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Abstract

In this paper, we analyze the properties of the sparse approximate inverse precon-
ditioner, and prove that for a strictly diagonally dominant M matrix, the computed
preconditioning matrix can be guaranteed to be nonsingular if it is nonnegative. Then
we investigate the use of the processor virtualization technique to parallelize the sparse
approximate inverse solver. Numerical experiments on a distributed memory parallel
computer show that the efficiency of the resulting preconditioner can be improved by
virtualization.
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1 Introduction

The need to solve very large sparse linear systems arises from many important applica-

tions, and has been driving the development of sparse linear system solvers for parallel

computers. Direct solvers, based on sparse matrix factorization, are extremely robust, but

their memory and floating point operation requirements grow faster than a linear function

of the order of the matrix, because original zeros fill in during the factorization. Precon-

ditioned Krylov subspace methods, by contrast, are considered to be some of the most

suitable candidates for solving large sparse linear systems [1, 34].
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Simple parallel preconditioners such as Jacobi or block Jacobi methods, although

easy to implement, have the inherent weakness of being not robust for difficult problems.

Their lack of robustness prevents them from being used in industrial-strength, standard

software packages. Other parallel preconditioners based on the multicoloring strategy also

have restricted applicability, as only limited parallelism can be extracted by this strategy.

Domain decomposition based methods have been exploited extensively in parallel linear

system solvers and preconditioners [5, 10, 28, 39]. Important progress has been made

recently concerning the parallelization of incomplete LU (Cholesky) factorization precon-

ditioners [21, 30, 33]. Furthermore, there are two additional classes of more advanced

parallelizable preconditioners that seem to be more robust than the simple precondition-

ers. One is based on multilevel block incomplete LU (ILU) factorization, which is built

on successive block independent set ordering and block ILU factorization. For a detailed

discussion of several sequential and parallel multilevel ILU preconditioning techniques, we

refer readers to [2, 3, 35, 36, 37, 38].

In this paper, we will examine another class of parallelizable preconditioning tech-

niques which compute a sparse approximate inverse (SAI) of the original matrix. These

preconditioners possess a high degree of parallelism in the preconditioner application

phase, and are shown to be efficient for certain type of problems. Many algorithms have

been proposed to construct SAI preconditioners [8, 15, 17, 18, 19, 40, 41, 43, 46]. A typical

one is to compute the preconditioner matrix M by minimizing the Frobenius norm [15, 19].

This method is inherently parallel and can be implemented on distributed memory com-

puter systems. However, unlike an ILU type preconditioner, it is difficult to prove that a

SAI preconditioner is nonsingular.

SAI preconditioners have been successfully parallelized in practice. Two software

packages were developed independently based on two different sparsity pattern generation

algorithms. ParaSails is based on a static sparsity pattern computation and is developed

by Chow [13, 14]. SPAI 3.0 is based on a dynamic sparsity pattern computation and was

developed by Barnard et al. [4]. They are written using the usual parallel message passing

interface standard (MPI). The performance of these methods is studied and compared in

[42].

The MPI standard [31] is currently the most popular programming model for par-

allel application development. In MPI, to run on a parellel machine with P processors,

the programmer normally divides the computation into exactly P processes, which run

on the P processors. For complex dynamic applications, significant programmer effort

can be required to divide the computation with good load balance and communication

performance.

The processor virtualization concept has been proposed as a way to remedy these

difficulties [22, 23, 24, 26, 27]. The processor virtualization method has the programmer

decompose the computation according to the nature of the problem, instead of the number

of physical processors available. The programmer thus divides the problem into a large

number of objects, which are called virtual processors, and the runtime system is respon-

sibile for mapping these virtual processors to different physical processors. This empowers

the runtime system to do resource management, including automatic load balancing and
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communication optimization, by migrating the virtual processors across physical proces-

sors. It simplifies the programmer’s task by substantially removing the constraint of

physical processors from the algorithm design process [27].

The processor virtualization technique has been successfully employed and evaluated

in many dynamic applications which are notoriously difficult to parallelize [25, 32, 47].

But its performance on other important parallel applications, including parallel precondi-

tioning, remains unknown. Hence the latter part of this study is an investigation into the

effect of processor virtualization on a parallel SAI solver.

