
Run-time Support for Controlling Communication-Induced
Memory Fluctuation

Yan Shi, Gengbin Zheng and Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign

{yanshi, gzheng, kale}@cs.uiuc.edu

Abstract

Many parallel applications require a large vol-
ume of transient memory to hold data from com-
munication, therefore demonstrating a pattern
of communication-induced memory usage fluc-
tuation. Even though these applications’ per-
sistent working data might fit in physical mem-
ory, the transient peak memory usage could still
lead to disk swapping or even out-of-memory er-
ror. In this paper, we present a solution to the
above problems by runtime support for control-
ling the communication-induced memory fluctu-
ation. The idea consists of imposing runtime
flow control for large data transfers and thus con-
trolling the peak transient memory consumed by
communication. We explore the idea with both
send-based and fetch-based low level communica-
tion primitives. We develop a runtime support
based on the Charm++ integrated runtime envi-
ronment. We test this runtime system with a set
of real applications and show considerable per-
formance improvements.

1 Introduction

A large number of parallel applications exhibit
a pattern of fluctuating memory usage at run-
time. Many of these patterns are established
when parallel objects grasp data from others, do
computation with the data and ultimately throw
the data away. Frequently, the amount of tran-
sient memory is proportional to the program’s
static memory consumption or larger. This wavy

pattern is substantially undesirable for several
reasons. One is that large memory fluctuation
might drive the program into disk swapping zone
where performance will be miserable due to the
severe overhead of disk swapping. Another is
that a large memory footprint might potentially
bring poor cache performance. Further, applica-
tions might fail to run as a result of insufficient
swapping space. An extreme architecture case
is the IBM BlueGene/L machine, where there’s
no virtual memory with only 512MB of physical
memory available.

A vital observation here is that many of these
transient memory variations are associated with
data communications between parallel entities.
In Section 3, we will better illustrate the idea
with an example of 7-point stencil with 3D de-
composition. The same pattern is also shown in
a broad range of both structured and unstruc-
tured meshed applications. Various commonly
used parallel libraries, such as matrix multipli-
cation exhibit similar behaviors. Clearly, these
stated applications could benefit from a runtime
system that controls the transient memory and
reduces the memory fluctuation. The same run-
time system should require minimal user code
modification and incur negligible overhead in the
normal case while improving performance when
the memory fluctuation is high.

In search of relevant work, we find that the
stated problems have rarely been addressed di-
rectly. Many memory related studies focus on
optimizing memory hierarchy based on locality.
Other works try to solve the memory problem
with faster swapping mechanisms.

1

In this paper, we present an approach where
we try to confront the communication-induced
memory problem head-on. Given knowledge at
the runtime level of the communication-induced
memory pattern, we could limit transient mem-
ory usage from communication by controlling
large data transfers. Various flow control strate-
gies could be applied in the runtime system
to facilitate the selection process. We study
the applicability of integrating this idea with
both send-based and fetch-based communica-
tion. A runtime support for this approach is
implemented in Charm++ [11] and AMPI [10],
an integrated parallel runtime system. Through-
out the paper, we demonstrate by drawing exam-
ples from a set of scientific applications, where
the communication-induced memory fluctuation
pattern persists. We believe the generality of our
approach is maintained and it could be applied
to various parallel systems where a high degree
of concurrency is present.

The rest of the paper is organized as follows:
Section 2 discusses the background of our work
and its related work. Section 3 presents our
methodology implemented in a runtime system
to handle communication-induced memory fluc-
tuation. Section 4 describes the performance
with case studies of several real-world applica-
tions. Section 5 concludes with some future
plans.

2 Background and Related Work

2.1 Related Work

Explicit Memory Control
Most work in explicit memory control aims at

improving application performance by exploit-
ing the memory hierarchy through better mem-
ory management using an educated policy for
caching data in faster memory [7, 4]. For large
data applications, out-of-core [6, 19, 18] meth-
ods are designed to overcome the memory capac-
ity limitation. These approaches typically block
data sets and use DRAM as a cache for slow
bulk media such as hard drive or tape drives.
The performance gain largely stems from apply-
ing application specific knowledge and replacing

the operating system in the role of manipulating
data swapping. By keeping the real working data
set in-core, thrashing hopefully will be avoided.

Another relevant work is on resource-
constrained sandboxing [17, 3], where irrevoca-
ble restrictions exists on resource usage, such
as memory. It is primarily in the context of
real-time systems where fair sharing and no-
starvation guarantees are required. Relying
largely on kernel support, monitoring resources,
code instrumentation and system call intercep-
tion, resources are enforced in a qualitative way.

Although some of the works above, such as
the out-of-core method, explicitly control the ap-
plication memory footprint, our work addresses
the memory-constrained problem from a differ-
ent perspective. We focus on controlling tran-
sient memory fluctuation caused by communi-
cation to reduce the memory footprint to fall
within the bounds of system availability. In fact,
our work can be used as a complement to out-of-
core methods to better solve the memory prob-
lem. Our work leverages some of the techniques
listed above, such as memory monitoring, code
instrumentation and system call interception.

