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ABSTRACT
As the size of high performance clusters multiplies, the prob-
ability of system failure grows substantially, posing an in-
creasingly significant challenge for scalability. Checkpoint-
based fault tolerance methods are effective approaches at
dealing with faults. With these methods, the state of the
entire parallel application is checkpointed to reliable stor-
age. When a fault occurs, the application is restarted from
a recent checkpoint. However, the application developer is
required to write significant additional code for checkpoint-
ing and restarting. This paper describes disk-based and
memory-based checkpointing fault tolerance schemes that
automate the task of checkpointing and restarting. The
schemes also allow the program to be restarted on a differ-
ent number of processors. These schemes are based on self-
checkpointable, migratable objects supported by the Adap-
tive MPI (AMPI) and Charm++ run-time and can be ap-
plied to a wide class of applications written using MPI or
message-driven languages. We demonstrate the effectiveness
of the strategies and evaluate their performance.

1. INTRODUCTION
Parallel computing has been playing an increasingly im-
portant role in scientific and engineering research. Some
problems, for instance rocket simulation, are too large to
be solved by any single machine. Challenged by the need
for higher computing capability, people are building larger
parallel machines to handle the ever growing needs of paral-
lel applications. Examples of such machines are ASC Pur-
ple and BlueGene/L [1]. Even with existing computational
power, most parallel simulations still run for several hours or
even days. As the size of new parallel machines multiplies,
the probability of system failure increases substantially. As
a result, it is almost certain for applications that run for a
long time to face faults from both hardware and system soft-
ware. Thus, finding fault tolerance methods to make sure
that programs survive infrastructure failures has become an
active research area.

Developing checkpoint and restart mechanism is an impor-
tant effort toward fault tolerance. It provides the program-
mer with the capability to take snapshots of the state of
the application (and sometimes of the whole system), peri-
odically or on command. On occurrence of system failure,
this checkpointed data would be used to restore the appli-
cation to the previous checkpoint, and the forward progress
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of the application can resume from that point. Most of
the traditional checkpoint-based fault tolerance protocols
require the application developer to write significant addi-
tional code for both checkpointing and restarting, for chores
like reading/writing disk files and re-initializing data struc-
tures. Moreover, it is typically assumed that the restart
occurs on the same number of processors as when check-
pointed. With this assumption, the user has to either wait
a turnaround time for the restoration of the failed nodes, or
rely on the availability of a pool of extra standby nodes that
can be used to replace the crashed ones. In other words, tra-
ditional checkpoint-based fault tolerance entails substantial
costs in programming complexity, time to solution and/or
hardware resources.

In this paper, we describe and evaluate two checkpoint-based
fault tolerance schemes: a simple on-disk scheme that writes
checkpoint data onto reliable NFS hard drives (henceforth
noted as the “on-disk” scheme), and another type of scheme
that keeps two copies of checkpoint data, either in mem-
ory (called the “double in-memory” variation) or in faster
local disk (the “double in-disk” variation). Both schemes re-
quire minimal programmer involvement for checkpointing or
restarting, because the underlying run-time system is built
on self-checkpointable and migratable parallel objects. Both
schemes can restart parallel jobs on different number of pro-
cessors, and hence do not rely on standby processors. It
is even possible to restart the job on a larger number of
processors to speed up the execution as more processors be-
come available. As an option, both schemes can still use the
standby processors as the replacement for the failed ones
similar to other traditional fault tolerance schemes. We also
describe our efforts in maintaining high overall utilization
of the platform by supporting automatic load balancing of
the parallel jobs, especially after they are restarted on a dif-
ferent set of processors with the old load balance destroyed.
The fault tolerance schemes can be applied to a wide class
of applications written in both message passing paradigms
and message driven languages such as Charm++.

The rest of the paper is organized as follows. Section 2
discusses checkpoint-based fault tolerance efforts in general
and some related work. Section 3 briefly introduces the
Charm++ and AMPI run-time system — the infrastructure
that the work of this paper builds on. The design of the
two checkpoint-based fault tolerance schemes is presented
in Section 4. Performance evaluation of the two schemes is
provided in Section 5. Finally, Section 6 summarizes the



contribution of our approach.

2. CHECKPOINT-BASED FAULT TOLER-
ANCE

In checkpoint-based methods, the state of the computation
as a checkpoint is periodically saved to stable storage, which
is not subject to failures. When a failure occurs, the com-
putation is restarted from one of these previously saved
states. According to the type of coordination between dif-
ferent processes while taking checkpoints, checkpoint-based
methods can be broadly classified into three categories: un-
coordinated checkpointing, coordinated checkpointing and
communication-induced checkpointing.