The paper is organized as follows. In Section 2, we introduce the basic technique and

properties of the SAI preconditioner. We then analyze the nonsingularity of the computed

SAI matrix in Section 3, treating separately the special case when the original matrix is an

M matrix. In Section 4, we explain the idea of processor virtualization and its application

to a SAI solver. Numerical results are presented in Section 5, which show the benefits of

processor virtualization for a SAI solver. Section 6 contains some brief concluding remarks.

2 Sparse approximate inverse preconditioners

Consider a sparse linear system

Ax = b, (1)

where A is a nonsingular general square matrix of order n. The convergence rate of a

Krylov subspace solver applied directly to (1) may be slow if the matrix A is ill-conditioned.

In order to speed up the convergence rate of such iterative methods, we transform (1) into

an equivalent system

MAx = Mb, (2)

where M , the preconditioner, is any nonsingular matrix of order n. A Krylov subspace

solver applied to the transformed system will converge faster than the original system

if the condition number of MA is better than that of A. In particular, if M is a good

approximation to A−1 in some sense, then MA should be a good approximation to the

identity matrix I. A Krylov solver applied to the identity matrix converges in one step.

A sparse approximate inverse is simply a sparse matrix M which is a good approx-

imation to A−1. The major driving force behind the search for efficient sparse approxi-

mate inverse preconditioners is their potential advantages in parallel computing. The idea

is that once computed, a sparse preconditioner matrix M can be applied via a simple

matrix-vector product, which can be implemented efficiently on a parallel computer [29].

The ease and efficiency of this parallel operation compares favorably with the highly se-

quential nature of the triangular solution procedures used by incomplete LU factorization

preconditioning techniques.

There exist several techniques to construct sparse approximate inverse precondition-

ers. They can be roughly categorized into three classes [9]: sparse approximate inverses

based on Frobenius norm minimization [15, 19, 41], sparse approximate inverses computed

from an ILU factorization [16], and factored sparse approximate inverses [8, 45, 46]. Each
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of these classes contains a variety of different constructions and each of them has its own

merits and drawbacks. The sparse approximate inverse technique that we discuss here

is based on the idea of least squares approximation. This is also the one that initially

motivated research in sparse approximate inverse preconditioning [6, 7].

We discuss here a particular class of sparse approximate inverse preconditioners that

are constructed based on a minimization of the Frobenius norm. Since we want M to be a

good approximation to A−1, it is ideal if MA ≈ I. This approach is to approximate A−1

from the left, and M is called the left preconditioner. It is also possible to approximate

A−1 from the right, so that AM ≈ I, which is termed as the right preconditioner. In the

case of the right preconditioning, the equivalent preconditioned system analogous to (2)

is

AMy = b, and x = My. (3)

In fact, the right preconditioning approach is easier for us to illustrate the Frobenius norm

minimization idea, which will be described in detail in the following paragraphs.

In order to have AM ≈ I, we want to minimize the functional

f(M) = min
M

‖AM − I‖ (4)

for all possible nonsingular square matrices M of order n, with respect to a certain norm.

Without any constraint on M , the minimization problem (4) has the obvious solution

M = A−1. This solution is undesirable for at least two reasons. First, inverting a matrix

is much slower than performing a linear solve. Second, for most sparse matrices A, their

inverses A−1 are mostly dense, which will cause serious memory problems for the large

matrices encountered in many practical applications.

Thus we are interested in a constrained minimization such that M has a certain

sparsity pattern, or nonzero structure—that is, only certain entries of M are allowed to

be nonzero. Given a sparsity pattern Ω (which could be fixed or depend on the original

matrix), we minimize the functional

f(M) = min
M∈Ω

‖AM − I‖. (5)

Although any norm could be used in the above definition, a particularly convenient norm is

the Frobenius norm, defined for a matrix A = (aij)n×n as ‖A‖F =
√

∑n
i,j=1

a2
ij [34]. With

the Frobenius norm, the minimization problem (5) can be decoupled into n independent

subproblems and can proceed as (using square for convenience)

‖AM − I‖2
F =

n
∑

k=1

‖(AM − I)ek‖
2
2 =

n
∑

k=1

‖Amk − ek‖
2
2, (6)

where mk and ek are the kth columns of M and I, respectively. It follows that the

minimization problem (5) is equivalent to minimizing the individual functions

‖Amk − ek‖2, k = 1, 2, . . . , n (7)
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with certain restrictions placed on the sparsity pattern of mk. In other words, each column

of M can be computed independently.