Communication Flow Control
In our work, we use the token-based commu-

nication flow control, which by itself is not a
new idea. The Myrinet GM communication li-
brary [16] provides a simple communication flow
control via regulating send and receive tokens,
representing space allocated to the client in var-
ious internal GM queues. A client program may
send or receive a message only when it possesses
a send or receive token for a myrinet port. How-
ever, this mechanism does not provide an ef-
fective flow control for eager messages. In the
MPICH-GM implementation, eager messages are
received as unexpected messages. A fast unex-
pected sender can easily flood a slow receiver.
MPICH-GM therefore implements a rudimen-
tary but somewhat effective throttling mecha-
nism to choke the sender if the unexpected queue
is getting big.

ChaMPIon/Pro [15] MPI runtime enforced
flow control by imposing some reasonable re-
source limit, such as, message buffer size to user
processes. When the message buffers for un-

2

expected messages run out, the runtime simply
aborted the program and showed to users that
there is a resource issue with their application.
This usually indicates possible load imbalance of
the job because normally a process would get a
large number of unexpected messages only when
it falls behind the rest. This implementation,
however, was not appreciated by users because
aborting on a semantically correct MPI program
is not desirable.

Communication flow control is effective in con-
trolling the message buffer size used for unex-
pected messages between a pair of communi-
cating processors. It, however, can not solve
the memory fluctuation problem caused by com-
munication. In a parallel application, a pro-
cess tends to communicate with multiple pro-
cessors, therefore a per link communication flow
control is not sufficient in controlling the total
buffer usage in a process. Furthermore, such low
level communication flow control does not react
to memory usage fluctuation caused by applica-
tions.

Safe MPI Program
MPI literature [13] calls a program safe if

it can be executed to completion regardless of
memory limitations. Non-blocking calls relaxes
pressure on memory compared to blocking calls.
The k-safe notion [2] relaxes the requirement of
the safe program to being safe in an environ-
ment with k system buffers available per pro-
cessor. Our approach of having flow control on
large data communications also raises the ques-
tion of being safe and deadlock free. We discuss
these questions in Section 3.4 and argue that un-
der certain assumptions, the program could be
guaranteed to avoid deadlocks.

2.2 Parallel Run-time

Controlling communication-induced memory
fluctuation often requires flow control of commu-
nication. Such a scheme may result in degraded
performance due to delays in communication. To
alleviate such a performance problem, it is es-
sential for a runtime system to provide dynamic
overlapping of computation and communication
through a high degree of concurrency to hide the

increased communication latency.
The Charm++ and AMPI runtime systems,

which our work is based on, provide such tech-
niques. The Charm++ runtime system em-
ploys an approach called processor virtualiza-
tion [11, 12]. An application divides a problem
into a large number of parallel entities (N), each
a virtual processor, that will execute on P phys-
ical processors. N is independent of P , and typ-
ically N>>P so that there are multiple virtual
processors on each physical processor for high
concurrency. The user’s view of the program
consists of these parallel entities and their in-
teractions; the user need not be concerned with
how the components map to processors. The un-
derlying run-time system takes care of this (see
Figure 1).

User View

System Implementation

Figure 1. Virtualization in Charm++

In Charm++, these parallel entities are encap-
sulated in chares. Chares are C++ objects with
methods that may be invoked asynchronously
from other chares. Adaptive MPI (AMPI) [10, 9]
is an adaptive implementation and extension of
MPI built on top of the Charm++ run-time sys-
tem. AMPI implements virtualized MPI pro-
cesses using light-weight migratable user-level
threads (analogous to Chares), several of which
may be mapped to one physical processor.

Since many parallel entities (chares or threads)
can be mapped to a single processor, Charm++
uses message-driven execution to determine
which chare or thread executes at a given time.
If one Chare is blocked on a receive, another
Chare on the same physical processor can run
if there is an incoming message for it. This
provides adaptive overlapping of communication
and computation which largely eliminates the
need for the programmer to manually specify

3

some static computation/communication over-
lapping.

We have also demonstrated that virtualization
has minimal performance penalty [12], due to
the low scheduling overheads of Chares and user-
level threads. In fact, Charm++ and AMPI run-
time systems promote better cache performance,
which leads to improved performance. A vir-
tual processor handles a smaller set of data than
a physical processor, so a virtual processor will
have better memory locality. This blocking ef-
fect is the same method many serial cache op-
timizations employ, and Charm++ and AMPI
programs get this benefit automatically.

