
U

Ut
iliz

at
io

n
(%

)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)
0 50 100 150

Initial load imbalance

Transient load imbalance

Fig. 7. CPU utilization graph without load balancing (Tungsten Xeon).

CP
U

Ut
iliz

at
io

n
(%

)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)
0 50 100 150

Fig. 8. CPU utilization graph with synchronous load balancing (Tungsten
Xeon).

balancer here has to migrate these objects aggressively.
Even though we used a variety of methods and time

frames, the problem was not considerably sped up by load
balancing. The transition time was too fast for load balancer
to significantly speed up the simulation. Also the period of
imbalance is a very small portion compared to the total run
time. Therefore, a performance improvement here necessitates
that the overhead and delays associated with the invocation of
the load balancer be minimal. Nevertheless, we managed to
speed up the simulation by 7 seconds as shown in Figure 8.
The time required for completion reduces to 170 seconds,
which yields a 4 percent of overall improvement by the load
balancing.

We repeated the same test on 32 processors of the SGI
Altix (IA64) at NCSA with the same 160 AMPI virtual
processors. Figure 9 shows the result without load balancing in
the Projections utilization graph. The total execution time was
207 seconds and a more severe effect of subnormal numbers
on this machine was observed in the first hundred seconds of
execution time.

In the second run, we ran the same test with the greedy
load balancing scheme described in the previous section. The
result is shown in Figure 10 in the same utilization graph.

CP
U

Ut
iliz

at
io

n
(%

)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)
50 100 150 200

Fig. 9. CPU utilization graph without load balancing (SGI Altix).

The load balancing is invoked around time interval 130 in
the figure. After the load balancing, the CPU utilization is
slightly improved and the total execution time is now around
198 seconds.

CP
U

Ut
iliz

at
io

n
(%

)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)
50 100 150 200

Fig. 10. CPU utilization graph with synchronous load balancing (SGI Altix).

Finally, we ran the same test with the same greedy algorithm
in an asynchronous load balancing scheme (Section V-C).
Asynchronous load balancing scheme avoids the stall of an
application for load balancing and overlaps the computation
with the load balancing and migration. The result is shown in
Figure 11 in a utilization graph. It can be seen that, after load
balancing, the overall CPU utilization was further improved
and the total execution time is 187 seconds, which is a 20
second improvement.

VII. C ASE STUDY 2: DYNAMIC FRACTURE

The second application involves a single edge notched
fracture specimen of widthW = 5 m, height H = 5 m,
thicknessT = 1 m and initial crack lengtha0 = 1 m, having
a weakened plane starting at the crack tip and extending along
the crack plane to the opposite edge of the specimen. The ma-
terial properties used in this simulation areσY = 900 MPa,
E = 210 GPa, Et = 2.4 GPa, n = 0.5 , η = 10−6/s,
ν = .3, and ρ = 7850 kg/m3. A linearly ramped velocity
of 0 to 1 m/s over 2.0ms and held constant thereafter is

CP
U

Ut
iliz

at
io

n
(%

)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)
50 100 150 200

Fig. 11. CPU utilization graph with asynchronous load balancing (SGI Altix).

applied along the top and bottom surfaces of the specimen. A
single layer of six-node cohesive elements are placed along the
weakened interface, with the failure properties described by a
critical crack opening displacement value∆nc = .8 mm and a
cohesive failure strengthσmax = 95 MPa. The mesh consists
of 91,292 cohesive elements along the interface plane and
4,198,134 linear strain tetrahedral elements. As the stress wave
emanating from the top and bottom edges of the specimen
reach the fracture plane, a region of high stress concentration
is created around the initial crack tip. In that region, the
equivalent stress exceeds the yield stress of the material
leading to the creation of a plastic zone. As the stress level
continues to build up in the vicinity of the crack front, the
cohesive tractions along the fracture plane start to exceed the
cohesive failure strength of the weakened plane and a crack
starts to propagate rapidly along the fracture plane, surrounded
by an plastic zone and leaving behind a plastic wake, as
illustrated in Figure 12.

Fig. 12. Snapshot of the plastic zone surrounding the propagating planar
crack at timeCdt/a0 =???. The iso-surfaces denote the extent of the region
where the elements have exceeded the yield stress of the material.

This simulation was run on the Turing cluster at the Uni-
versity of Illinois of Urbana-Champaign. The cluster consists
of 640 dual Apple G5 nodes connected with Myrinet network.