If the sparsity pattern of mk allows, say, n2 nonzero entries, the rest of the entries are

forced to be zero. Denote the n2 nonzero entries of mk by m̃k and the n2 corresponding

columns of A by Ak. Since A is sparse, its submatrix Ak has many rows that are identically

zero. If we remove the zero rows, we have a reduced matrix Ãk with n1 rows and n2

columns. The individual minimization problem (7) is thus reduced to a least squares

problem of order n1 × n2

min
m̃k

‖Ãkm̃k − ẽk‖2, k = 1, 2, . . . , n. (8)

We note that the matrix Ãk is usually a very small rectangular matrix. It has full rank if

A is nonsingular. m̃k can be computed by QR factorization or the normal equations [19]

for each column k independently. These solves yield an approximate inverse matrix M ,

which minimizes ‖AM − I‖F for the given sparsity pattern.

The parallelism inherent in the technique is the computation of the columns m̃k

independently of each other. It can be implemented efficiently on any modern parallel

machine [29].

3 Nonsingularity of the sparse approximate inverse matrix

If our preconditioner is a singular matrix, a solution of the transformed system (2) may

not correspond to a solution of the original system (1). Hence the preconditioning matrix

must be nonsingular.

Unfortunately, unlike the ILU type preconditioners, whose nonsingularity can be

guaranteed by forcing the diagonal elements of the triangular matrices (L and U) to be

nonzero, it is difficult to prove that an SAI preconditioning matrix is nonsingular. In

most numerical experiments, we find out that the computed approximate inverse matrices

turn out to be nonsingular. However, there have been no practically useful methods to

determine if a computed SAI matrix is nonsingular or not. Existing theorems require the

computed SAI matrices to satisfy certain strict conditions to be nonsingular [34]. Meeting

these conditions usually requires the sparsity pattern to include an impractical number of

nonzeros.

In this section, we discuss the nonsingularity of the SAI matrix. We assume the

original matrix A is a nonsingular matrix, and we assume the diagonal is included in the

selected sparsity pattern. First we will give some definitions and concepts which will be

used in the following discussion.

3.1 Definitions

• Strictly column diagonally dominant matrix:
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A matrix A is called strictly column diagonally dominant if

| aii |>

n
∑

j=1,j 6=i

| aji |

A matrix is strictly row diagonally dominant if its transpose is strictly column diago-

nally dominant. It is well know that any strictly column or row diagonally dominant

matrix is nonsingular.

• Nonnegative and nonpositive matrix:

A matrix A is a nonnegative matrix if for each element aij in the matrix, we have

aij ≥ 0. We can write it as A ≥ 0. A matrix A is a nonpositive matrix if −A is a

nonnegative matrix.

3.2 Sparse approximate inverse for general matrices

From the introduction in Section 2, we know that the approximate inverse process is

to compute n independent small minimization problems according to a selected sparsity

pattern. The solution of each minimization problem is a vector m̃k with length nk, where

nk ≤ n, and is equal to the number of nonzeros in the sparsity pattern. n is the dimension

of the original matrix A.

To be convenient for discussion, we permute Ãk to Ak, so that Ak can be written in

the block form
(

Bk

Ek

)

. (9)

Here we define Bk by dropping both the rows and columns of A corresponding to the zeros

in our sparsity pattern for the k’th column, then permuted so the kth diagonal element of

A is the first diagonal element of Bk. Hence Bk is a primary submatrix of A of rank nk.

Ek is the rectangular matrix, which is formed by the remaining off-diagonal rows of Ãk.

So the minimization problems (8) can be rewritten as

min ‖Akmk − e1‖2, k = 1, . . . , n (10)

Here, mk, e1 is the corresponding permutation of m̃k and ẽk. The vector mk is computed

by solving the normal equation

AT
k Akmk = AT

k e1

⇒ (BT
k Bk + ET

k Ek)mk = AT
k e1

⇒ (BT
k Bk + ET

k Ek)mk = BT
k e1.

(11)

It is difficult to evaluate the nonsingularity of the SAI matrix M directly, since the

columns of M are computed independently, and there is no direct relationship among

them. We turn to analyzing the properties of AM , the product of the original matrix A

and SAI matrix M ; because if AM is nonsingular, then M must be nonsingular.

First the diagonal property of the AM matrix is studied.
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Theorem 3.1. Let AM = (dij)i,j=1...n. AM is a matrix with nonnegative diagonal ele-

ments, and each diagonal element dkk of AM can be expressed as

dkk =

n
∑

j=1

d2

jk.