In typical Charm++ and AMPI applications
with fine grained computation and high degree
of concurrency, there are multiple objects or
threads running on one processor. These objects
or threads tend to act independently regardless
of the memory constraint on a node. As a re-
sult, a bursty communication pattern may occur
which leads to significant amount of transient
memory usage for sending and receiving mes-
sages in a short period of time. This may either
push the application into the swap zone with dra-
matically degraded performance, or even cause it
to run out of memory. In the next section, we
will present our effort in making the runtime sys-
tem memory aware to control such bursty mem-
ory fluctuation caused by communication.

3 Design and Implementation

It is often found in many scientific appli-
cations, that cross processor communication,
including collective communication, may lead
to significant memory problem, MPI Alltoall is
such an example (Section 3.5). Furthermore,
as the number of parallel entities that partici-
pate the communication increases, memory us-
age may arise nonlinearly. After communication
finishes, the memory usage returns to normal.
This paper focuses on such transient memory us-
age problems caused by communication. A con-
crete example application is given next.

3.1 A Motivating Example

Let’s take a 7-point Jacobi relaxation program
as a better illustration. In 3D Jacobi prob-
lem, data of a regular rectangular cube are par-
titioned into equal sized small cubes and dis-
tributed evenly over all processors. In every it-
eration, data in each small cube is updated lo-
cally with its own original data and data from its
neighbors. With a 7-point centered scheme, each
small cube depends on 1 adjacent slab with 1
width from all of its 6 neighbors. These data are
usually stored locally and are called ghost cells.
In our implementation, for purposes of memory
efficiency, we allocate data for ghost cells on the
fly, construct them as they come and after com-
putation, free the stale ghost data. In this ex-
ample, we use two data sets. For Data1, the
3D cube is of size 2048 ∗ 512 ∗ 512; while for
Data2, 2048∗512∗384. Both data sets are parti-
tioned into 8∗8∗8 small cubes. Each cube would
need six ghost cells of 8 ∗ 8 rectangles, one from
each neighbor. These ghost cell communications
comprise the primary communication cost in this
program. Figure 2(a) exhibits the iterative wavy
pattern of the memory usage over a sample run
with these two different data sets. As expected,
Data1 takes about 40% more time per iteration.
Figure 2(b) shows the same run but on a dif-
ferent cluster, where Data1 runs into disk swap-
ping and got slowed down substantially. While
Data2 completes almost 7 iterations in 200 sec-
onds, Data1 hardly finishes its first!

The amplitude of this memory fluctuation will
be multiplied if the ghost cell region widens or
the data decomposition grows finer. The for-
mer could be result of particular numerical algo-
rithm([5]), and the latter could result from the
processor virtualization idea we discussed in sec-
tion 2.2. In this example in figure 2(b), if the am-
plitude of the fluctuation could be reduced and
controlled within the bounds of physical mem-
ory, disk swapping could be effectively reduced
or avoided and performance would be greatly im-
proved.

4

Time(s)
0 100 200

M
em

or
y(

M
B)

0

100

200

300

400

500

600
Data1
Data2

(a) Running on machines with 1GB Memory

Time(s)
0 100 200

M
em

or
y(

M
B)

0

100

200

300

400

500

600
Data1
Data2

(b) Running on machines with 512MB Mem-
ory

Figure 2. seven-point 3D stencil jacobi, Total data grid for data1: 2048*512*512; for data2:
2048*512*384. Both are decomposed into subgrid of 8*8*8. 4 nodes of a X86 cluster is used to
run.

3.2 Memory-aware Control

The problem of interest here could be formu-
lated as the following: We assume that an appli-
cation starts with a memory footprint (MA) in
the bounds of physical memory (M) and there
is a limit on the memory per processor (MC)
that can be used for holding data from com-
munication. The MC is determined so that it
prevents the application from entering the swap
zone, such that:

MA + MC <= M (1)

For simplicity, assuming each message is of size
C, therefore the runtime is able to schedule
bMC/Cc outstanding messages at a given time.
The memory-aware runtime we designed sched-
ules communication under such constraint.

It is clear that a runtime system can only
achieve this goal when the message size is less
than MC , otherwise having even one message
leads to swapping. To enable the runtime system
to control memory usage effectively, one impor-
tant design decision is to allow applications to
be decomposed into finer grained computation.
Fine grained computation leads to fine grained

communication, which gives the runtime more
opportunities to schedule communication in a
memory efficient manner. We will see later in
section 4.2 the advantage of fine grained compu-
tation encapsulated in the concept of virtualiza-
tion.

Note that the inequality (1) is really not a hard
limit, which means even if it can’t be satisfied,
if swapping is supported the program should be
able to run. But we show in our study that in or-
der to obtain undegraded performance, it’s desir-
able to provide a best-effort soft guarantee that
the inequality be met. In the next subsection, we
present a token-based control strategy to provide
this best-effort service at runtime.