In uncoordinated checkpointing, each process independently
saves its state. During restart, these processes search the set
of saved checkpoints for a consistent state from which the
execution can resume. The main advantage of this scheme
is that a checkpoint can take place when it is most con-
venient. For efficiency, a process may perform checkpoints
when the state of the process is small [23]. However, uncoor-
dinated checkpointing is susceptible to rollback propagation,
the domino effect [19] which could possibly cause the system
to rollback to the beginning of the computation resulting in
the waste of a large amount of useful work. Rollback prop-
agations also make it necessary for each processor to store
multiple checkpoints, potentially leading to a large storage
overhead. Due to the potentially unbounded cost of roll-
back, we consider uncoordinated checkpointing unsuitable
for our requirements.

Coordinated checkpointing requires processes to coordinate
their checkpoints in order to form a consistent global state.
It can be blocking as in [21] and the hardware blocking
used to take system level checkpoints in IBM-SP2, or non-
blocking like Chandy-Lamport’s distributed snapshot algo-
rithm [8]. Coordinated checkpointing simplifies recovery
from failure because it does not suffer from rollback propa-
gations. It also minimizes storage overhead since only one
checkpoint is needed. CoCheck [20] sits on top of message
passing library and implements its functionality in its own
MPI library tuMPI. A special process is used to coordinate
the checkpointing, triggering the processors to save their
states as well as incoming messages until all processors have
finished doing so. At restart phase, receive operations need
to first look at the saved messages for any match. This
restricts when the checkpoint can be taken and sometimes
may change MPIs semantics of synchronous communication.
CLIP [10] is another project implemented on top of mes-
sage passing paradigm and it is specifically built for Intel
Paragon. They claim to be a semi-transparent mechanism
because the user is expected to make minor changes to in-
voke the checkpoint procedure. Also it is the programmers
responsibility to make sure that it is invoked at an appro-
priate time. Because a totally transparent implementation
usually involves the operating system and can be very dif-
ficult to implement, this trade-off does make sense in many
cases. A notable point is that CLIP is built on top of a
compiler-based checkpointer libckpt [17]. A non-blocking
coordinated checkpoint algorithm that uses application level
checkpointing is presented in [7].

Coordinated checkpoint schemes suffer from the large la-

tency involved in saving the checkpoints since a consistent
checkpoint needs to be determined before the checkpoints
can be written to stable storage. In most cases, a global
synchronization is needed to determine such a consistent
global state. Fortunately, many scientific applications, such
as molecular dynamics simulation and finite element method
simulation, are iterative in nature. A consistent global state
can be easily identified between the iterations. In addition,
such a checkpoint time often involves minimal checkpoint
data because the intermediate computation data is freed or
not essential to checkpoint.

Communication-induced checkpointing allows the processes
to take some of their checkpoints independently while pre-
venting the domino effect by forcing the processors to take
additional checkpoints based on protocol-related informa-
tion piggybacked on the application messages it receives
from other processors [6]. However, the forced checkpoint
must be taken before the application may process the con-
tents of the message, possibly leading to high latency and
overhead. It does not scale well with increasing number
of processors [2] and a large number of forced checkpoints
nullify the benefit accrued from the autonomous local check-
points.

Diskless checkpointing is the technique for taking a snapshot
of the state of a program on a distributed system without
relying on stable storage. It replaces stable storage with
memory and processor redundancy. Diskless checkpointing
is a desirable alternative to disk-based checkpointing that
can improve the performance of distributed applications in
the face of failures. Diskless checkpointing often requires
high memory overhead for storing checkpoints. Authors of
[18] presented a way to perform fast, incremental check-
pointing by using N + 1 parity to alleviate this problem.
The algorithm eliminates stable storage and disk writing by
using a combination of extra physical memory and N + 1
parity. All N processors cooperatively maintain their local
checkpoints of a consistent global state. A “checkpoint pro-
cessor” and a “backup processor” are reserved for storing
“parity checkpoint” which is calculated by applying XOR
operation on all local checkpoints of each processor. When
a processor fails, all surviving processors can be recovered
to their previous local checkpoints in the memory, and the
failed processor calculates its checkpoint from all the other
checkpoints, and from the parity checkpoint. However, in
this protocol, each processor communicates with the parity
processor when calculating the parity, which might become
a communication bottleneck. The recovery of the failed pro-
cessor needs checkpoints from all other application proces-
sors as well as parity/backup processors, which is also com-
munication intensive. The protocol also requires two extra
processors for storing parity as well as standby processors
to replace failed application processors.