Proof: From the computation of SAI matrix, the nonzero elements of AM are a

permutation of

Akmk, k = 1, . . . , n.

Here mk stands for the solution of (11).

In our discussion, we have permuted the kth diagonal element of A to be the first

diagonal element of Ak. So the kth diagonal element of AM is

dkk = eT
1 Akmk = mT

k AT
k e1.

which when we express Ak as in (9) is

dkk = mT
k BT

k e1.

From (11), we know that

AT
k Akmk = BT

k e1.

Multiplying this relation on the left by mT
k gives

dkk = mT
k BT

k e1 = (Akmk)
T Akmk =

n
∑

j=1

d2
jk.

�

Since we are trying to compute M as a sparse inverse of A, AM should approximate

the identity matrix I. In the next theorem, we show the diagonal property of AM − I.

Theorem 3.2. Let AM − I = (cij)i,j=1...n. AM − I is a matrix with nonpositive diagonal

elements, and each diagonal element ckk of AM − I satisfies

ckk = −

n
∑

j=1

c2

jk.

Proof: The proof is straightforward, considering cjk = djk when j 6= k, where djk is

the element of AM , we have

ckk = dkk − 1
⇒ ckk = −(dkk − 1)2 − dkk + d2

kk

⇒ ckk = −c2
kk −

∑n
j=1

d2
jk + d2

kk

⇒ ckk = −c2

kk −
∑n

j=1,j 6=k d2

jk

⇒ ckk = −
∑n

j=1
c2

jk.
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The next theorem is related to the Frobenius norm of AM − I.

Theorem 3.3. The Frobenius norm ‖AM − I‖F is the square root of the sum of the

absolute values of the diagonal elements of AM − I.

Proof: This can be proved by

‖AM − I‖2
F

=
∑n

k=1
‖Akmk − e1‖2

=
∑n

k=1

∑n
j=1

c2
jk.

From Theorem 3.2, we get

‖AM − I‖2
F = −

n
∑

k=1

ckk.

Here ckk is the diagonal element of AM − I.

�

Finally, we give a theorem about the nonsingularity of the computed SAI matrix M

for a general matrix A.

Theorem 3.4. If
∑n

k=1
|ckk| < 1, then M is nonsingular.

Proof: Theorem 3.3 shows the Frobenius norm of AM − I can be written as

‖AM − I‖2
F =

n
∑

k=1

|ckk|.

So
∑n

k=1
|ckk| < 1 implies

‖AM − I‖F =< 1.

It is well known that when

‖AM − I‖F = ‖I − AM‖F < 1,

then I − (I − AM) = AM is a nonsingular matrix [34], so M is nonsingular.

�

Thus we see that, to verify if an approximate matrix is nonsingular or not, we only

need to check the diagonal elements of AM , instead of doing a high cost matrix multipli-

cation.

3.3 Sparse approximate inverse for M matrices

Many sparse linear systems arising from scientific and engineering applications lead to a

special kind of matrix, the M matrix. It is thus useful investigate the nonsingularity of

the approximate inverse preconditioners for M matrices.

A square matrix A is called an M matrix if A = λI − G with G ≥ 0 and λ ≥ ρ(G),

where ρ(G) is the spectral radius of the matrix G. If a matrix A is an M matrix, then

[11]:
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• The diagonal elements of A are nonnegative (≥ 0), and the off-diagonal elements of

A are nonpositive (≤ 0).

• The inverse of A is nonnegative.

• All the primary submatrices of A are M matrices.

• There exists a positive diagonal matrix D which makes AD a strictly column diag-

onally dominant matrix.

The remainder of this section discusses M matrices.

Lemma 3.5. Let A be an M matrix. If the least squares solution mk of (10) is nonnegative,

then Bkmk − e1 and Ekmk are nonpositive.

Proof: When A is a nonsingular M matrix, Bk is a nonsingular M matrix because

it is a primary submatrix of A; and the matrix Ek is a nonpositive matrix as it is formed

by the off-diagonal elements of A.

Ekmk ≤ 0 is clear because Ek ≤ 0 and mk ≥ 0. Next we prove Bkmk − e1 ≤ 0.

From (11), we get

BT
k Bkmk + ET

k Ekmk − BT
k e1 = 0

⇒ Bkmk − e1 = −B−T
k ET

k Ekmk.

Bk is a nonsingular M matrix, so B−1

k is a nonnegative matrix. Therefore,

−B−T
k ET

k Ekmk

is a nonpositive vector, so Bkmk − e1 is nonpositive.