3.3 Token-based Scheduling

Similar to Myrinet flow control, we apply to-
kens to represent memory resource allocated to
an application. Data communications are posted
only tentatively by the application, and the re-
quests are queued by the runtime. The runtime
would only schedule the transfer if the appli-
cation possesses the token. Various interesting
questions arise in this scenario such as to whom

5

and in what order to assign tokens to. An ideal
allocation scheme should incur the least delay,
yet bring extra benefits such as avoiding commu-
nication hotspot, balancing work load , reusing
data and etc. For this paper, we are concerned
with how to minimize memory usage.

This token-based communication control
scheme requires several extensions to the
runtime in order to provide memory efficient
communication. First, the runtime needs to
intercept normal communication phases by
injecting token-based control. Second, instead
of letting an application pre-allocate a receive
buffer, the runtime manages the message buffer
as memory resource regulated by tokens. Next,
we will examine implementing the token-based
scheduling with both fetch-based and send-based
schemes.

3.3.1 Fetch-based vs Send-based Scheme

Different communication primitives pose dif-
ferent difficulty levels when trying to apply the
token-based runtime control on communication
buffer memory. First of all, to control specific
large data transfers, we need to define points
of interception. Secondly, the system needs to
have knowledge about the party that the control
will have an effect on. With a send-based model
as shown in Figure 3(a), for the purpose of this
discussion, we split the send-receive process into
four phases:

1. application requests to send
2. runtime processes the requests
3. receiving system receives the message
4. receiving system delivers the message

In all four phases, memory is unavoidably con-
sumed. With this model, possible runtime in-
terception could happen during phase two or
phase three. Regardless of where it takes place,
in phase one, memory should already be allo-
cated by the sender to prepare the send data,
and memory is potentially needed to buffer the
data at phase two. For the sake of discussion,
assume runtime intercepts at phase two. At this
stage, the best it can do is to avoid memory ex-
plosion caused by sending this data at the re-

ceiver side. In order to achieve that, knowledge
about the receiver’s memory usage is required.
Either pre-knowledge exists or new knowledge is
acquired on demand. Both approaches, however,
run the risk of that knowledge being outdated.
Further, the latter approach would bring extra
delay for communicating with the receiver in a
on-demand fashion.

� �
� �
� �

� �
� �
� �� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �
� �
� �
	 	
	 	

� �
� �

� �
� �

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

PROCESS

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

! !
! !

" "
" "
#
#

PROCESS

Interception
Layer

SEND

SEND

SEND

PROCESS

$ $ $
$ $ $
$ $ $

% % %
% % %
% % %& & &
& & &
' ' '
' ' '

(((
(((
)))
)))

* *
* *
+ +
+ +

, ,
, ,
, ,

- -
- -
- -

. .
. .
/ /
/ /

0 0 0
0 0 0

1 1
1 1

2 2 2
2 2 2

3 3
3 3

4 4 4
4 4 4
4 4 4

5 5
5 5
5 5

PROCESS

RECEIVE

SEND NODE RECEIVE NODE

Runtime
Application

ApplicationRuntime

 −−> BUFFER ALLOCATED

(a) Send-based Model

� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �

PROCESS

� �
� �
� �
� �

� �
� �
� �

	 	
	 	
	 	

� �
� �

Runtime

� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

PROCESS

Application

FETCH
FETCH

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

FETCH NODE

PROCESS

PROCESS

PROCESS

Layer

RECEIVE

FETCH

TARGET NODE

Interception

Runtime

PROCESS

SEND

Application

(b) Fetch-based Model

Figure 3. Send-based vs Fetch-based

With a fetch-based model, as shown in Fig-
ure 3(b), the protocol is described in seven-
phases:

6

1. application poses tentative fetch
2. runtime processes the request
3. destination runtime receives request
4. destination application returns data
5. data passed to destination runtime
6. data passed to requesting runtime
7. data delivered to requesting application

Combining the seven-phase model with the
idea of runtime allocation of memory, the user
doesn’t preallocate memory for receiving data
at phase one. Instead, the runtime allocates
the memory when the fetch data is received at
phase six. By decoupling the fetch request and
the memory allocation, consumption of mem-
ory is pushed back to later phases – four, five,
six and seven. Under this model, we intention-
ally choose runtime interception at phase two,
in which the requester side’s runtime queues up
the tentative fetch requests and selectively sched-
ules the ones within limits of its memory. Thus
memory allocation occurring at later phases all
falls within control. Moreover, the runtime mak-
ing the scheduling decision would only require
knowledge about itself in order to avoid the burst
of memory allocation.

The advantage of the fetch-based model over
the send-based model is simplicity of implemen-
tation and effectiveness of control. In the lat-
ter, interception occurs before all memory allo-
cations take place; while in the former, it hap-
pens after data is generated and buffered. How-
ever, the side effect of using fetch is losing the
explicit synchronization brought by the send-
receive pair. Thus more careful synchronization
is needed when fetch is being applied in the user
program.

