
Topology-aware task mapping for reducing communication contention on large
parallel machines

Tarun Agarwal, Amit Sharma, Laxmikant V. Kalé
Dept. of Computer Science

University of Illinois at Urbana-Champaign
{tagarwal, asharma6, kale}@cs.uiuc.edu

Abstract

Communication latencies constitute a significant factor
in the performance of parallel applications. With tech-
niques such as wormhole routing, the variation in no-load
latencies became insignificant, i.e., the no-load latencies for
far-away processors were not significantly higher (and too
small to matter) than those for nearby processors. Con-
tention in the network is then left as the major factor af-
fecting latencies. With networks such as Fat-Trees of hy-
percubes, with number of wires growing as P log P , even
this is not a very significant factor. However, for torus and
grid networks now being used in large machines such as
BlueGene/L and the Cray XT3, such contention becomes an
issue. We quantify the effect of this contention with bench-
marks that vary the number of hops traveled by each com-
municated byte. We then demonstrate a process mapping
strategy that minimizes the impact of topology by heuris-
tically minimizing the total number of hop-bytes communi-
cated. This strategy, and its variants, are implemented in an
adaptive runtime system in Charm++ and Adaptive MPI, so
it is available to many applications written using Charm++
as well as MPI.

1 Introduction

An increasingly large number of scientific pursuits use
computational resources as their backbone. Applications
range from study of molecular behavior, both using clas-
sical and quantum physics models, evaluation of physi-
cal properties of materials like stress response, to simula-
tions of galaxies and cosmological phenomenon. The insa-
tiable computational requirements of such applications has
inspired the development of massively parallel machines,
like the recent BlueGene (BG/L) machine from IBM. Par-
allelism at the scale of tens of thousands of processors is
being seen. For example, BG/L will have 64K processors
[1] once fully deployed. The main resources in a large par-
allel machine are its compute nodes and the interconnection
network. It is imperative that techniques for efficient and
uniform utilization of these resources be developed.

A parallel program can be thought of as a collection of
communicating tasks. Each task has certain computation

and communication characteristics. The task assignment
problem aims at balancing computational load among the
processors in the system and reducing the overhead of com-
munication between them. This requires partitioning of
tasks into p groups to achieve computational load balance
and appropriate mapping of these groups onto processors in
the network topology to minimize the overhead of comuni-
cation. In this paper, we present a heuristic algorithm for
solving the mapping problem.

Communication is an important factor in determining
performance of parallel programs. Due to the increasing
size of the parallel computers being used, the interconnec-
tion network has become the system bottleneck. It is so
because the packaging considerations for a large number of
processors lead to the choice of a mesh or a torus topol-
ogy. For example, the primary network in BlueGene/L is a
3D-Torus which can be converted to 3D-mesh, if required.
Even for a relatively moderate machine size messages might
travel a large number of hops on average. For example,
a (16, 16, 16)3D-Torus on 4k processors has a diameter of
24 hops and the average internode distance of 12 hops. If
packets travel over such large number of hops, the average
load on the links increases, which increases contention. Ta-
ble 1 presents a simple illustration of this effect. We run
a 3D Jacobi-like program where elements are logically ar-
ranged in a 3D-mesh and send messages to all its neigh-
bours in each iterations. There are 512 elements that are
to be mapped onto 512 BlueGene processors connected in
a 3D-mesh. We compare the total time taken to complete
200 iterations under the optimal mapping (a simple isomor-
phism mapping) with that taken under a random mapping
for different message sizes. Under the optimal mapping,
messages travel only one hop and average load per link is
minimized. The reduction in contention leads to faster ex-
ecution time, with larger gains as message sizes increase.
Therefore, it is desirable to map communicating objects to
nearby processors.