�

Each least square solution of (10) will compute a column of approximate matrix

M . Lemma 3.5 implies that when the column of M is ≥ 0, the corresponding column of

AM − I will be ≤ 0. So we get the next Lemma

Lemma 3.6. If the SAI matrix M of an M matrix A is nonnegative, then AM is a matrix

with nonnegative diagonal elements and nonpositive off-diagonal elements, and AM − I is

a nonpositive matrix.

From the definition we know that an M matrix can be transformed to a strictly

column diagonally dominant M matrix by multiplying by a diagonal matrix D. Next we

give a theorem when the original matrix A is a diagonally dominant M matrix.

Theorem 3.7. Suppose A is a column diagonally dominant M matrix. If the computed

sparse approximate inverse preconditioner M is a nonnegative matrix, then AM is a di-

agonally dominant matrix. Especially, if A is strictly column diagonally dominant, then

M is nonsingular, and AM is also an M matrix.
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Proof: Let dk be one column in AM . According to Lemma 3.6, when M is a

nonnegative matrix,

dkk ≥ 0,

and

dik ≤ 0, i 6= k.

Since dik =
∑n

j=1
aijmjk,

∑n
i=1

dik

=
∑n

i=1

∑n
j=1

aijmj

=
∑n

j=1

∑n
i=1

aijmj

=
∑n

j=1
mj

∑n
i=1

aij .

A is a diagonally dominant M matrix, so we have

n
∑

i=1

aij ≥ 0.

Therefore, we get
n

∑

i=1

dik =

n
∑

j=1

mj

n
∑

i=1

aij ≥ 0.

That means AM is a diagonally dominant matrix. Obviously, when A is strictly diago-

nally dominant, AM is also a strictly diagonally dominant M matrix, which implies M is

nonsingular.

�

From Theorem 3.7, we can see that for a strictly column diagonally dominant M ma-

trix, the nonsingularity of its approximate inverse matrix can be guaranteed by computing

a nonnegative approximate inverse matrix.

4 Processor virtualization in sparse approximate inverse

The goal of processor virtualization is to find an effective division of labor between the

programmer and runtime system. Specifically, the human programmer is best at finding

and expressing the natural parallelism of the application, but the runtime system can

efficiently carry out resource management and many performance optimizations [26, 27].

In the processor virtualization model, the programmer divides the computation into many

virtual processors, and the runtime system assigns them to available physical processors.

The management and inspection of the virtual processors are also controlled by the runtime

system instead of the programmer.

Probably the most obvious advantage of processor virtualization is that the run-

time system can do automatic dynamic load balancing, by moving the virtual processors

between physical processors. Suppose each physical processor houses many virtual pro-

cessors. In the simplest setting, the runtime system can monitor the loads on all physical
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processors and its neighbors. When a physical processor goes idle, the run time system

could request additional virtual processors from neighboring physical processors with high

load, so that the loads are balanced. A powerful runtime system can make this possible

without user supervision.

Processor virtualization has been applied in many different areas. Many of these

applications benefit from the automatic load balancing mechanism [25, 32, 47]. However,

for SAI preconditioning, load balancing is usually not a serious issue. Since the computa-

tion and communication pattern is a fixed matrix vector product, the load can be roughly

balanced by assigning the same number of matrix rows to each processor. So in this study,

we do not focus on the automatic load balancing advantage of virtualization, but instead

on its abilities to improve cache performance and optimize communication.

Better cache performance The parallelization scheme for a SAI solve on virtual pro-

cessors is the same as for physical processors—the matrix data is distributed to the virtual

processors row by row. When the number of virtual processors is larger than the num-

ber of physical processors, each virtual processor handles a smaller set of data than each

physical processor. A virtual processor may thus have better memory locality during both

communication and computation. This blocking effect is the same strategy employed by

many sequential cache optimization techniques.

Adaptive overlap of computation and communication For the SAI precondition-

ing technique, the communication is mainly from its matrix vector product in the solving

phase. For example, when we use the GMRES algorithm as the preconditioned Krylov

subspace solver, each GMRES iteration involves two matrix vector product operations.

As one processor only stores part of the vector, the other parts of the vector need to be

acquired from corresponding processors by message communication. Therefore, the time

spent on an iteration for one processor does not only depend on itself but also the slowest

processor which has part of the vector.