3.3.2 Detecting Memory Availability

Having addressed how the runtime regulates
communication via token-based scheduling pol-
icy with the fetch-based model, the practical
question remaining is that how to detect the
amount of memory available to the job at the
compute node, and hence decide on the number
of tokens necessary. Since the memory availabil-
ity for transient memory usage may change dy-
namically as a result of the variation of the appli-

cation memory usage pattern over time, keeping
track of memory availability is mandatory in or-
der to adapt the number of tokens during the
lifetime of the program.

Specifically, we need to calculate the appli-
cation memory usage (MA) and total available
memory on a node (M) 1. Application mem-
ory usage (MA) can be easily instrumented in a
memory allocator for each malloc and free. It
is the peak memory usage measured in a certain
period of time in the execution. Detecting mem-
ory availability on a node however is a nontrivial
task [14] because most operating systems do not
provide accurate free memory information. Of-
ten, even though operating systems report that
the amount of free memory is close to zero, a
large memory request from a process can still be
accommodated. This is because many operating
systems use as much free memory as it can as
buffer memory, which can be adapted for user
memory requests.

In this paper, we focus on dedicated paral-
lel environments where there is no time sharing
of other user applications. Therefore, the total
amount of physical memory available on a com-
pute node stays relatively stable during the exe-
cution time of a compute job, so that the appli-
cation only needs to detect the physical memory
availability at start time. A simple way to esti-
mate the available physical memory is to first get
the total amount of physical RAM installed, and
then to subtract certain amount of memory (say
100MB) from this to leave room for the kernel
and daemons. A more reliable way is to try to
allocate and use memory as much as it can until a
page fault occurs. This is to see how much of the
temporarily claimed memory can be maintained
in the program’s non-swapped physical memory
(as often reported in the RSS field of the Unix
top utility), which can be used to define M .

In our current implementation, we assume
that an application’s base memory usage stays
relative stable, and therefore we only calculate
MC once and use it as the maximum amount of
the transient memory that the runtime is allowed
to use for communication. In the future we plan

1MC can then be calculated as M −MA

7

to extend this scheme with token adaptivity abil-
ity which will be discussed in Section 5.

3.4 Guaranteed Progress and Deadlock Free

With token-based flow control, parallel
threads issue a serial of fetch-data requests and
later block waiting on them, which can be rep-
resented by a fetch set:

Rn = {F1, F2, ..., Fn,W} (2)

where Fi is the issued fetch-data request and
W is the waitall. The blocking wait intro-
duces chances for deadlocks if there are depen-
dencies between threads. To simplify the task
of avoiding deadlocks at runtime level without
the knowledge of application dependencies, we
made the following two assumptions. One is the
atomicity property of fetch requests (F1, ..., Fn)
posted by any single thread. Any thread would
execute in a pattern of posting fetch-data re-
quests, doing computation, later waiting on the
requests. Atomicity requires that the issuing of
fetch requests (F1, ..., Fn) being atomic and thus
guarantees that there’s no interleaving of issuing
fetch-data requests from different threads in the
request queue. Under this assumption, an appli-
cation can be simply viewed by the runtime as a
sequence of fetch sets (Rs):

{R1, R2, ..., Rk} (3)

where Ri is defined in (2) which is issued by a
particular thread in the application. This as-
sumption allows the runtime to execute the fetch
requests in the order they are received and fulfill
waits in the same order thread by thread. This
avoids the detection of thread dependencies and
significantly reduces unnecessary complexity of
the implementation. The other assumption is
that the number of tokens available would satisfy
the progress of any single parallel thread, that
is any Ri can be satisfied memory-wise. This
assumption simply guarantees enough resources
to make at least one thread progress. Under
these two assumptions, we call the program f-
live program which indicates it’s guaranteed to
progress without a deadlock situation on waiting

for the fetch-data requests. With the charm++
and AMPI system, an execution of any thread
is non-preemptive until it finishes and surrender
the control to the scheduler. Thus atomicity is
automatically satisfied without extra effort.

3.5 Applications in MPI

The above ideas on runtime control of
communication-induced memory allocation can
be applied to MPI implementations. We use
the MPI Alltoall as an example in this section
to illustrate our implementation in the Adaptive
MPI runtime.