3. CHARM++ AND ADAPTIVE MPI
Most traditional checkpoint-based fault tolerance schemes
perform checkpointing at the process level which involves
saving the entire process images [4]. These schemes are lim-
ited in their usefulness due to the complex nature of the
subject coupled with many architecture dependent issues.
They are also too inflexible to handle the scenarios where
crashed processors are either irreplaceable or prohibitively



expensive to replace. Allowing an application to adaptively
shrink/expand the number of processors during execution,
and dynamic load balancing are two desirable features of a
run-time in order to better support a fault tolerance scheme
in that scenario.

3.1 Charm++
Charm++ employs a novel approach called processor virtu-
alization [16]. An application divides a problem into a large
number of components (N) (implemented as migratable ob-
jects) that will execute on P processors. N is independent of
P although N>>P is ideal. The user’s view of the program
consists of these N components and their interactions; the
user need not be concerned with how the components map
to processors. The underlying run-time system takes care of
this and any subsequent remapping (see Figure 1).

User View

System Implementation

Figure 1: Virtualization in Charm++

In Charm++, these components are known as chares. Chares
are C++ objects with methods that may be invoked asyn-
chronously from other chares. Since many chares can be
mapped to a single processor, Charm++ uses message-driven
execution to determine which chare executes at a given time.

Objects or chares that carry application code and data are
location independent. Hence chares can migrate from pro-
cessor to processor freely. Object migration does not have to
deal with system kernel issues like inter-process communica-
tion (IPC), therefore it is not architecture dependent. One
application of migratable objects is load balancing. Objects
can migrate from overloaded processors to underloaded pro-
cessors to achieve better load balance.

The Charm++ load balancing framework [24] implements
a dynamic automatic load balancing based on runtime in-
strumentation. During the execution of a Charm++ pro-
gram, the load balancing framework collects workload infor-
mation and object-communication pattern on each physical
processor in the background, and at load balancing time,
load balancer uses this information to redistribute the work-
load, migrating objects from overloaded processors to under-
loaded ones. Charm++ supports a range of sophisticated
dynamic load balancing algorithms including greedy-based
algorithms and refinement algorithms that improve the load
balance by incrementally adjusting the existing object dis-
tribution.

In order to migrate an object, one needs to pack the data
from the object into a serialized buffer and unpack on the
destination. Charm++ provides a PUP (Pack-and-UnPack)
framework to describe the in-memory layout of the object [15].

In the checkpointing context, the object is simply packed
and migrated to the checkpoint storage (memory or disk).

3.2 Adaptive MPI
Adaptive MPI(AMPI) [14, 13] is an adaptive implementa-
tion and extension of MPI built on top of the Charm++ run-
time system. AMPI implements virtualized MPI processes
(VPs) using light-weight migratable user-level threads, sev-
eral of which may be mapped to one physical processor.

Inherited from Charm++, the virtualization in AMPI brings
various benefits to the traditional message passing program-
ming paradigm. Beside automatic system-level fault toler-
ance, other benefits include dynamic overlapping of compu-
tation and communication, automatic load balancing, flexi-
bility to run on arbitrary number of physical processors, and
optimized communication library support. AMPI is now
a mature implementation of MPI; it can be and has been
used in real world applications, such as rocket simulations
at the Center for Simulation of Advanced Rockets at UIUC
and the FEM framework[5] in a dynamic 3D crack propaga-
tion simulation program. Thanks to the good portability of
Charm++, AMPI is able to provide parallel programmers
with productivity and performance on a wide range of high
performance platforms.

4. DESIGNS OF TWO FAULT TOLERANCE
SCHEMES

In this section, we summarize two designs of checkpoint-
based fault tolerance schemes for Charm++ and AMPI. One
scheme is based on on-disk checkpointing [12], and the other
is based on double in-memory checkpointing [25]. Both
schemes take advantage of the support for fault tolerance
in the Charm++ and AMPI run-time system.

4.1 Run-Time Support
The rum-time supports checkpointing application data en-
capsulated in parallel objects and AMPI threads in two lev-
els: fully automated checkpointing or flexible user-controlled
checkpointing by additional helper functions.