The simulation without load balancing took about 24 hours on
100 processors. The average processor utilization is shown in
the bottom curve of Figure 13. The processor utilization is on
the Y axis and the time on the X axis. It can be seen that
around time interval 120, the CPU utilization dropped from
around 85% to only about 42%. This is due to the advent of
the elastic elements transistioning into plastic elements around
the crack tip, leading to the beginning of load imbalance. In
Figure 14 the number of plastic elements starts to increase
dramatically as the crack starts to propagate along the inter-
face. As more elastic elements turn plastic, the CPU utilization
slowly increases. The load imbalance can also be easily seen
in the CPU utilization graph over processors in Figure 15.
While some of the processors have the CPU utilization as
high as about 90%, some processors only have about 50% of
the CPU utilization during the whole execution.

CP
U

Ut
iliz

at
io

n
(%

)

0

10

20

30

40

50

60

70

80

90

100

Time (seconds)
0 10000 20000 30000 40000 50000 60000 70000 80000

Utilization with LB
Utilization without LB

Fig. 13. CPU utilization graph over time without vs. with load balancing
for the fracture problem shown in Figure 12 (Turing Apple Cluster).

0

20000

40000

60000

80000

1e+05

N
um

be
r

of
 B

ro
ke

n
C

oh
es

iv
e

E
le

m
en

ts

25000 50000 75000 1e+05 1.25e+05
Time Step Number

0

1e+06

2e+06

3e+06

4e+06

N
um

be
r

of
 P

la
st

ic
 E

le
m

en
ts

Fig. 14. Evolution of the number of plastic and broken cohesive elements.

CP
U

Ut
iliz

at
io

n
(%

)

0

10

20

30

40

50

60

70

80

90

100

Processor
0 10 20 30 40 50 60 70 80 90 100

Fig. 15. CPU utilization across processors without load balancing (Turing
Apple Cluster).

CP
U

Ut
iliz

at
io

n
(%

)

0

10

20

30

40

50

60

70

80

90

100

Processor
0 10 20 30 40 50 60 70 80 90 100

Fig. 16. CPU utilization across processors with load balancing (Turing Apple
Cluster).

With the greedy load balancing strategy invoked every 500
time-steps, the simulation finished in 18 hours, a saving of
nearly 6 hours or 25% over the same simulation with no load
balancing. This increase is caused by the overall increased
processor utilization, which can be seen in the upper curve
of Figure 13. The peaks correspond to the times when the
load balancer is activated during the simulation. There is
an immediate improvement in the utilization when the load
balancer is invoked. Then the performance slowly deteriorates
as more elements become plastic. The next invocation tries to
balance the load, all over again. Figure 16 further illustrates
that load balance has been improved from Figure 15 in the
view of the CPU utilization across processors. It can be seen
that a CPU utilization of around 85% is achieved on all
processors with negligible load variance.

VIII. R ELATED WORK

The goal of our work is a generic load balancing framework
that optimizes the load balance of the irregular and highly
dynamic applications with an application independent inter-
face, therefore we will focus our discussion in this section to
those dynamic load balancing systems for parallel applications.
In particular, we wish to distinguish our research using the
following criteria:

• Supporting data migration. Migrating data has advantages
over migrating “heavy-weight” processes which adds
complexity to the runtime system.

• Generality. Load balancing methods are designed to be
application independent. They can be used for a wide
variety of applications.

• Automatic load estimation. The load balancing frame-
work does not rely on application developer to provide
application load information.

• Communication-aware load balancing. The framework
takes communication into account explicitly rather than
implicitly for example using domain specific knowledge.
Communication pattern including multicast and commu-
nication volume are directly recorded into load balancing
database for load balancing algorithms.

• Adaptive to execution environment. Take background
load and non-migratable load into account.

Table I shows the comparison of CHARM++ load balancing
framework to several other software systems that support
dynamic load balancing. DRAMA [27] is designed specifically
to support finite element applications. This specialization
enables DRAMA to provide an application “independent” load
balancing using its built-in cost functions for the category
of applications. Zoltan [28], [29] does not make assumptions
about applications’ data, and is designed to be general pur-
pose load balancing library. However, it relies on application
developers to provide cost function and communication graph.
A recent system PREMA [30], [31] supports very similar
idea of migratable objects, however, its load balancing method
primarily focuses on task scheduling problem as in non-
iterative applications. The Chombo [32] package has been
developed by Lawrence Berkeley National Lab. It provides
a set of tools including load balancing for implementing
finite difference methods for the solution of partial differential
equations on block-structured adaptively refined rectangular
grids. It requires users to provide input for computational
workload in real number for each box (box is a partition of
mesh). Charm++ provides the most comprehensive features
for load balancing. It is applicable to most scientific and
engineering applications that present persistent computation
(even dynamic). Charm++ load balancing is also capable of
adapting to the change of background load [33].