The task mapping problem is known to be NP -
Complete [5, 16, 19]. Two kinds of algorithms have been
developed in the past to solve it: Heuristic algorithms
[16, 3, 21] and Physical optimization algorithms [2, 6, 18].
Though physical optimization algorithms produce high-
quality solutions (better than heuristic algorithms), they

Message Size Random Mapping Optimal Mapping
1KB 56.93ms 46.91ms

10KB 243.64ms 124.56ms
100KB 2247.75ms 914.72ms
500KB 11.62s 4.44s
1MB 23.50s 8.80s

Table 1: Time for 200 iterations of a Jacobi-like program with
optimal mapping and random mapping

tend to be very slow. Their execution times are unaccept-
able in a practical scenario for large data sets, when com-
pared to the task execution times. Heuristic algorithms, on
the other hand, are much faster and suitable for real-world
parallel applications.

To perform topology-aware task mapping, we need to
carry out four steps. First, we need to know the communica-
tion and computation characteristics of the task in the paral-
lel program. Second, we have to characterize the available
system resources (parallel architecture). Third, an evalua-
tion function (or metric) has to be developed to evaluate the
solutions. Finally, the mapping technique or heuristic has to
be designed to minimize that metric.

The first and second steps are taken care of by the
CHARM++ [12] virtualization model and the dynamic
load balancing framework [22] implemented in it. The
CHARM++ programming model involves breaking up the
application into a large number of communicating objects
which can be freely mapped to the physical processors
by the runtime system [11]. Furthermore, these objects
are migratable, which allows the runtime system to per-
form dynamic load balancing based on measurement of load
and communication characteristics during actual execution.
This flexibility has been utilized in the dynamic load bal-
ancing framework of CHARM++. Dynamic load balancing
has an associated overhead of task migration. In CHARM++
this is handled using the PUP framework [10] which is a
way of describing the layout of object’s data in memory.
The metric and the mapping heuristic, which form third and
fourth steps, have been described in detail in later sections.

Also note that in this paper, we are only concerned with
process-based model [5, 20] in which there are no DAG-
based dependencies. The tasks (or modules) are arranged in
undirected graphs and edges represent total communication
between the tasks at the end points rather than precedence
or one-way communication. Further, the tasks are persis-
tent processes which have stable communication patterns
between them (CHARM++ Load Balancing Model).

2 Related Work

The problem of scheduling tasks on processors has been
well studied. There have been many distinct categories of
research, each with a different focus. A large part of the
work has concentrated on balancing compute load across
the processors while ignoring any communication all to-
gether. The problem handled in this kind of work is the
assignment of a set of n jobs (each with some arbitrary

size) on p processors (n usually larger than than p), so as to
minimize the maximum load (makespan) on the processors,
since higher compute load on one processor slows down the
entire system. In the next category, researchers have worked
on communication-sensitive clustering while still ignoring
any topology considerations. The main objective here is the
partitioning of jobs into balanced groups (equal in number
to the number of processors) while reducing inter-partition
communication. The more general problem is one of map-
ping task graph to a network topology graph while bal-
ancing compute load on processors and minimizing com-
munication cost (which we model as hop-bytes in section
3). All the categories described involve NP -hard optimiza-
tion problems. To solve these problems, researchers have
made use of heuristic algorithms like greedy, branch-and-
bound, local search etc. and physical optimization algo-
rithms like simulated annealing, genetic techniques, neural
networks etc. This section will present a brief survey of re-
lated works in the third category (mapping task graph on
a network topology graph). While keeping communicating
tasks on the same processor helps reduce the communica-
tion cost, processor computation load considerations pre-
vent all communication from being intra-processor. The
problem of mapping communication tasks onto a proces-
sor topology has been studied in the past. The objective of
the mapping is to essentially reduce communication cost by
placing communicating tasks on nearby processors.

Bokhari [5] uses the number of edges of the task graph
whose end points map to neighbors in the processor graph
as the cost metric. The algorithm [5] starts with an initial
mapping and performs pairwise exchanges to improve the
metric. Results are given for up to 49 tasks. Lee and Ag-
garwal [16] propose a step by step greedy algorithm fol-
lowed by an improvement phase. At the first step, the most
communicating task is placed on a processor with similar
degree. Subsequent placements are guided by an objec-
tive function. Berman and Snyder [4] present an approach
where both cardinality variation (difference in number of
tasks and processors) and topological variations (different
in shapes of the task graph and topology graph) are con-
sidered. They first coalesce the task graph to get rid of the
cardinality variation. The coalesced graph is mapped on the
actual topology.