Checkpointing objects (including AMPI threads) can be fully
automated using isomalloc stacks and heaps [13]. It is portable
on most platforms except for those where the mmap system
call is unavailable. Similar to the idea in PM2 system [3],
the Charm++ memory allocator allocates data with a glob-
ally unique virtual address, that is, isomalloc reserves the
same virtual space on all processors. When the memory
allocator allocates memory in the context of an object, it
records the pointer to the allocated data associated with the
object. When the object is checkpointed, both the stack (for
the user-level thread) and the heap data associated with the
object are checkpointed automatically. Isomalloc also en-
ables automatic restart. An object or a thread checkpoint
can be restored on any processor because the isomalloc’ed
data can be restored without changing its address.

Alternatively, users can write their own helper functions to
pack and unpack heap data for checkpointing and restor-
ing an object. This is useful when application developers
wish to reduce the data volume by using application specific
knowledge and/or by packing only variables that are live at



the time of checkpointing. If the amount of data in a check-
point is reduced, the checkpoint overhead can be cut down,
and consequently more frequent checkpoints can be taken at
the same total cost.

4.2 On-Disk Checkpointing
As described in Section 3, the Charm++ run-time system
supports migratable objects (user-level threads in AMPI).
During migration, the member data of the object (and the
stack data of the user-level thread) is first packed on the
source processor, then shipped to the destination processor,
and finally unpacked before the execution on that object
(thread) can be resumed. The simple on-disk checkpoint
scheme is analogous to this object migration process. Imag-
ine the source or the target of migration is instead reliable
storage media like NFS hard disk drives. In the checkpoint
phase, the object data is packed and saved onto hard disks
as files, and the application continues its normal execution.
At restart, objects are resurrected from the disk files and the
parallel execution resumes from that point, as if the objects
had just arrived at the processors.

To use this scheme, the programmer typically makes calls,
periodically or on command, to checkpoint the application
onto disks. When the application crashes, the user has
to manually restart the program from the latest (or de-
sired) snapshot. With isomalloc stack and isomalloc heap
support[13], checkpoint/restart mechanism in AMPI can be
fully automated, with no effort from the programmer or user
needed at all. On the other hand, AMPI provides the po-
tential for higher efficiency with some user involvement; the
programmer can choose what data in the MPI task is useful
or alive and worth saving. This makes sense because after all
the programmer has the best knowledge about which part
of the job needs to be saved.

Our on-disk checkpoint scheme is distinguished from other
traditional disk-based checkpoint schemes in that our scheme
is based on self-checkpointable objects implemented in Charm++
run-time. These location-independent objects give our fault
tolerance mechanisms the freedom to recover checkpoint data
encapsulated in migratable objects to any processors in the
system. Therefore, the restart can occur on an arbitrary set
of physical processors.

4.3 In-Memory Double Checkpointing
In-memory checkpoint scheme [25] adopted the idea of disk-
less checkpointing that checkpoints data in memory. It also
uses a coordinated checkpoint strategy. In order to handle
one fault at a time — a common case scenario, one check-
point of the application state in the memory of a different
processor is not sufficient as illustrated in Figure 2. In this
4 processor scenario, each Charm++ object (represented as
a circle) checkpoints only one copy of its checkpoint (repre-
sented as a triangle). When processor 1 crashes, the check-
points for objects a,b and c in the memory of that processor
are permanently lost, so the application will fail. This sug-
gests that each checkpoint needs be stored in the memory
of two different processors. This double-checkpointing thus
ensures the availability of one checkpoint in case the other
is lost.

Figure 3 illustrates an example of double in-memory check-
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Figure 2: In-memory Single Checkpoint

point and restart. The top half of the figure shows the sce-
nario before one processor crashes. Each circle represents
an object in an application, while each triangle and square
represent its first and second checkpoints. In our scheme, we
call the two processors that have the identical checkpoints
buddy processors. It should be noted that one of the two
checkpoints can reside on the same processor as the object
which helps to reduce communication overhead at check-
pointing. For example, object d on processor 1 has two
buddy processors 1 and 2. During checkpointing, object d
only needs to send its checkpoint across network to proces-
sor 2, while the other checkpointing on processor 1 is done
locally.
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Figure 3: In-memory Double Checkpoint

Since accessing memory is much faster than accessing disk,
the potentially low checkpoint overhead and faster restart
allows us to achieve better performance than traditional
disk-based checkpoint schemes. Sending checkpoint data
to the memory of other processors takes advantage of the
high speed interconnect, resulting in much lower overhead
compared with on-disk checkpointing. With the distributed
nature of the checkpoint protocol, our checkpoint protocol
scales when number of processors increases.