IX. CONCLUSION

Dynamic and adaptive parallel load balancing is indispens-
able for handling load imbalance that may arise during a par-
allel simulation due to mesh adaptation, material nonlinearity,
etc. This paper demonstrates the successful application of a
measurement-based dynamic load balancing concept to the
crack propagation problem, that uses cohesive elements. There
are myriad of other problems where the same principle applies.

In the future we plan to enhance the performance of more
complex ParFUM applications with the load balancing frame-
work, which were previously considered unsolvable in rea-
sonable amount of time, using ParFUM. Example applications
include adaptive insertion and activation of cohesive elements

System Name Data Migration Generality Explicit Comm. Automatic Cost Est. Adaptive
DRAMA Yes No No Yes No
Zoltan Yes Yes No No No

PREMA Yes No No No No
Chombo Yes No No No No

CHARM++ Yes Yes Yes Yes Yes

TABLE I

SOFTWARE SYSTEMS THAT SUPPORT DYNAMIC LOAD BALANCING

for dynamic fracture simulations, adaptive mesh adaptation.
We also will explore using load balancing framework on very
large parallel machines such as 64K processor Blue Gene/L.

ACKNOWLEDGEMENTS

This work was supported by the Center for the Simulation
of Advanced Rockets under contract number B341494 by the
U.S Department of Energy.

REFERENCES

[1] Robert K. Brunner and Laxmikant V. Kalé. Handling application-
induced load imbalance using parallel objects. InParallel and Dis-
tributed Computing for Symbolic and Irregular Applications, pages 167–
181. World Scientific Publishing, 2000.

[2] Gabriel Antoniu, Luc Bouge, and Raymond Namyst. An efficient and
transparent thread migration scheme in thePM2 runtime system. In
Proc. 3rd Workshop on Runtime Systems for Parallel Programming
(RTSPP) San Juan, Puerto Rico. Lecture Notes in Computer Science
1586, pages 496–510. Springer-Verlag, April 1999.

[3] Gengbin Zheng.Achieving High Performance on Extremely Large Paral-
lel Machines: Performance Prediction and Load Balancing. PhD thesis,
Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

[4] Amnon Barak, Shai Guday, and Richard G. Wheeler. The mosix
distributed operating system. InLNCS 672. Springer, 1993.

[5] X.-P. Xu and A. Needleman. Numerical simulation of fast crack growth
in brittle solids. Journal of the Mechanics and Physics of Solids,
42:1397–1434, 1994.

[6] G. T. Camacho and M. Ortiz. Computational modeling of impact damage
in brittle materials.Int. J. Solids Struct., 33:2899–2938, 1996.

[7] P. H. Geubelle and J. Baylor. Impact-induced delamination of compos-
ites: a 2d simulation.Composites B, 29:589–602, 1998.

[8] Chao Huang, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé.
Performance evaluation of adaptive MPI. InProceedings of ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
2006, March 2006.

[9] Chao Huang, Orion Lawlor, and L. V. Kalé. Adaptive MPI. In
Proceedings of the 16th International Workshop on Languages and
Compilers for Parallel Computing (LCPC 2003), LNCS 2958, pages
306–322, College Station, Texas, October 2003.

[10] L. V. Kale and Sanjeev Krishnan. Charm++: Parallel Programming with
Message-Driven Objects. In Gregory V. Wilson and Paul Lu, editors,
Parallel Programming using C++, pages 175–213. MIT Press, 1996.

[11] Laxmikant V. Kaĺe. The virtualization model of parallel programming :
Runtime optimizations and the state of art. InLACSI 2002, Albuquerque,
October 2002.

[12] Orion Sky Lawlor and L. V. Kaĺe. Supporting dynamic parallel
object arrays.Concurrency and Computation: Practice and Experience,
15:371–393, 2003.

[13] Laxmikant V. Kaĺe. Performance and productivity in parallel program-
ming via processor virtualization. InProc. of the First Intl. Workshop on
Productivity and Performance in High-End Computing (at HPCA 10),
Madrid, Spain, February 2004.

