
Parallelization of Level Set Methods for Solving

Solidification Problems ∗

Kai Wang† Anthony Chang‡ Laxmikant V. Kale § and Jonathan A. Dantzig ¶

Parallel Programming Lab
Department of Computer Science

University of Illinois at Urbana-Champaign,
Urbana, IL, 61801, USA

December 5, 2005

Abstract

Processor virtualization is a kind of parallelization technique which may
be used to enhance the performance of parallel applications from the cache
performance, overlapping of communication and computation. In this study,
we use the processor virtualization technique to parallelize the level set method
for solving solidification problems. Numerical results on a distributed memory
machine are reported to show the performance of the resulting level set solver,
and demonstrate the advantages of using processor virtualization.

Key words: Processor virtualization, Level set methods, MPI, AMPI, Solidification.

1 Introduction

Further understanding of the solidification process has become increasingly impor-
tant in the development of advanced materials. Various solidification parameters

∗This work was supported in part by the National Science Foundation (ITR 0205611, DMR
0121695)

†E-mail: wangkai@cs.uiuc.edu. URL: http://charm.cs.uiuc.edu/∼wangkai.
‡E-mail: anthony@solace.me.uiuc.edu.
§E-mail: kale@cs.uiuc.edu. URL: http://charm.cs.uiuc.edu
¶E-mail: dantzig@uiuc.edu.

1

can be controlled to produce the desired material microstructure and properties.
Industrial casting processes are generally run under conditions that lead to a den-
dritic interface, a complex pattern that has been studied theoretically by numerous
researchers. [1–6] Simulation of dendritic growth is a challenging problem that re-
quires resolution of several different length scales, and the evolution of a complex
interface. There are two classes of methods for problems of this type: fixed grid
methods, in which the interface is recovered from the solution of a continuous field
on a fixed mesh, and front-tracking methods, which somehow ensure that the inter-
face coincides with the grid. In this work, we use a front tracking approach, called
the level set method, described in detail below. [4, 7, 8]

Computations of dendrite growth require the simulation of the thermal and/or
solutal diffusion field surrounding the dendrite tip, typically of order 1 × 10−4 m,
while at the same time resolving dendritic pattern features that may be of the order
of 1 × 10−7 m or smaller. The computational domain must be large enough to
accommodate the large length scales, while the grid spacing must be sufficiently
small to resolve the smaller length scales. Simulation of the solidification process
usually requires several thousand time steps to obtain steady state. Hence, an
enormous amount of computer memory and computing time are necessary to obtain
an accurate result. Massively parallel high-performance computers can be used to
alleviate some of the problems encountered when simulating solidification problems.
The use of parallel computing allows the necessary calculations to occur on several
processors to reduce computational times on problems that would otherwise be
impractical.

Parallelization has been used to improve the performance of the level set method
for a number of applications [9,10]. Most of the parallelization schemes use the Mes-
sage Passing Interface (MPI) as the programming model. The MPI standard [11] is
currently the most popular programming model for the development of parallel ap-
plications. In MPI, the programmer normally divides the computation into exactly
P processes that run on P processors. For complex dynamic applications, significant
effort is required to divide the computation into processes with good load balance
characteristics and communication performance.

The processor virtualization concept has been proposed as a way to remedy
these difficulties [12–16]. In this approach, the programmer decomposes the compu-
tation according to the nature of the problem rather than the number of physical
processors available, dividing the problem into a large number of objects, which
are called virtual processors, and the runtime system is responsible for mapping
these virtual processors to different physical processors. This empowers the run-
time system to do resource management, including automatic load balancing and
communication optimization, by migrating the virtual processors across physical
processors. It simplifies the programmer’s task by substantially removing the con-
straint of physical processors from the algorithm design process [16].

The processor virtualization technique has been successfully employed and
evaluated in many dynamic applications that are notoriously difficult to paral-

2

lelize [17–19]. In this study, we investigate the effect of processor virtualization
on the parallel level set method, applied to simulate dendritic growth. In Section 2,
we introduce some basic knowledge of the level set and solidification problem. In
Section 3, we explain the idea of processor virtualization and its implementation in
the level set tracking process. The numerical results are given in Section 5 to show
the benefits of the processor virtualization brought to SAI computation.