However, double in-memory checkpointing undoubtedly in-
creases the memory overhead. It is most beneficial to ap-
plication paradigms with small memory footprints or ma-
chines with very large memory capacity. Another inter-
esting variant of this scheme — double in-disk checkpointing
— that checkpoints two copies of data to the local scratch
disks of two different processors is a potential solution to the



memory constraint. Double in-disk checkpointing fully uti-
lizes the local disks as a distributed storage and uses redun-
dancy to improve the reliability. Writing to the local disks
of remote processors via high speed interconnect potentially
yields much lower checkpointing overhead compared with
writing checkpoints to centralized reliable disks.

Like the simple on-disk checkpoint scheme, this double check-
point scheme is distinguished from other traditional check-
point schemes in that it does not necessarily assume the
availability of standby processors. Furthermore, the appli-
cation can be restarted and continue to run on the surviving
processors without halting the entire job as described below.

The restart procedure is initiated by the crash of a physical
processor. On clusters, the crash detector in the run-time
system detects the crash through broken pipe errors of sock-
ets used in the command channel among processors. When
the restart procedure is initiated, all surviving processors ex-
amine the surviving checkpoints in their memory and check
for missing buddy processors. If the buddy processor is the
crashed processor, a new buddy processor is chosen and the
latest checkpoint is copied to that processor to maintain the
double checkpoints. One of the two buddy processors then
is responsible for restoring the corresponding object to the
state in the checkpoint data.

The bottom half of the Figure 3 illustrates a snapshot of
objects on processors after a recovery is complete. The lost
checkpoints (d,e,a,b,and c) on the crashed processor 1 are
recovered to processor 3 and processor 2 respectively. Af-
ter double checkpoints are recovered, each object is locally
restored by one of the two buddy processors having the
checkpoints. For example, object d in Figure 3 originally
on crashed processor 1 now has its new buddy processors
2 and 3 after restart, and processor 2 is chosen to restore
the object locally. This improves the restart performance by
avoiding the communication overhead incurred by the case
when the object is restored on a processor other than buddy
processors.

4.3.1 Reliability Analysis
The double in-memory checkpoint protocol not only toler-
ates one fault at a time, but also tolerates multiple faults
as long as one copy of all the checkpoints survive. The
only case in which our protocol might fail occurs when both
an object’s buddy processors crash during the time period
between two consecutive checkpoints. In this section, we
summarize an analysis of the reliability based on a simple
model [25] to show that our protocol greatly increases the
reliability of a system.

Consider a parallel system with n processors. Let each pro-
cessor have a failure rate of λ and let λ be the same on
all processors. Let the mean time between failure (MTBF)
be M and let M also be the same on all processors. The
mean time between failure (MTBF) M = 1

λ
. Let the to-

tal execution time of an application without faults be R
units. Thus, the probability that the application will fail is
1− (1− λR)n (1).

Now, consider the case when the application is running with
our fault-tolerance protocol. Let the total run time of the

application in this case be R
′

units, where R
′

> R. Let C
be the time difference between two consecutive checkpoints.
For simplicity, ignore the probabilities of the cases when
unrecoverable failures occur due to crashes of more than two
processors. Let two buddy processors form a group which
gives a total of n/2 groups of buddies.

The probability of an unrecoverable error during C, given
that a processor in a buddy group has already failed, is λC.
So the probability that two processors in a buddy group

both crash during C is (λR
′
)(λC) = λ2R

′
C. Therefore, the

probability of an unrecoverable error during the execution

is 1− (1− λ2R
′
C)n/2 (2).

To get a better idea of the huge different between (1) and
(2), we evaluate these two equations with some plausible
system parameters. To be optimistic, let the MTBF(M) for
any node be 20 years. Let n be 5000, and R be 400 hours.
So λ = 1/M = 5.71 × 10−6 per hour. Plugging these val-
ues into (1) yields a probability of failure of 99.9989%, which
means almost certain failure for the application. We assume
that our protocol increases the run time of the application

by a factor of 3, i.e. R
′
= 1200 hours. It is difficult to esti-

mate R
′

accurately because it includes not only the check-
point/restart overhead, but also the extra time spent due to
rollback and the slowdown due to fewer processors. Let each
processor checkpoint every 6 minutes, C = 0.1 hour. There-
fore, the probability of the unrecoverable failure with our
fault tolerant protocol using (2) is only 0.000977%. Thus,
our protocol decreases the probability of failure for an ap-
plication from near certainty to a very unlikely chance.

4.4 Load Balancing
For all these fault tolerance schemes, after recovery, load
imbalance is very likely to occur especially when the appli-
cation has to run on fewer number of processors. In this
case, due to the fact that the restoration of objects to pro-
cessors is determined in simple schemes such as round-robin
without considering the load, the load may not be evenly
distributed anymore. In a heterogeneous environment, even
when a failed processor can be replaced by a standby pro-
cessor but with a different CPU speed, load imbalance may
also occur.