Local search techniques such as Simulated annealing
have also been tried. Bollinger and Midkiff [6] propose a
two-phased annealing approach: process annealing assigns
task to processors and connection annealing schedules traf-
fic along network links to reduce conflicts. Evolution-
inspired Genetic algorithms based search has also been at-
tempted. Arunkumar and Chockalingam [2] propose a ge-
netic approach where search is performed using operators
such as selection, mutation, and crossover. While these ap-
proaches produce good results, the time required for them
to converge is usually quite large compared to the execution
time of the application. Orduña, Silla and Duato [18] also
propose a variant of the genetic approach. Their scheme
starts with a random initial assignment, the seed, and in

each iteration an exchange is attempted and the gain, if any,
is recorded. If no improvement is seen for some iterations a
new seed is tried and eventually the best overall mapping is
returned.

Strategies for specific topologies and/or specific task
graphs have also been studied. Ercal, Ramanujam and Sa-
dayappan [7] provide a solution in the context of hypercube
topology. Their divide-and-conquer technique, called Al-
location by Recursive Mincut or ARM, aims to minimize
total inter-processor communication subject to the proces-
sor load being within a tolerance away from the average.
A mincut is calculated on the task graph while maintain-
ing processor load equal on the two sides and a partial as-
signment of the two parts is made. Repetitive recursive bi-
partitioning is performed and the partition at the kth iter-
ation determines the kth bit of the processor assignment.
Bianchini and Shen [9] consider mesh network topology.
Fang, Li and Ni [8] study the problem of 2-D convolution
on mesh, hypercube and shuffle-exchange topologies only.

Baba, Iwamoto and Yoshinaga [3] present a group of
mapping heuristics for greedy mapping of tasks to proces-
sors. At each iteration a task is selected based on a heuristic,
and then a processor is selected for that task based on an-
other heuristic. One of the more promising heuristic com-
binations they propose is to select the task that has maxi-
mum total communication with already assigned tasks and
place it on the processor where the communication cost is
minimized. The communication cost is modeled similar to
hop-bytes, although considering only the communication
with previously assigned tasks. A very similar scheme has
also been implemented, independently, in CHARM++ as the
TopoCentLB load balancing strategy. Taura and Chien [21]
propose a mapping scheme in the context of heterogeneous
systems with variable processor and link capacities. In their
scheme tasks are linearly ordered with more communicat-
ing tasks placed closer, and the tasks are mapped in this
order.

3 Definitions
Both the load information and the network topology are

represented as graphs.

• Topology Graph The network topology is repre-
sented as an undirected graph Gp = (Vp, Ep) on p

(= |Vp|) vertices. Each vertex in Vp represents a pro-
cessor, and an edge in Ep represents a direct link in
the network. Our algorithms work for arbitrary net-
work topologies; however we will present results on
more popular topologies like Torus and Mesh.

• Task Graph The parallel application is represented as
a weighted undirected graph Gt = (Vt, Et). The ver-
tices in Vt represent compute objects (or groups of ob-
jects) and the edges in Et represent direct communi-
cation between the compute objects (or groups of ob-
jects). Each vertex vt ∈ Vt has a weight ŵt. The
weight on a vertex denotes the amount of computa-
tion that the objects in the vertex represent. Similarly,
each edge eab = (va, vb) ∈ Et has a weight cab. The

weight cab represents the amount of communication in
bytes between the compute objects represented by va

and vb.

• Task Mapping The task-mapping is represented by a
map :

P : Vt −→ Vp

If the compute objects represented by the vertex vt ∈
Vt of the task-graph are placed on processor vp, then
P (vt) = vp. A partial task mapping is one where
some of the vertices of the task-graph have been as-
signed to processors in the topology-graph while oth-
ers are yet to be assigned. A partial mapping can be
represented by a function :

P : Vt −→ Vp ∪ {⊥}

where P (vt) = ⊥ denotes that vt has not yet been
assigned to a physical processor.