2 Level set methods for solving the solidification

problem

We use the level set method to simulate directional solidification of binary alloys
in two dimensions. We assume that the chemical diffusivity in the liquid D` is
much smaller than the thermal diffusivity, and this allows us to apply the “frozen
temperature approximation,” wherein the thermal gradient is fixed in a frame that
is translating at a constant velocity, V . The diffusivity in the solid phase, typi-
cally much less than D` is taken to be zero. Thus, we need to solve only for the
concentration in the liquid phase C`, using the diffusion equation:

∂tC` = D`∇
2C` (1)

At the liquid-solid interface, we must satisfy two conditions: conservation of so-
lute, and thermodynamic equilibrium, which relates the interface temperature and
composition for the solid and liquid phases.

−D`∂nC` = Vn (C` − Cs) (2)

Ci
` =

1

m`

(

T i − Tm + Γκ
)

(3)

Ci
s =

1

ms

(

T i − Tm + Γκ
)

(4)

where Vn is the normal velocity of the interface, C i
` and Ci

s are the concentration in
the liquid and solid, respectively, Tm is the melting temperature of the pure material,
T i is the interface temperature, m` and ms are the slopes of the liquidus and solidus
lines on the equilibrium phase diagram, respectively, Γ is the interfacial energy and
κ is the local interface curvature.

In the level set method, a function φ is introduced, representing a signed dis-
tance from the interface. The interface itself is defined as the level set φ = 0.
The concentration field and interface position are computed using a two step time-
marching scheme. Assume that all variables are known at a given time. In the first
step, the interface is fixed, and thermodynamic equilibrium, Eqn. (3), is applied
as a boundary condition to solve Eqn. (1) for the concentration field. Next, Vn is
computed from the concentration field using the solute balance, Eqn. (2). Once Vn

3

is known, the interface is advanced by solving a pure advection equation for the
distance function, φ:

∂tφ + vx∂xφ + vy∂yφ = 0 (5)

where vx and vy are the components of Vn in the x and y direction respectively.

To avoid spurious oscillations, a fifth-order WENO (weighted essentially non-
oscillatory) method is used to discretize space. A third-order Runge-Kutta method
is used to discretize time. After advection, φ is reconstituted as a distance function
by solving [7]

∂tφ + S (φ) [|∇φ| − 1] = 0 (6)

until steady state is reached. S(φ), is a smearing function defined as:

S(φ) =
φ

√

φ2 + (∆x)2

(7)

where ∆x is the grid spacing. To solve Eqn. (6), we rewrite it in the form:

∂τφ +





S(φ)φx
√

φ2
x + φ2

y



 φx +





S(φ)φy
√

φ2
x + φ2

y



 φy = S(φ) (8)

where τ is a fictitious time measurement. A modified Godunov’s method (see Chen,
et al. [7]) coupled with the WENO scheme is used to solve this equation.

We use the localized form of the level set method, in which φ is calculated
only within a narrow region surrounding the interface. This significantly decreases
the computation time. Once the distance function is reinitialized, the time step is
complete. The curvature of the interface at the new time step can be calculated from
the distance function. The concentration field for the new interface position can be
determined separately in the solid and the liquid once the interface concentration is
determined. This sequence continues until the specified end time is reached.

3 Processor virtualization

The goal of processor virtualization is to find an effective division of labor between
the programmer and runtime system. Specifically, the programmer is best at finding
and expressing the natural parallelism of the application, but the runtime system can
efficiently carry out resource management and many performance optimizations [15,
16]. In the processor virtualization model, the programmer divides the computation
into many virtual processors, and the runtime system assigns them to available
physical processors. The management and inspection of the virtual processors are
also controlled by the runtime system instead of the programmer.

Probably the most obvious advantage of processor virtualization is that the
runtime system can do automatic dynamic load balancing, by moving the virtual

4

processors between physical processors. Suppose each physical processor houses
many virtual processors. In the simplest setting, the runtime system can monitor
the loads on all physical processors and their neighbors. When a physical proces-
sor goes idle, the run time system could request additional virtual processors from
neighboring physical processors with high load, so that the loads are balanced. A
powerful runtime system can perform this task without user supervision.