Our fault tolerance schemes let the load balancing step fix
the load imbalance possibly introduced during restart. The
Charm++ run-time lets the application run for a short pe-
riod of time, monitoring and measuring the computation
and communication load, and then automatically performs
a global load balancing step to fix the load imbalance. This
coupling of fault tolerance protocol with automatic dynamic
load balancing framework in Charm++ is shown to be very
effective in sustaining the parallel performance even after a
crash. Section 5.2 demonstrates the benefits of such schemes.

4.5 Comparison and Discussion
Both our on-disk and in-memory checkpoint/restart schemes
in AMPI and Charm++ can restart an application on a dif-
ferent number of processors. The application can shrink or
expand accordingly to adapt to the changing environment
with the capability of the dynamic load balancing by the
run-time system. However, both schemes have their own



FT Protocols Shrink/Expand Portability Fault-proof Diskless Halts Job NFS Bottleneck
On-disk Yes High Yes No Yes Yes

Double In-memory Yes Low No Yes No No
Double In-disk Yes Low No No No No

Table 1: Comparison of Disk-based and Memory-based Checkpoint Schemes

strengths and target different application paradigms. Ta-
ble 1 shows the comparisons of the on-disk and in-memory
fault tolerance protocols in Charm++/AMPI.

The on-disk checkpoint scheme does not involve sophisti-
cated online error detection and recovery support from in-
frastructure that in-memory double checkpointing is based
on, and thereby it works on a wider variety of platforms.
The in-memory checkpoint scheme and its implementation
of error detection and recovery scheme however rely on the
socket-based network version of Charm++, where an error
is detected by broken socket pipe error and a new process is
spawned if necessary on new processors.

The on-disk checkpoint scheme provides a fault-proof fault
tolerance where the reliability of the system is essentially de-
termined by the MTBF of the “stable” storage. The double
in-memory checkpoint scheme greatly improves the reliabil-
ity, and is able to handle all single faults and most double
faults, except those involving failure of both buddy proces-
sors between two checkpoints. To tolerate more faults at
a time, more duplications of checkpoints are needed, which
requires even larger memory footprint and may not be fea-
sible.

The in-memory checkpoint scheme is well suited for applica-
tions with a small memory footprint so that the checkpoints
can be stored in memory. Such applications are prevalent, as
typified by molecular dynamics simulations. It provides an
attractive solution to fast diskless fault tolerance. It takes
advantage of both the faster memory access and high speed
network. The checkpointing of application data to another
processor’s memory can be easily sped up with high speed
interconnect. With the distributed nature of the checkpoint
algorithm, the scheme does not suffer from the NFS bottle-
neck, and is shown to be scalable with increasing number of
processors. In comparison, the on-disk checkpoint scheme
does not depend on the memory for checkpointing, so it
works for any applications without imposing more memory
overhead.

For applications with a large memory footprint, a variation
of the double in-memory checkpoint scheme — double in-
disk checkpoint scheme is useful provided that each node
has local disk. Just like the double in-memory checkpoint
scheme, it writes duplicate copies of checkpoints, however to
local scratch disk instead of to the memory of each processor.
Although this scheme involves higher overhead due to disk
I/O, it does not suffer from the memory constraint as in the
in-memory checkpoint scheme, and shares other benefits of
the double in-memory checkpoint scheme. Compared with
the on-disk checkpointing, double in-disk checkpoint scheme
does not depend on central reliable storage. Instead, it takes
advantage of the distributed local disks and thus avoids the

I/O bottleneck that is common in today’s central file sys-
tems.

5. EXPERIMENTS AND ANALYSIS
We evaluated and compared the checkpoint overhead and
restart performance on several different platforms with a
variety of applications.

5.1 Checkpoint Overhead
To illustrate the checkpoint overhead of our schemes, we per-
form our experiments with CG and FT in the NAS bench-
marks, with class A and class B. The total amount of data
for each of the 4 combination is different: CG class A has
50MB total checkpoint data, and data from CG class B is in
the order of 100MB. FT has much larger amount of data to
save, with FT class A having around 500MB and FT class
B having nearly 2GB.

The platforms we used include CSAR’s Turing cluster [22],
a 1280-processor Apple G5 Xserve cluster connected with
Myrinet fast network and 100 Mbit Ethernet, and EPCC’s
BlueGene/L machine[11]. This BG/L machine consists of
1024 compute chips (nodes) in a single cabinet. With each
chip having two processors, it has a total of 2048 processors.
The machine is configured with 512 MB of DDR memory per
chip, shared between the two processing cores.