In MPICH, the default implementation of
MPI Alltoall uses different algorithms based on
the size of messages and communicators. For
small messages (less than 256 bytes), MPICH
uses a very efficient algorithm by Jehoshua Bruck
et al [1]. It is a store-and-forward algorithm
that takes log p steps, where p is the number of
processors. Due to the messages being small,
there is no memory issue for this algorithm. For
medium size messages (less than 32KB), MPICH
uses an algorithm that posts all irecvs and isends
and then does a waitall, which however, requires
significant transient memory for communication
and does not scale to a very large number of pro-
cessors. For example, to send a 16KB messages
to 32,000 processors (BlueGene/L for example)
requires about 512MB transient memory buffer
which barely fits in BlueGene/L’s memory. For
large messages, MPICH switches to a memory-
conservative implementation that uses a pairwise
exchange algorithm, which takes p − 1 steps for
p processors. This pairwise exchange algorithm
makes sure the transient memory required be-
tween two processors in a step is strictly lim-
ited. This algorithm however may not fully uti-
lize the communication bandwidth even though
there may be enough memory for transient mes-
sage buffers. It is clear that without the mem-
ory awareness, it is difficult for a runtime to
choose the best algorithm that is both memory
and speed efficient. The runtime has to pick ei-
ther the second algorithm which communicates
aggressively assuming the memory is sufficient,
or the third algorithm which restricts the com-

8

munication to only a pair of send/recv between
two processors at a time assuming the memory
is extremely limited.

Our new implementation of MPI Alltoall
treats medium and large size messages in a
way that adapts to the available physical mem-
ory. MPI runtime issues communication re-
quests aggressively, while the underlying com-
munication runtime serves the requests using to-
kens. The communication is progressed accord-
ing to the physical memory availability. When
physical memory allows, this scheme can pro-
cess as many communication requests as possi-
ble. When physical memory is limited in serving
all requests, it restricts the outstanding commu-
nication. In Section 4.2 we demonstrate that the
new implementation achieves better performance
than the default MPI implementation.

4 Performance Case Studies

We evaluated our token-based memory con-
trol scheme on several platforms with several
Charm++ and MPI applications and compare
with the normal scheme without memory con-
trol. For the rest of the paper, normal scheme
refers to the send-based scheme without any
control on communication, while the controlled
scheme indicates the fetch-based scheme with
token-based flow control. And specifically,
controlled-8token would be a controlled scheme
with 8 tokens applied. In our experiment, we
use one token to represent one message.

Two different clusters are used as testing plat-
forms. The first one is a x86 Linux cluster with
8 nodes. Each node has 4 PentiumIII proces-
sors and 512MB of shared memory. Each pro-
cessor is of 500MHz frequency and has 512KB
cache. 100MB Ethernet is used as the intercon-
nection. The second cluster is a AMD64 Linux
cluster, where each node has 2 processors and
1GB of shared memory. Its processors are AMD
Opterons of 1.8GHz and 1GB of cache. Nodes
are connected with Gigabit Ethernet. From now
on, we will refer to them as x86 cluster and
AMD64 cluster respectively.

4.1 Jacobi (Charm++)

The first test program we run is the 3D sten-
cil program as described in Section 3.1. Fig-
ure 4(a) shows the execution time on the x86
Cluster of the normal method vs the controlled
method. A problem of size X ∗1024∗128, where
X varies from 6656 to 7680, is partitioned into
128 ∗ 128 ∗ 128 sub-cubes. A 7-point centered
stencil is used which leads to ghost cell size of
128 ∗ 128 ∗ 1. It can be observed that as soon as
the total data grid exceeds a certain threshold
determined by system memory size, the execu-
tion time of the normal method blows up while
the controlled one stays relatively flat and curves
up much later. From table 1 we see that disk
swapping picks up at the third data point to
2469 and drastically increases more than ten-
fold for the fourth point. This corresponds to
the nonlinear increase of execution time in Fig-
ure 4(a). The controlled scheme also starts to
swap at X = 7552 and its performance is de-
graded. At this point, the non-transient memory
of the program has exceeded the amount of avail-
able memory of the system. Figure 4(b) draws
the memory usage of the same experiment. The
height of the bar represents total memory allo-
cated during the lifetime of execution and the
top part is the portion of transient memory used
for communication for the ghost cell data trans-
fers. While the static memory consumption of
the two methods are almost identical, the nor-
mal method possesses a much larger transient
usage while the controlled one uses so little for
transient that it is almost invisible in the graph.

Figure 5 shows a sample run of the program at
the AMD64 cluster. The problem being solved
is of size X ∗256∗256, where X varies from 3840
to 7040, and is decomposed into sub-cubes of
64∗64∗64. A 13-point centered stencil is applied
in the computation and the resulting ghost cell,
in this case, is of size 64 ∗ 64 ∗ 2. With the ghost
cell widening and decomposition finer, the per-
formance improvement is even more substantial
than in Figure 4. Furthermore the undegraded
execution zone is greatly extended.

In both cases, we see good performance im-
provement in execution time with reduced mem-

9

Ti
m

e
(s

ec
on

ds
)

0

20

40

60

80

100

6656 6784 6912 7040 7168 7296 7424 7552 7680

normal scheme
controlled−6token

(a)

M
em

or
y

(M
B

)

0

100

200

300

400

500

600

700

800

6656 6784 6912 7040 7168 7296 7424 7552 7680

non−transient for normal scheme
Transient for normal scheme
Non−transient for controlled−6token
Transient for controlled−6token

(b)

Figure 4. Jacobi running on x86 cluster Total data grid is X ∗1024∗128, X steps from 6656 to 7680;
running on 8 nodes, 1 proc per node, of the X86 cluster

scheme 6656 6784 6912 7040 7168 7296 7424 7552 7680
normal scheme 9 42 2469 45510 32528 54505 42105 73987 90632

controlled-6token 0 0 0 0 0 11 20 1043 7521

Table 1. Number of page faults during 20-iteration period of the Jacobi program, running on
x86 cluster

ory footprint.