Processor virtualization has been applied in many different areas. Many of these
applications benefit from the automatic load balancing mechanism [17–19]. When
using the level set methods for solving the solidification problem, the load can be
roughly balanced by partitioning the initial grid data evenly to different processors
using domain decomposition. In this study, we do not focus on the automatic load
balancing advantage of virtualization, but instead on its abilities to improve cache
performance and optimize communication.

Better cache performance The parallelization scheme for a level set method
on virtual processors is the same as for physical processors—the grid data are dis-
tributed to the virtual processors by the domain decomposition. When the number
of virtual processors is larger than the number of physical processors, each virtual
processor handles a smaller set of data than each physical processor. A virtual
processor may thus have better memory locality during both communication and
computation. This blocking effect is the same strategy employed by many sequential
cache optimization techniques.

Adaptive overlap of computation and communication The communication
in the level set method for solidification involves only ghost layer data exchange.
For example, for the decomposition of a 2D domain, each processor needs to com-
municate with four neighbors. Therefore, the time spent on an iteration for one
processor does not only depend not only on itself, but also on its slowest neighbor.

Typical parallel programming models such as MPI support only one process
per physical processor. Therefore, if this single process is blocked on a receive, the
whole physical processor blocks and becomes idle. This communication idle time
can be traced to two distinct causes. First, a processor B may have to wait for
processor A to complete its work, for example because A is a slower processor or
more heavily loaded (load imbalance). Second, even after A sends its data, processor
B still must wait for the data to arrive across the network (message delay). This is
illustrated in Fig. 1, where processor B has finished its first phase computation, but
it cannot go to its second phase computation without the message from processor
A. Processor B remains idle until the message from A arrives. Both load imbalance
and message delay prevent us from taking full advantage of machine’s power.

Allowing each physical processor to contain many virtual processors can de-
crease the amount of time wasted. When one virtual processor is blocked, the run-
time system can keep the CPU working by picking up another virtual processor to

5

Figure 1: Processor idle time caused by load imbalance and message delay.

take the control of the CPU. This behavior is illustrated in Fig. 2, where the physical
processors A and B now contain two virtual processors A1, A2, B1, and B2. When
the first phase computation of B1 and B2 is finished, the message from A1 arrives,
hence B1 can start its next phase computation immediately. Compared with Fig. 1,
the idle time in Fig. 2 is reduced because the computation and communication in
Fig. 2 are overlapped.

Figure 2: Processor idle time reduction via processor virtualization.

4 Implementation issues

Currently there are at least two parallel programming systems supporting the pro-
cessor virtualization technique. Charm++ is one of the earliest. It is C++ based
and uses parallel objects called Chares to express each virtual processor. Chares
communicate via asynchronous invocation of each other’s special “remote” methods.
For some types of applications, Charm++ has better performance and modularity
properties than MPI [14–16]. However the asynchronous message-passing mecha-
nism is unfamiliar to many programmers, in Science and Engineering or those using
languages other than C++.

Adaptive MPI (AMPI) was developed to provide processor virtualization within
the popular MPI programming interface. [20] AMPI is built on Charm++, but
provides the familiar programming model of MPI. Details of the Charm++ and
AMPI programming systems can be obtained online [21], or publications [12–14,20].

In this study, we first use MPI to parallelize the level set method for solving

6

the solidification problem on a two dimensional domain. The initial grid data is dis-
tributed evenly to a two dimensional processor array. Parallelization of the WENO
scheme is straightforward, as it needs only to communicate among neighboring pro-
cessors. The concentration field is solved in parallel using a red-black Gauss-Seidel
iteration scheme. Virtualization is achieved by replacing its MPI commands with
corresponding AMPI commands and compiling it with the AMPI complier.

5 Experimental results

In this section, we show the parallel performance of the level set method based
on the processor virtualization technique introduced in the previous section. We
performed numerous experiments using different grid sizes, degrees of virtualization
and numbers of processors. The results we report here are selected to illustrate the
individual effects of cache performance improvement and scalability. All tests were
run on the Tungsten Xeon machine at NCSA using up to 32 nodes. Each node has
3GB memory and dual Intel Xeon 3.06 processors, each having a 512 KB L2 cache
and 1MB L3 cache.