• Hop-bytes (Metric) Hop-bytes is the metric (or eval-
uation function) used to judge the quality of the solu-
tion produced by the mapping algorithm. Hop-bytes
is the total size of inter-processor communication in
bytes weighted by distance between the respective
end-processors. The relevant measure for distance be-
tween two processors is the length of the shortest path
between them in the topology-graph. For processors
p1, p2 ∈ Vp, the distance between them is represented
by dp(p1, p2). Let us denote by HB(Gt, Gp, P) the
hop-bytes when the task graph Gt is mapped on the
topology graph Gp, under the mapping P .

HB(Gt, Gp, P) =
∑

eab∈Et

HB(eab)

where HB(eab) = cab × dp(P (va), P (vb))

The overall Hop-bytes is the sum of Hop-bytes due to
individual nodes in the task graph.

HB(Gt, Gp, P) =
1

2

∑

va∈Vt

HB(va)

where HB(va) =
∑

eab∈Et

HB(eab)

• Hops per byte This is the average number of network
links a byte has to travel under a task mapping.

Hops per Byte =
HB(Gt, Gp, P)∑

eab∈Et
cab

Hops per Byte =

∑
eab∈Et

cab × dp(P (va), P (vb))∑
eab∈Et

cab

4 The mapping heuristic
Assume we have n compute objects and p processors.

The problem of balancing compute load involves partition-
ing the n compute objects into p groups such that the to-
tal compute load of objects in each group is roughly the
same. The second problem, that of reducing network con-
tention, involves placing these groups onto the p processors
such that more heavily communicating groups are placed on
nearby processors. This would make each message travel
over a smaller number of links leading to a reduction in the
average data transferred across individual links.

The problems of partitioning and mapping can either be
solved together or in separate phases. In the latter approach,
the first phase, called the partitioning phase, involves par-
titioning the objects (oblivious to network-topology) into p

groups. This serves the objective of balancing compute load
on processors. In the next phase, the mapping phase, the
p groups are mapped onto the p processors with the objec-
tive of placing communicating groups on nearby processors.
Any partitioning algorithm can be used in the partitioning
phase. However, a partitioning method that reduces inter-
group communication by placing heavily communicating
objects in the same group must be preferred. This two-
phased approach has the advantage of simplicity and clear
separation of the two objectives. A unified approach where
the mapping is performed on an object-by-object basis has
more freedom but suffers from the constraint of balancing
the compute load on processors. The additional constraint
makes this approach more complex. We have adopted the
above mentioned two-phased approach in this paper.

We now present the mapping heuristic. It is applied in
the second phase of the two-phased approach. The par-
titioning in the first phase is accomplished either using
METIS [13, 15, 14] or using some of the existing topology-
oblivious load balancing strategies in CHARM++.

4.1 Intuition

We employ an iterative approach in mapping tasks to
processors. In this approach, the main question that needs
to be addressed is the selection of the next processor and the
next node in the task-graph to be placed on it. This is guided
by an Estimation function. It estimates for each pair of un-
allocated tasks and available processors the cost of placing
the task on the processor in the next cycle. The estimation
function has the following form:

fest(t, p, P) −→ cost value

where t is an unassigned task , p is an available processor
and P is the current task mapping. For each task we can
find the best processor, the one where it costs least to place
it. However, for a given task it may not matter much if it is
placed on its best processor or any other processor. We can
approximate how critical it is to place a task by assuming
that if it is not placed in the next cycle it will go to some
arbitrary processor in a future cycle. The estimation func-
tion gives us the cost of placing a task on its best processor
and the expected cost when placed on an arbitrary proces-
sor. The difference in the two values is used as a measure

of how critical it is to place the task in the next cycle. Once
we estimate how critical it is for each task to be placed in
the next cycle, we can select the one for which it is most
critical.