4.2 NAS Benchmark FT

Here we test the performance of our
MPI Alltoall implementation with the well-
known NAS FT benchmark([8]). FT solves
a three dimensional partial differential equation
using forward and inverse FFTs. Hence it does
several MPI Alltoall’s per iteration with rela-
tively large data size. We run the unmodified FT
benchmark with AMPI and compare the perfor-
mance of the different schemes. Since the data
size from class A to B to C multiplies rather
than incrementally increases, instead of control-
ling the problem data size we take control of the
amount of system memory available to the pro-
gram. This is achieved by running a small pro-

gram that uses a specified amount of memory by
pinning every memory page of the region period-
ically. Since each compute node is 4-way SMP,
running the memory-using program on one pro-
cessor while running the FT program on another
processor will not introduce any contention for
CPU time between them.

We solve the class B problem on 8 nodes of
the x86 cluster. The class B consists of a 3D
data grid of 512 ∗ 256 ∗ 256. The problem is
decomposed for 16, 32, 64, 128 and 256 virtual
processors respectively, and running on 8 nodes
cluster, 1 processor per node. Three methods
are compared: normal scheme, controlled scheme
with 4 tokens and controlled scheme with 8 to-
kens. Figure 6(a) shows the execution time of
the FT.B.128, which is decomposed for 128 vir-
tual processors. As we can see, the controlled

10

Ti
m

e
(s

ec
on

ds
)

0

50

100

150

200

250

3840 4480 5120 5760 6400 7040

normal scheme
controlled−6token

(a)

M
em

or
y

(M
B

)

0

100

200

300

400

500

600

700

800

3840 4480 5120 5760 6400 7040

non−transient for normal scheme
Transient for normal scheme
Non−transient for controlled−6token
Transient for controlled−6token

(b)

Figure 5. Jacobi running on AMD64 cluster Total data grid is X ∗ 256 ∗ 256, X steps from 3840 to
7040; running on 8 nodes, 2 proc per node, of the AMD64 cluster. not in the graph: normal scheme
takes 465.9sec at x = 6400, and fails to complete within 2 hrs at x = 7040

scheme 3840 4480 5120 5760 6400 6720
normal scheme 0 0 0 21613 740370 **

controlled-6token 0 0 0 0 0 90632

Table 2. Number of page faults during 10-iteration period of the Jacobi program, running on
AMD64 cluster. ** indicates execution takes longer than 2 hours, no page fault data obtained

scheme has improved performance when avail-
able memory is less than 320MB. Table 3 shows
the number of page faults occuring during the
same sample run. Figure 6(b) illustrates exe-
cution time of the three methods for different
virtual processor numbers when system mem-
ory is 260MB. As we observed, in the normal
scheme, when the number of virtual processors
increases, for the same class B problem, the ex-
ecution time first decreases and then increases
due to the combined effect of cache performance
gain and finer grained message overhead. For
the controlled schemes, however, larger number
of virtual processors gives the runtime more op-
portunities to schedule communication to over-
lap with the computation, leading to better per-
formance.

Overall, flow control for large MPI Alltoall
communication improves performance when
memory is limited by reducing the memory peak
usage. With virtualization, this effect is being
aggregated and improvement is greater.

5 Conclusion

We presented a memory-aware runtime system
that controls communication-induced memory
fluctuation, which helps applications with large
memory footprint to keep within the bounds
of physical memory and avoid disk swapping.
The runtime imposes flow control via commu-
nication tokens for large data transfer and thus
control the peak transient memory consumed by
communication. This runtime support is imple-

11

Ti
m

e
(s

ec
on

ds
)

0

100

200

300

400

500

600

220M 240M 260M 280M 300M 320M 340M

Max:312MBMax: 246MB

normal scheme
controlled−4token
controlled−8token

(a) FT.B.128

Ti
m

e
(s

ec
on

d)

0

100

200

300

400

500

600

700

800

FT.B.16 FT.B.32 FT.B.64 FT.B.128 FT.B.256

controlled−4token
controlled−8token
normal scheme

(b) virtualization

Figure 6. NAS FT Benchmark, running on x86 cluster, time taken for 10 iterations

220MB 240MB 260MB 280MB 300MB 320MB 340MB
normal scheme 65766 55580 32355 24346 8417 15 6

controlled-4token 16516 1143 3 1 0 0 0
controlled-8token 17053 1185 58 0 0 0 0

Table 3. Number of Page Fault during 2-iteration period of FT.B.128 Run, on the x86 cluster

mented in Charm++ and AMPI runtime, which
is portable to a variety of platforms and used
by a variety of parallel applications. The per-
formance results demonstrate that considerable
performance improvements have been achieved
for a variety of applications that involve large
volume of transient memory for communication
such as MPI Alltoall.