First we present results on the Turing Cluster in Figures 4,
5, 6 and 7, for CG class A, CG class B, FT class A, and FT
class B. The x-axis is increasing number of processors, and
the y-axis is checkpoint time in second. Both axes are in
logarithmic scale.
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In each figure, we show 4 curves representing 4 series of
runs with the benchmark. The on-disk scheme is usually



 0.1

 1

 10

 4  8  16  32  64

Ti
m

e 
(s

)

Processors

Checkpoint Overhead with CG Class B

Simple On-disk
Double In-memory (Ethernet)

Double In-disk (Myrinet)
Double In-memory (Myrinet)

Figure 5: Checkpoint Overheads with CG Class B
on Turing Apple Cluster

 0.1

 1

 10

 100

 4  8  16  32  64

Ti
m

e 
(s

)

Processors

Checkpoint Overhead with FT Class A

Simple On-disk
Double In-memory (Ethernet)

Double In-disk (Myrinet)
Double In-memory (Myrinet)

Figure 6: Checkpoint Overheads with FT Class A
on Turing Apple Cluster

the most expensive in terms of checkpoint overhead. Thanks
to RAID disks, it scales on 4 and 8 processors, but beyond
that, the NFS bottleneck becomes the limiting factor, and
the performance deteriorates as number of processors in-
creases. The double in-memory runs utilizing the Ethernet
and the Myrinet have similar scaling behavior, their curves
almost parallel, both showing good scalability. The fourth
curve shows the in-disk variation of double checkpoint proto-
col. As other double checkpoint variations, its performance
is scalable, since it utilizes the interconnect to transfer data
to save to peers and writes data onto local disks. Because
writing to hard disks is not as fast as storing to peers’ mem-
ory, we observe that the overhead of this protocol is always
higher than its in-memory counterpart with the same inter-
connect. With lower overhead from in-memory schemes, we
can checkpoint the program more often, and hence reduce
the work lost since last checkpoint when a fault occurs.

There is one interesting point to note here. In Figure 7 with
FT class B, the double checkpoint scheme with the Myrinet
is unable to run on 4 processors, because the memory foot-
print for that specific benchmark ( 2GB) is relatively too
large for the machine. We face similar problems on later
runs on BG/L too. In this scenario, the user has two poten-
tial solutions. First, the user can use the in-disk variation
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Figure 7: Checkpoint Overheads with FT Class B
on Turing Apple Cluster

of double checkpoint scheme. However, when a local disk
is unavailable, as on BG/L, the on-disk checkpoint can still
serve the purpose. Moreover, when the socket error detec-
tion, based on which the double checkpoint scheme is built,
is missing, the on-disk scheme becomes the only choice.

We repeated the tests with the NAS benchmarks (CG and
FT Class B) on Blue Gene/L. Figure 8 illustrates the check-
point overhead for the FT class B benchmark with both on-
disk and double in-memory checkpoint protocol. Figure 9
illustrate the same checkpoint overhead for the CG class B
benchmark. The x-axis is increasing number of processors,
and the y-axis is checkpoint time in seconds which is in log-
arithmic scale.

Due to the fact that Blue Gene/L has only 512MB memory
on each node, FT class B benchmark does not even run
on 4 nodes. On-disk checkpoint scheme runs on the rest
of tests. In comparison, several FT benchmark runs with
double in-memory checkpoint protocol ran out of memory
during checkpointing.
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Blue Gene/L

To examine how well our fault tolerance protocols scale with
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the data size, we run a test program with a simple 7-point
stencil computation with a 3-D decomposition (Jacobi3D)
written in MPI on the 32 processors of the Turing Apple
cluster. This simple program is flexible in controlling the
checkpoint data size, so we can measure the overhead of
checkpointing varying the problem size.

.1

1

10

100

1000

Ch
ec

kp
oi

nt
 o

ve
rh

ea
d 

(s
ec

on
ds

) 

Problem size (MB) 
51 64 90 142 246 454 871 1703 3367 6697

(a) NFS disk 
(b) double in−memory (Myrinet) 
(c) double in−memory (Ethernet) 
(d) double in−disk (Myrinet)

Figure 10: Performance Comparison of In-memory
vs. On-disk Checkpointing Varying Problem Size on
Turing Apple Cluster

Figure 10 shows the time cost (in logarithmic scale) with our
4 checkpoint schemes: (a) checkpointing to a shared NFS
drive, (b) double in-memory checkpointing via the Myrinet,
(c) double in-memory checkpointing via the Ethernet, and
(d) double in-disk checkpointing via the Myrinet.