Algorithm 1: The Mapping Algorithm
begin

Data: Vt (the set of Tasks),
Vp (the set of processors)
(|Vt| = |Vp| = n)

Result: P : Vt −→ Vp (A task mapping)

T1 ←− Vt;
P1 ←− Vp;
for k ← 1 to n do

//Select the next task and processor (tk, pk);
//Next task, tk, is the one with maximum
gain;
max gain← −∞;
for task t ∈ Tk do

gain(t) =∑
p∈Pk

fest(t,p)

n−k
−minp∈Pk

fest(t, p);
if gain(t) > max gain then

tk ← t;
max gain← gain(t);

end
//Next processor, pk, is the one where tk
costs least;
min cost←∞;
for processor p ∈ Pk do

if fest(tk, p) < min cost then
pk ← p;
min cost← fest(tk, p)

end

P (tk) = pk;

Tk+1 ← Tk − {tk};
Pk+1 ← Pk − {pk};

end

4.2 The algorithm

The top-level view of the algorithm is shown as algo-
rithm 1.

Let us denote by Tk the set of tasks that remain to be
placed at the beginning of the kth cycle. Also denote by
Pk the set of processors that are available at the beginning
of the kth cycle. As shown in Algorithm 1, we calculate
the estimated gain which each task stands to achieve if it
is placed in the current cycle. The estimation function is
such that fest(t, p, P) approximates the contribution of task
t (if placed on processor p) to overall quality of the map-
ping. The function is topology-sensitive. Once gain values
are known for each task, the one with maximum gain is se-
lected. It is mapped to the processor where fest estimates it
to cost the least.

4.3 Estimation functions

In this section we will motivate and present multiple
cost estimation functions. As explained earlier the estima-
tion function is used for calculating the cost of placing a
task t on an available processor p when some of the tasks
have already been placed. Since our objective is to reduce
hop-bytes, we would interpret the contribution of task t

to overall Hop-bytes as the cost of placing t on processor
p. Let us recall that Gt = (Vt, Et) is the task graph and
Gp = (Vp, Ep) is the network topology graph. We note
that the overall Hop-bytes is additive and is the sum of the
Hop-bytes due to individual tasks.

HB =
∑

eij=(ti,tj)∈Et

cijdp(P (ti), P (tj)) =
1

2

∑

ti∈Vt

HB(ti),

where HB(ti) =
∑

tj |(ti,tj)∈Et

cijdp(P (ti), P (tj))

During a particular iteration of the mapping algorithm,
we only have a partial mapping because some tasks have not
been placed yet. Let Tk be the set of tasks that remain to be
placed and Pk be the set of processors that are available at
the beginning of the kth iteration. Similarly, let T̄k be the set
of tasks that have already been placed and P̄k be the set of
processors that are no longer available at the kth iteration.
Note that Tk∩T̄k = φ and Pk∩P̄k = φ. Also, they partition
the complete sets, which can be stated as : Tk ∪ T̄k = Vt

and Pk ∪ P̄k = Vp.

1. First order approximation
Since we do not know the placement of some of the
tasks yet, we drop terms corresponding to those tasks.
Thus, we consider the contribution only due to com-
munication with already assigned tasks:

fest(ti, p, P) =
∑

tj∈T̄k

cijdp(p, P (tj))

It is quite cheap to compute as compared to the other
approximations. This estimation function has been
used in TopoCentLB described in 4.5.

2. Second order approximation
We will approximate the contribution of communica-
tion with tasks that have not yet been assigned. As we
do not yet know the placement of an unassigned task,
say tj , in Tk, we assume that it will be placed on a
random processor. Thus, we approximate the distance
between p and P (tj) by the expected distance of p to
other processors. The distribution of P (tj) is taken to
be uniformly random on Pk. In other words, for any
unmapped task tj ∈ Tk we approximate:

dp(p, P (tj)) ≈ Epj∈U [Vp][dp(p, pj)] =

∑
pj∈Vp

dp(p, pj)

|Vp|
Thus we can refine our estimation function to be:

fest(ti, p, P) =
∑

tj∈T̄k

cijdp(p, P (tj))

+
∑

tj∈Tk

cij

∑
pj∈Vp

dp(p, pj)

|Vp|

3. Third order approximation
While we do not yet know the placement of unassigned
tasks, we do know that they can only be assigned to
processors that are still available. The approximation
that an unassigned task, say tj , will be mapped to
a random processor in Vp does not capture this con-
straint. We should rather assume the distribution of
P [tj] to be uniformly random on available processors
Pk. In other words, for any unmapped task tj ∈ Tk we
approximate:

dp(p, P (tj)) ≈ Epj∈U [Pk][dp(p, pj)] =

∑
pj∈Pk

dp(p, pj)

|Pk|

While using a better approximation in the estimation
function (in the third order approximation) is expected to
lead to a better solution, it is costlier to compute and it af-
fects the overall running time of the load balancing algo-
rithm (see section 4.4). Since the consideration of running
time dominates in the real-world applications, we will use
the second order approximation scheme in our implementa-
tion and results. This will be discussed in section 4.4.