Typical parallel programming models such as MPI support only one process per

physical processor. Therefore, if this single process is blocked on a receive, the whole

physical processor blocks and is idle. This communication idle time can be traced to

two distinct causes. First, a processor B may have to wait for processor A to complete its

work, for example because A is a slower processor or more heavily loaded (load imbalance).

Second, even after A sends the data, processor B still must wait for the data to arrive across

the network (message delay). This is illustrated in Fig. 1, where processor B has finished

its first phase computation, but it cannot go to its second phase computation without the

message from processor A. So processor B remains idle until the message from A arrives.

Both load imbalance and message delay prevent us from taking full advantage of machine’s

power.

Allowing each physical processor to contain many virtual processors can decrease the

amount of time wasted. When one virtual processor is blocked, the runtime system can

keep the CPU working by picking up another virtual processor to take the control of the

CPU. This behavior is illustrated in Fig. 2, where the physical processor A and B now
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Figure 1: Processor idle time caused by load imbalance and message delay.

contain two virtual processors A1, A2, B1, and B2. When the first phase computation

of B1 and B2 are finished, the message from A1 arrives, hence B1 can start its next

phase computation immediately. Compared with Fig. 1, the idle time in Fig. 2 is reduced

because the computation and communication in Fig. 2 are overlapped.
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Figure 2: Processor idle time reduction via processor virtualization.

Now the question is: can the communication and computation be overlapped in SAI

preconditioning? In other words, can the matrix-vector operations take advantage of the

adaptive overlapping mechanism of virtualization? Obviously, when the matrix is a dense

matrix, the matrix vector operation tends to require an all to all communication. In

this case, the communication and computation can hardly be overlapped, for example, in

Fig. 2, if the virtual processor B1 requires both messages from A1 and A2 to start its

second phase computation.

Fortunately, SAI preconditioning is for sparse matrices. In each communication step,
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a virtual processor requires the part of the vector corresponding to the nonzero pattern of

the local submatrix. Thus communication is only required between a small set of nearby

virtual processors. An extreme example is when the number of virtual processors is equal

to the dimension of the matrix. Each virtual processor then has only one row of the matrix,

so the number of communications per virtual processor will be less than or equal to the

number of nonzero elements in the stored row, which is usually much smaller than the

dimension of the matrix (otherwise, it is not a sparse matrix.) This sparse communication

pattern makes the adaptive overlap of communication and computation possible.

4.1 Implementation issues

Currently there are at least two parallel programming systems supporting the processor

virtualization technique. Charm++ is one of the earliest. It is C++ based and uses

parallel objects called Chares to express each virtual processor. Chares communicate via

asynchronous invocation of each other’s special “remote” methods. For some types of

applications, Charm++ has better performance and modularity properties than MPI[24,

26, 27]. However the asynchronous message-passing mechanism is unfamiliar to many

programmers, especially in Science and Engineering or using languages other than C++.

To provide processor virtualization within the popular MPI programming interface,

Adaptive MPI (AMPI) was developed [20]. AMPI is built on Charm++, but provides the

familiar programming model of MPI. In this study, we use AMPI to implement an SAI

solver. Details of the Charm++ and AMPI programming systems can be obtained from

their website [12], or publications [20, 22, 23, 24].

The processor virtualization concept can be applied to any existing SAI solver. Here

we use an SAI solver based on a static sparsity pattern [13, 14] to show the advantages of

virtualization. This algorithm uses the sparsified patterns of powers of A as the sparsity

pattern for M . Here “sparsified” means that certain small entries of A are removed before

its sparsity pattern is extracted. For achieving higher accuracy, the sparsity patterns of

(sparsified) A2, A3, . . . , may be used. Here the matrices A2, A3, . . . , are not explicitly

computed, only their sparsity patterns are extracted from that of the matrix A with

binary operations. A software package, ParaSails, which uses MPI to parallelize the

static sparsity pattern SAI preconditioning, has been released to the public [13, 14]. We

make ParaSails virtualization capable by replacing the MPI commands in the software to

corresponding AMPI commands and compiling it with the AMPI compiler. The following

is the SAI algorithm based on the static sparsity pattern [13].

Algorithm 4.1. Construct a static pattern SAI preconditioner.