It can be seen that the double in-memory checkpointing on
the Myrinet performs the best. The checkpoint overhead
is almost negligible in the tests. It only took about 4 sec-
onds to checkpoint two copies of 6.7 gigbytes of application
data on 32 processors. Double in-disk checkpointing on the
Myrinet performs quite well and is almost comparable to
the double in-memory checkpointing on the Ethernet inter-

connect. Checkpointing to NFS drive (case(a)) incurs much
higher overhead due to the network contention to the file
server and the slow disk I/O. This comparison of double
checkpoint schemes ((b),(c) and (d)) with the simple disk
checkpoint scheme (a) demonstrates that both the memory
and disk-based double checkpoint schemes perform very well
and are able to take advantage of the fast network hardware.

5.2 Restart Performance
We evaluated the performance of restarting an application
using the in-memory fault-tolerance scheme without stop-
ping an application when fault occurs. We have experi-
mented our in-memory fault tolerance scheme with LeanMD
- a molecular dynamics simulation program. Failures were
simulated by killing one of the processes randomly. Simu-
lations were conducted using Apoa1, a 92,224 atom system
benchmark. LeanMD generates 8498 parallel objects includ-
ing 700 Cells (atoms cubes) and 7798 CellPairs (for force cal-
culations). The simulation consists of 600 timesteps. The
experiments were carried out on 128 processors of NCSA
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Platinum (IA-32) cluster with 1.5G of RAM on each proces-
sor, connected by both Myrinet 2000 interconnect network
and 100 Mbit Ethernet.

We measured the time cost in restart from the time when
the process is killed to the time just before the parallel job
resumes from restart. It took only about 3 seconds for this
LeanMD test on 128 processors, which shows that recovery
protocol is able to restart an application from a crash within
just a few seconds.

We compared the change of simulation speed due to one
crash and the effect of load balancing after recovery, as il-
lustrated in Figure 11 and Figure 12. In Figure 11, after
crash at about step 200, the simulation was slowed down
by a factor of 2, although only 1 out of the 128 proces-
sors was lost. This is because some processors receive much
more work load than others after restart, and these slower
processors slow down the overall execution. In contrast, in
Figure 12, load balancing was called automatically when
recovery from the crash was complete, after which the sim-
ulation time per step was brought down to very close to
the pre-crash speed. Our result demonstrates that the load
balancing techniques in Charm++ provide a strong support
to maintain execution efficiency after a crash, keeping the
impact on the overall performance of losing processor low.
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Figure 13: Total Execution Time with Varying
Number of Crashes on 128 Processors

Figure 13 further illustrates the impact of crashes on the
total execution time of LeanMD on 128 processors. In these
runs, checkpointing happened for every 10 steps, and an au-
tomatic load balancing step was performed 5 timesteps af-
ter each crash. “Crashes” occurred randomly. The x-axis is
the increasing total number of crashes during an execution,
while the y-axis is the total execution time. As illustrated
in the figure, the total execution time was almost unaffected
when one or two processors failed. Even in the case when
10 processors failed (118 processors in the end), which was
about one crash in every 40 seconds, the total execution time
was not increased by more than 50%.

6. CONCLUSION
We presented two fault tolerance protocols based on on-disk
and in-memory schemes implemented in the Charm++ and

AMPI run-time system. These schemes automate the check-
point and restart process with minimal effort from the appli-
cation developer. Moreover, the protocols extend traditional
checkpoint-based fault tolerance by allowing the application
to restart on a different number of processors. Our anal-
ysis shows that these schemes offer a wide selection of fea-
tures and options to meet the needs of various fault tolerance
scenarios. The simple on-disk checkpoint scheme does not
entail any memory overhead and is applicable to Charm++
run-time on top of any communication subsystem. The dou-
ble in-memory checkpoint scheme is well suited for appli-
cations with a small memory footprint, without assuming
any reliable storage like hard disk. It automatically detects
faults and restarts the application on the remaining pro-
cessors. It takes advantage of fast interconnects and shows
good scalability. A variation of this scheme, double in-disk
checkpointing, is suitable for applications with large memory
footprint running on machines where each node has access to
a local disk. All these fault-tolerance schemes and variations
are implemented in Charm++ and AMPI run-time, which
is portable to a variety of platforms and used by a variety of
parallel applications. The fault tolerance schemes described
in the paper are available with the standard distribution of
AMPI and Charm++[9].
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