4.4 Implementation of the algorithm: TopoLB

The mapping algorithm has been implemented in
CHARM++ as a strategy called TopoLB under the dynamic
load-balancing framework. Initially, the task graph is par-
titioned into p groups using METIS. Any other topology-
oblivious partitioner can also be specified for partition-
ing. Some of the dynamic load balancing strategies of
CHARM++ like GreedyLB are suitable for partitioning. At
this point, both the new task graph and the topology graph
have the same size p. During the iterations of the algorithm,
we maintain a p×p table of dynamic values of fest(t, p, P).
Rows are indexed by task nodes and columns are indexed by
processors. The entry in the cell (t, p) is the current value
of fest(t, p, P). In addition, we maintain the minimum
and average value of fest for each unassigned task over all
unassigned processors. Let us call these arrays FMin[t]
and FAvg[t], respectively. In the kth iteration we need to
select the unassigned task tk, which maximizes the value
of FAvg[t] − FMin[t]. This takes a linear pass, taking
time O(p). Next we find the available processor pk, where
fest(tk, p, P) attains the minimum value in time O(p). The
task tk is mapped to processor pk which is marked unavail-
able. The main cost is incurred in updating the table at the
end of each iteration, as fest values might change as a re-
sult of the assignment of tk to pk. Here, we discuss the
time-complexity only for the second and third order approx-
imations. In the second order approximation, only the esti-
mation values of tasks that have an edge with tk in the task
graph are affected. Moreover, updating the fest values for
one such task takes a total of O(p). This makes the total cost
of update O(pδ(tk)), where δ(tk) denotes the degree of the

node tk in the task graph. Thus, the total time in each itera-
tion of the algorithm is O(p)+O(pδ(tk)), which is same as
O(pδ(tk)). The total running time over all p iterations is:

Running T ime =
∑

t∈Vt

O(pδ(t)) = O(p
∑

t∈Vt

δ(t)) = O(p|Et|)

While the running time O(p|Et|) can be as high as O(p3),
in practice the nodes in the task graph have small constant
degree, and a running time closer to O(p2) is observed. In
the third order approximation, however, the value fest(t, p)
depends on the average distance of processor p to other free
processors. When the status of pk changes from free to al-
located, the average changes for all other processors. Thus,
all fest(t, p, P) values change. By maintaining the aver-
age distance of a processor to free processors, we incur a
constant cost per processor in calculating new average val-
ues; this is a total cost of O(p). Once average distances are
known, each value in the fest table can be updated in con-
stant time. This incurs a total cost of O(p2). Thus total time
in an iteration is O(p) + O(p2), which is same as O(p2).
Overall running time over all p iterations in this case is:

Running T ime =
∑

t∈Vt

O(p2) = O(p3)

From the above calculation we can see that using second
order approximation (O(p|Et|)) takes less time than third
order approximation (O(p3)). In practice, the nodes of the
task graph have a small constant degree, and the total num-
ber of edges is O(p). Thus, the second order approximation
has a running time closer to O(p2) which is significantly
lower than the fixed cost of O(p3) for the third order app-
proximation. Scaling considerations lead us to the choice of
second order approximation for our scheme.