[14] James C. Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant V.
Kalé. NAMD: Biomolecular simulation on thousands of processors.
In Proceedings of the 2002 ACM/IEEE conference on Supercomputing,
pages 1–18, Baltimore, MD, September 2002.

[15] Sameer Kumar, Chao Huang, Gheorghe Almasi, and Laxmikant V. Kalé.
Achieving strong scaling with NAMD on Blue Gene/L. InProceedings
of IEEE International Parallel and Distributed Processing Symposium
2006, April 2006.

[16] Ramkumar V. Vadali, Yan Shi, Sameer Kumar, L. V. Kale, Mark E.
Tuckerman, and Glenn J. Martyna. Scalable fine-grained parallelization
of plane-wave-based ab initio molecular dynamics for large supercom-
puters. Journal of Comptational Chemistry, 25(16):2006–2022, Oct.
2004.

[17] Filippo Gioachin, Amit Sharma, Sayantan Chackravorty, Celso Mendes,
Laxmikant V. Kale, and Thomas R. Quinn. Scalable cosmology
simulations on parallel machines. In7th International Meeting on
High Performance Computing for Computational Science (VECPAR),
July 2006.

[18] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., and M.E.
Zosel. The High Performance Fortran Handbook. MIT Press, 1994.

[19] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme
for irregular graphs.Journal of Parallel and Distributed Computing,
48:96 – 129, 1998.

[20] George Karypis and Vipin Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs.SIAM J. Sci. Comput.,
20(1):359–392, 1998.

[21] Milind Bhandarkar, L. V. Kale, Eric de Sturler, and Jay Hoeflinger.
Object-Based Adaptive Load Balancing for MPI Programs. InProceed-
ings of the International Conference on Computational Science, San
Francisco, CA, LNCS 2074, pages 108–117, May 2001.

[22] Rashmi Jyothi, Orion Sky Lawlor, and L. V. Kale. Debugging support
for Charm++. InPADTAD Workshop for IPDPS 2004, page 294. IEEE
Press, 2004.

[23] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms
for scheduling unrelated parallel machines.Math. Program., 46(3):259–
271, 1990.

[24] George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning
scheme for irregular graphs. InSupercomputing ’96: Proceedings of the
1996 ACM/IEEE conference on Supercomputing (CDROM), page 35,
1996.

[25] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and Sameer Kumar.
Scaling applications to massively parallel machines using projections
performance analysis tool. InFuture Generation Computer Systems Spe-
cial Issue on: Large-Scale System Performance Modeling and Analysis,
volume 22, pages 347–358, February 2006.

[26] Orion Lawlor, Hari Govind, Isaac Dooley, Michael Breitenfeld, and
Laxmikant Kale. Performance degradation in the presence of subnormal
floating-point values. InProceedings of the International Workshop
on Operating System Interference in High Performance Applications,
September 2005.

[27] A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet,
R. Ducloux, J.-M. Gratien, U. Hartmann, G. Lonsdale, B. Maerten,
D. Roose, and C. Walshaw. Dynamic load balancing of finite element
applications with the DRAMA Library. InApplied Math. Modeling,
volume 25, pages 83–98, 2000.

[28] K. Devine, B. Hendrickson, E. Boman, M. St. John, and C. Vaughan.
Design of Dynamic Load-Balancing Tools for Parallel Applications. In
Proc. Intl. Conf. Supercomputing, May 2000.

[29] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hen-
drickson, James D. Teresco, Jamal Faik, Joseph E. Flaherty, and Luis G.
Gervasio. New challenges in dynamic load balancing.Appl. Numer.
Math., 52(2–3):133–152, 2005.

[30] Kevin Barker, Andrey Chernikov, Nikos Chrisochoides, and Keshav
Pingali. A Load Balancing Framework for Adaptive and Asynchronous

Applications. InIEEE Transactions on Parallel and Distributed Systems,
volume 15, pages 183–192, 2003.

[31] Kevin J. Barker and Nikos P. Chrisochoides. An Evaluation of a
Framework for the Dynamic Load Balancing of Highly Adaptive and
Irregular Parallel Applications. InProceedings of SC 2003, Phoenix,
AZ, 2003.

[32] Chombo Software Package for AMR Applications.
http://seesar.lbl.gov/anag/chombo/.

[33] Robert K. Brunner and Laxmikant V. Kalé. Adapting to load on
workstation clusters. InThe Seventh Symposium on the Frontiers
of Massively Parallel Computation, pages 106–112. IEEE Computer
Society Press, February 1999.