5.1 Virtualization overhead

We first compare the performance of the resulting program using different number of
virtual processors on only one physical processor. The purpose of the test is to study
the overhead of virtualization. It is important to point out that using a single virtual
processor on one physical processor is equivalent to doing a serial computation.

Fig. 3 shows the result of simulating a solidification process on a grid size of
100× 100. The computational times reported here are recorded after 100 seconds of
simulated solidification time. We see that the CPU time increases when more virtual
processors are used, as more communication and computation overhead is incurred.
The total CPU time increases by almost 50% when the degree of virtualization is
equal to 8. It should be noted, however, that the grid size for this test is relatively
small, which tends to emphasize the relative cost of virtualization.

5.2 Cache performance

In this section, we demonstrate the effect of virtualization on cache performance.
This time we used a larger grid size (150 × 150) for a simulation of 100 seconds
solidification process. The results are reported in Fig. 4, where we see that the
CPU time decreased drastically when assigning 2 virtual processors to each physical
processor. This can be explained as improved cache performance. The data on
the 150 × 150 grid may be difficult to be fit in the cache. However, when using
two virtual processors in the computation, each virtual processor handles less data,

7

Figure 3: Virtualization overhead on one physical processor case. Grid size = 100×
100. 1 physical processor.

Figure 4: Cache performance on one physical processor case. Number of Unknowns
= 150 × 150. 1 physical processor.

hence the cache performance can be improved.

We also observe a CPU time increase when using more virtual processors in the
computation because of the increased virtualization overhead. These losses offset
any further cache performance improvement. Note that when these same tests
were run using a smaller 100 × 100 grid, the CPU time increased for all degrees
of virtualization, indicating that the computations for the smaller grid fit entirely
within the cache. We use this fact in the next section to isolate the effect of adaptive
overlap on program performance.

8

Figure 5: Performance of adaptive overlapping. Number of Unknowns = 500× 500.
32 physical processors.

5.3 Adaptive overlap

Adaptive overlap of communication and computation occurs when one virtual pro-
cessor blocks for a receive, and the runtime system switches to another virtual
processor. Theoretically, adaptive overlap can save CPU time, since better overall
processor utilization is to be expected. To isolate this effect, we must first eliminate
the influence of the cache effect. Based on the results of the experiments in the
previous subsection, we ensure that no processor is assigned more than a 100× 100
section of the grid.

Fig. 5 reports the results of simulations using 32 physical processors and a
total grid size of 500 × 500. Each physical processor has no more than 100 × 100
grid data. Using 2 virtual processors per physical processor decreases the cpu time
by 11 seconds, a 20% reduction compared to the non-virtualizatized case. Since
improved cache performance has been eliminated as a possible explanation for the
improved performance, the speedup here can be only be due to the adaptive overlap
of communication and computation.

5.4 Interleaved performance

With a larger problem size, we show the performance of the program with both
improved cache performance and adaptive overlapping of communication and com-
putation. The result in Fig. 6 is from a test on a grid size of 1000 × 1000 on 32
processors. The simulation time is still 100 seconds.

The data in Fig. 6 illustrate that when the degree of virtualization is 3, the CPU
time is around 150 seconds, which corresponds to a 25% improvement compared with
the non-virtualized case. The total CPU time that can be saved is more than 55
seconds. The speedups here are both from the improved cache performance and

9

Figure 6: Interleaved performance. Number of Unknowns = 1000×1000. 32 physical
processors.

Table 1: Raw data of Fig. 7. size=1000 × 1000.

Processors degree=1 degree=2 degree=3 degree=4
4 9713.10 8769.38 7402.09 7398.27
8 5618.45 4167.17 3610.77 3677.76
16 2093.14 1945.00 1818.83 1613.69
32 1052.84 948.87 907.63 991.85
64 789.36 651.97 585.34 622.55

adaptive overlapping of communication and computation.

5.5 Scalability test

In this section, we do the test using different numbers of physical processors. The
problem size we choose here is 1000 × 1000. The result is shown in Fig. 7, and for
convenience of discussion, the raw data are also listed in Table 1. The picture on
the left of Fig. 7 shows the relationship between the degree of virtualization and the
speed up when using different numbers of physical processors. The best speedup
(1.56) is found when using 8 physical processors. We can also see that the best
performance is obtained using a degree of virtualization equal to 3. The picture on
the right of Fig. 7 is actually a scalability test. It is not surprising to see that there
are not to much difference when using different degrees of virtualization. The whole
program scales well, even the best cases is when the degree of virtualization equals
to 2.