In the future we plan to enhance our token-
based memory control scheme to be able to adapt
to the availability of the physical memory. This
allows our scheme to work efficiently for time-
sharing environment where the memory avail-
ability is influenced by other applications run-
ning on the same node. It also allows our scheme
to handle the dramatic variation of the applica-
tion memory usage. The token adaptivity can be
realized by periodically probing both the avail-
able physical memory and the current applica-
tion memory usage, which can be used to adapt
the number of tokens during the execution of

the program. We also plan to use the runtime
we developed with out-of-core methods, which
provides an effective way of controlling both the
application memory and the transient commu-
nication memory to further eliminate the disk
swapping overhead.

References

[1] Jehoshua Bruck, Ching-Tien Ho, Shlomo
Kipnis, Eli Upfal, and Derrick Weath-
ersby. Efficient algorithms for all-to-all com-
munications in multiport message-passing
systems. IEEE Transactions on Parallel
and Distributed Systems, 08(11):1143–1156,
November 1997.

[2] Alan Wagner Chamath Keppitiyagama.
Asynchronous mpi messaging on
myrinet. In 15th International Paral-
lel and Distributed Processing Symposium
(IPDPS’01), 2001.

12

[3] Fangzhe Chang, Ayal Itzkovitz, and Vi-
jay Karamcheti. User-level Resource-
Constrained sandboxing. In 4 th USENIX
Windows Systems Symposium, pages 25–36,
August 2000.

[4] S. Coleman and K. S. M c Kinley. Tile size
selection using cache organization and data
layout. In Proceedings of the SIGPLAN ’95
Conference on Programming Language De-
sign and Implementation, June 1995.

[5] C.H.Q. Ding and Y. He. A ghost cell expan-
sion method for reducing communications in
solving pde problems. In roceedings of the
2001 ACM/IEEE conference on Supercom-
puting, November 2001.

[6] J. Dongarra, S. Hammarling, and
D. Walker. Key concepts for parallel
out-of-core lu factorization. Parallel
Computing, 23(1-2):49–70, April 1997.

[7] M.S.Lam et al. The cache performance
and optimizations of blocked algorithms. In
Proc. ASPLOS-IV, 1991.

[8] A.J. Ferrari, A. Filipi-Martin, and
S. Viswanathan. The NAS Parallel
Benchmark Kernels in MPL. Technical
Report CS-95-39, University of Virginia,
1995.

[9] Chao Huang, Orion Lawlor, and L. V. Kalé.
Adaptive MPI. In Proceedings of the 16th
International Workshop on Languages and
Compilers for Parallel Computing (LCPC
2003), LNCS 2958, pages 306–322, College
Station, Texas, October 2003.

[10] Chao Huang, Gengbin Zheng, Sameer Ku-
mar, and Laxmikant V. Kalé. Performance
evaluation of adaptive MPI. In Proceedings
of ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming
2006, March 2006.

[11] Laxmikant V. Kalé. The virtualization
model of parallel programming : Runtime
optimizations and the state of art. In LACSI
2002, Albuquerque, October 2002.

[12] Laxmikant V. Kalé. Performance and pro-
ductivity in parallel programming via pro-
cessor virtualization. In Proc. of the First
Intl. Workshop on Productivity and Perfor-
mance in High-End Computing (at HPCA
10), Madrid, Spain, February 2004.

[13] Steve Otto Marc Snir and etc. MPI: The
Complete Reference, volume 1. The MIT
Press.

[14] Richard T. Mills, Andreas Stathopoulos,
and Dimitrios S. Nikolop oulos. Adapting
to memory pressure from within scientific
applications on multiprogrammed cows. In
Proceedings of the 18th IEEE International
Parallel and Distributed Processing Sympo-
sium (IPDPS), Santa Fe, NM, April 2004.
IEEE Computer Society.

[15] ChaMPIon/Pro MPI. Champion/pro mpi.
http://verari.com/champion pro.asp.

[16] MyriCom. The gm-2 message passing
system. http://www.myri.com/scs/GM-
2/doc/html.

[17] Vassilis Prevelakis and Diomidis Spinellis.
Sandboxing applications. pages 119–126.

[18] E. Rothberg and R. Schreiber. Efficient
methods for out-of-core sparse cholesky fac-
torization. SIAM Journal on Scientific
Computing, 21(1):129–144, January 2000.

[19] Jeffrey Scott Vitter. External memory al-
gorithms and data structures: dealing with
massive data. ACM Computing Surveys,
33(2):209–271, 2001.

13