1. Given a drop tolerance τ and the level of pattern l

2. Drop entries of A that are smaller than τ to get A′

3. Compute an SAI matrix M according to the sparsity pattern of Al
′

4. Drop entries of M that are smaller than τ

5. M is the preconditioner for Ax = b
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5 Experimental results

In this section, we show the parallel performance of an SAI solver based on the processor

virtualization technique introduced in the previous section. The equations to be solved are

the discretized convection diffusion equations, which are very important in computational

fluid dynamics to model transport phenomena.

3-D Convection-diffusion problem. A three dimensional steady-state convection-

diffusion problem is defined on a unit cube as

uxx + uyy + uzz + 1000 (p(x, y, z)ux + q(x, y, z)uy + r(x, y, z)uz) = 0. (12)

Here the convection coefficients are chosen as

p(x, y, z) = x(x − 1)(1 − 3y)(1 − 2z),

q(x, y, z) = y(y − 1)(1 − 2z)(1 − 2x),

r(x, y, z) = z(z − 1)(1 − 2x)(1 − 2y).

The Reynolds number for this problem is 1000. Eq. (12) is discretized by using the

standard 19-point fourth order compact difference scheme [44]. A typical row or column

thus has 19 nonzero entries.

The solver We can see from Algorithm 4.1 that there are two parameters in the algo-

rithm, τ and l, which have an important influence on the convergence performance of the

resulting system. In a real world application, they should be tuned carefully. However, in

this study, we only focus on the parallel performance of the SAI solver. In all our reported

numerical results, the drop tolerance parameter τ is fixed to be zero, and the level of

pattern is set to be 1.

We run the tests on the Tungsten Xeon machine in NCSA using up to 16 nodes. Each

node has 3GB memory and dual Intel Xeon 3.06 processors. The processor is installed

with a 512 KB L2 cache and 1MB L3 cache.

For all the results reported in the tables and figures. “degree” means the number of

virtual processors assigned to each physical processor. “MPI” denotes the time used for

native MPI program solving the same problem. “setup” means the time spent constructing

the SAI preconditioner; “solve” is the time spent on the preconditioned GMRES(50)

iteration; “total” is the sum of these two values.

5.1 Virtualization overhead

We first compare the performance of the SAI solver when using different number of virtual

processors on only one physical processor. The purpose of the test is to study the overhead

of virtualization. Here we point out that, when using one virtual processor in one physical

processor, the program is actually doing a serial computation.
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Degree setup solve all

1 4.1 20.4 24.5
2 4.1 20.7 24.8
3 4.2 21.6 25.8
4 4.3 22.2 26.5
5 4.3 22.4 26.7
6 4.4 22.7 27.0
7 4.4 23.1 27.5
8 4.5 23.6 28.0

MPI 4.1 20.4 24.5

Table 1: Raw data of Fig. 3.

Fig. 3 shows the result for solving the three dimensional convection-diffusion equation

with 40, 000 unknowns and 722, 206 nonzeros. Its raw data are listed in Table 1. The time

reported here is after 1000 GMRES iterations.
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Figure 3: Virtualization overhead on one physical processor case. Number of Unknowns
= 40, 000. 1000 iterations. 1 physical processor.

From Fig. 3 and Table 1 we can see that when using more virtual processors, the

virtualization overhead makes both the setup time and solving time increase slightly. The

total CPU time of using 8 virtual processors is 3.5 seconds (14 percent) slower than without

using virtualization.

5.2 Cache performance

The test in this paragraph is to demonstrate the cache performance effect of virtualization.

The results shown in Fig. 4 and Table 2 are from solving a larger problem size of 160, 000
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Figure 4: Cache performance on one physical processor case. Number of Unknowns =
160, 000. 1000 iterations. 1 physical processor.

Degree setup solve all

1 16.4 112.6 129.0
2 16.3 112.3 128.7
3 16.5 104.9 121.4
4 16.5 103.8 120.3
5 16.7 103.9 120.6
6 16.8 104.1 120.9
7 16.7 104.7 121.5
8 16.9 104.5 121.4

MPI 16.3 112.4 128.7

Table 2: Raw data of Fig. 4.

unknowns with 2, 951, 656 nonzeros on one physical processor.

We can see from Fig. 4 and Table 2 that the setup time increases with more virtual

processors due to the virtualization overhead. However, the solve time drops from 112.6

seconds to 103.8 seconds because of the improved cache performance when the degree of

virtualization is increased from 1 to 4. More virtual processors make each virtual processor

handle less data, which fits better in cache. Here we can see the cache performance

outperforms the influence of the virtualization overhead and improves the total CPU time

by 6 percent.