10

Figure 7: Speedup test. Left: Relationship between the degree of virtualizations and
speedup. Right: Relationship between the number of processors and the speedup.
Grid size = 1000 × 1000. 500 seconds simulation.

6 Conclusion

In this paper, we talk about using the processor virtualization method to parallelize
the level set method for solving solidification problems. We give the performance
data which compare the different degrees of virtualization. We can see that a good
degree of virtualization can improve the performance of the resulting program from
the cache performance and adaptive overlapping of communication and computa-
tion. However, it also brings virtualization overhead which may finally make the
program run slower. In this implementation, we observed that assigning 2 or 3
virtual processors to each physical processor is usually a tradeoff between the virtu-
alization overhead and virtualization benefits.

Automatic load balancing is another advantage of using processor virtualiza-
tion. The solidification process is a moving boundary problem. Most computation
happens on the boundary, which may move from one processor to another proces-
sor in some cases. Therefore load imbalance may occur. We will investigate the
load balancing problem in our ongoing implementation of the level set method with
adaptive gridding.

References

[1] B. Grossmann, K. Elder, M. Grant and M. Kosterlitz. Phys. Rev. Lett. 71(20),
3323 (1993).

[2] B. Echebarria, R. Folch, A. Karma and M. Plapp. Phys. Rev. E 70, 061604
(2004).

11

[3] N. Provatas, Q. Wang, M. Haataja and M. Grant. Phys. Rev. Lett. 91(15),
155502 (2003).

[4] Y.-T. Kim, N. Goldenfeld and J. A. Dantzig. Physical Review E 62(2), 2471
(2000).

[5] H. Udaykumar, R. Mittal and W. Shyy. J. of Comp. Physics 153, 535 (1999).

[6] J.-H. Jeong, N. Goldenfeld and J. A. Dantzig. Physical Review E 64, 041602
(2001).

[7] S. Chen, B. Merrimann, S. Osher and P. Smereka. J. of Comp. Physics 135(1),
8 (1997).

[8] F. Gibou, R. Fedkiw, R. Caflisch and S. Osher. J. of Sci. Comp. 19(1–3), 183
(2003).

[9] X. Li. Phys. Fluids A 5(8), 1904 (1993).

[10] M. Sussman. Comp. and Struct. 83, 435 (2005).

[11] MPI website: http://www-unix.mcs.anl.gov/mpi/.

[12] L. Kale, B. Ramkumar, A. B. Sinha and A. Gursoy. IEEE Transactions on
Parallel and Distributed Systems (1994).

[13] L. Kale, B. Ramkumar, A. B. Sinha and A. Gursoy. IEEE Transactions on
Parallel and Distributed Systems (1994).

[14] L. Kale and S. Krishnan. In Parallel Programming Using C++, edited by G. V.
Wilson and P. Lu, 175–213 (MIT Press, 1996).

[15] LACSI. The Virtualization Model of Parallel Programming: Runtime Optimiza-

tions and the State of Art , Albuquerque (October 2004).

[16] HPCA 10. Performance and Productivity in Parallel Programming via Processor

Virtualization, Madrid, Spain (February 2004).

[17] L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz,
J. Phillips, A. Shinozaki, K. Varadarajan and K. Schulten. J. of Comp. Physics
151, 283 (1999).

[18] M. Nelson, W. Humphrey, F. Gursoy, A. Dalke, L. Kale, R. Skeel and K. Schul-
ten. Inter. J. Super. App. and High Perform. Computing 10(4) (1996).

[19] IPDPS. BigSim: A Parallel Simulator for Performance Prediction of Extremely

Large Parallel Machines, Santa Fe, New Mexico (April 2004).

[20] LCPC 03. Adaptive MPI , College Station, Texas (October 2003).

12

[21] Homepage of Parallel Programming Lab at Department of Computer Science,
University of Illinois at Urbana-Champaign: http://charm.cs.uiuc.edu.

13