The setup time does not show much cache benefit because the main computation

during the setup phase is the small least square solves, which are implemented by the

highly cache optimized BLAS/LAPACK routines in the SAI solver. In addition, each

least square solve is only to compute one column of the SAI matrix, so the memory usage
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Figure 5: Performance of adaptive overlapping. Number of Unknowns = 640000. 1000 it-
erations. 16 physical processors. Upper: Relationship between the degree of virtualization
and total time. Lower left: Relationship between the degree of virtualization and setup
time. Lower right: Relationship between the degree of virtualization and solving time.

is related to the number of nonzeros in the sparsity pattern, which is bounded by 19 in

our numerical experiments and not influenced by the problem size.

5.3 Adaptive overlapping

The adaptive overlap of communication and computation happens when one virtual pro-

cessor blocks for a receive, and the runtime system switches to another virtual processor.

Theoretically, adaptive overlap can save CPU time since a better overall processor uti-

lization is expected. To show its performance, we first should eliminate the influence of

the cache effect. From the experiments in the previous subsection, we see that when a

physical processor is assigned a data set size of 40, 000, the whole CPU time only increases

as we add virtual processors. It implies that there is no cache benefit, or the cache benefit

cannot compensate for the virtualization overhead.

So we run our next test on 16 physical processors, and assign 40, 000 unknowns to

each physical processor, which means a total problem size of 640, 000. The results are

shown in Fig. 5 and Table 3.

From Fig. 5 we can see that when use 4 virtual processors per physical processor,

the solving time is decreased by 5 seconds, which is 10 precent faster than the non-

virtualizatized case. Since each physical processor contains only a 40, 000 unknowns, the

speedup here can be regarded as purely from the adaptive overlap of communication and

computation.
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Degree setup solve all

1 4.4 49.7 54.1
2 4.4 46.3 50.6
3 4.5 44.8 49.2
4 4.6 44.7 49.3
5 4.7 45.2 49.9
6 5.4 45.3 50.8
7 6.3 46.6 52.8
8 6.6 48.0 54.6

MPI 4.4 49.8 54.2

Table 3: Raw data of Fig. 5.

Degree setup solve all

1 17.8 252.8 270.6
2 18.0 249.1 267.1
3 18.4 233.0 251.4
4 18.8 221.7 240.5
5 20.1 216.0 236.1
6 21.4 216.7 238.1
7 21.6 218.8 240.5
8 22.3 219.8 242.1

MPI 18.0 252.6 270.6

Table 4: Raw data of Fig. 5.

5.4 Interleaved performance

With a larger problem size, we show the performance of the SAI solver with both improved

cache performance and adaptive overlapping of communication and computation. The

results in Fig. 6 and Table 4 are from solving a three dimensional problem size with

5, 120, 000 unknowns.

The data in Fig. 6 and Table 4 illustrate that when the degree of virtualization is 5,

the solving time decreases from 252.8 to 216.0 seconds, which is 14.5 percent improvement

compared with the non-virtualized case. The total CPU time can be saved 34.5 seconds.

The speedup here are both from the improved cache performance and adaptive overlapping

of communication and computation.

6 Conclusion

In this paper, new stronger guarantees for the nonsingularity of the SAI preconditioning

matrix were presented. For a general sparse matrix, the nonsingularity of its SAI matrix

M can be checked by only computing the diagonal elements of AM − I. For a strictly
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Figure 6: Interleaved performance. Number of Unknowns = 5, 120, 000. 1000 iterations.
32 physical processors.

diagonally dominant M matrix, the nonsingularity of the resulting preconditioned system

can be guaranteed by computing a nonnegative SAI matrix.

We also demonstrated that the processor virtualization technique can be used to

parallelize the SAI preconditioning process. The numerical results demonstrate that the

parallel performance of the SAI preconditioning can be improved by using a proper number

of virtual processors in a physical processor. Two reasons account for this speedup: first

is improved cache performance, because each virtual processor handles less data than a

physical processor; second, virtualization allows many processes in each processor, which

decreases the probability of the processor idling when one process blocks for a receive.

In our tests, no benefit was shown during the setup phase, because the standard

SAI computation does not involve much communication and the memory usage for each

least squares computation is fixed. But for more complex computation, like the multistep

successive preconditioning (MSP) [41], whose setup phase consists of many steps, and

each step does matrix products, the performance of its setup phase can expected to be

improved by virtualization. Our future work will include a study of the performance of

these more complicated solvers.
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