4.5 TopoCentLB

TopoCentLB is a topology-aware load balancing strat-
egy for CHARM++ which also tries to solve the task map-
ping problem. In this strategy, as in TopoLB, the origi-
nal task graph is first partitioned using a topology-oblivious
scheme (like greedy partitioning or Metis) to get a smaller
graph with p nodes, where p is the number of physical pro-
cessors. We will assume for the description that the task
graph and the processor graph have the same sizes. The
mapping algorithm iteratively maps the nodes of this task
graph onto the physical processor graph. In the first itera-
tion, the most communicating task is selected and mapped
to a processor. In each subsequent iteration, the task that
has maximum total communication with already assigned
tasks is selected. It is mapped to the free physical proces-
sor where it incurs the least total cost of communication (in
terms of hop-bytes) with the already assigned tasks. Thus,
the algorithm uses first order approximation to the estima-
tion function described earlier. However, its choice in each
iteration depends on the estimated cost itself, while TopoLB
selects the task whose placement is most critical. A similar
strategy has been described by T. Baba et.al. [3]; where it
corresponds to their (P3, P4) scheme.

We discuss the time complexity of TopoCentLB. The al-
gorithm is implemented using heap data structure. In the
kth iteration, the selection of task tk involves extraction
of tk from the heap and updation of keys of the neigh-
bors of tk which are in the heap. Extraction and up-
dation both take log(p) time. Hence,it is bounded by
O(log(p) + log(p)δ(tk)) where δ(tk) is the degree of tk in
the task graph. To place tk on a processor, we go over all the
unassigned processors. For each unassigned processor pk,
we calculate the amount of communication of tk with its
assigned neighbors to finally arrive at the minimum value
of communication. Hence the cost involved is bounded by
O(pδ(tk)). So, the total running time of the algorithm is:

Running T ime =
∑

t∈Vt

O((log(p) + p)δ(t))

= O(p
∑

t∈Vt

δ(t)) = O(p|Et|)

5 Experiments
In this section we will discuss and compare the perfor-

mance of the load balancing schemes described earlier. We
also compare their performances to a load balancer which
places the tasks on the processors at random. Section 5.2
will describe the performance of TopoLB in reducing the
hops-per-byte metric in different scenarios. The effect of
the reduction in hops-per-byte on actual network communi-
cation observables, like average message latency and exe-
cution times , is described in section 5.3.

5.1 Evaluation mechanism

CHARM++ load balancing framework allows the run-
time to log load information from an actual parallel execu-
tion into a file for later analysis. This can be done by speci-
fying the load balancing step for which the load information
needs to be logged as runtime parameters (using +LBDump
StartStep to specify the first step, and +LBDumpSteps Num-
Steps to specify the total number of steps). A log file is gen-
erated for each of the steps specified in the range. The effect
of different centralized load balancing strategies can then
be studied on the load balancing database present in these
log files by running any CHARM++ program sequentially in
simulation mode (by specifying the name using +LBDump-
File FileName and the load balancing step to be simulated
using +LBSim StepNum). In simulation mode, the load bal-
ancing framework uses the load information from the log
files rather than from the current run. Relevant metrics can
be studied as needed.

This mechanism provides an efficient way of testing load
balancing strategies as their effects on a given load scenario
can be studied without repeated runs of the actual parallel
program. Moreover, different strategies can be compared
on exactly the same load scenarios, which is not possible
in actual execution because of non-deterministic interleav-
ing of events. Thus, we will use this mechanism to study
the performance of the load balancing schemes described
earlier.

5.2 Reduction in hop-bytes

As described in section 4, the metric that the mapping
heuristic (TopoLB) aims to reduce is hop-bytes, or equiv-
alently, hops-per-byte. We will present the performance in
terms of hop-bytes reduction.

To study the quality of mapping independent of the parti-
tioning method, we can start with task graphs that have just
p tasks so that no clustering is needed. We use a CHARM++
benchmark program which has a jacobi-like communication
pattern for this purpose. The benchmark program creates
chares (or tasks) which communicate in a 2D-Mesh pattern.
Each chare communicates with its four neighbors (three or
two for boundary and corner chares, respectively) in each
iteration. The number of chares to be created is a parameter
to the benchmark.

The number of processors involved in our study is quite
high. We emulate this large number of processors using the
Bluegene version of CHARM++. CHARM++ can be built
such that all the CHARM++ application programs run on top
of a Bluegene emulator. This emulator allows us to emulate
a large number of Bluegene processors. Our emulator gives
us the flexibility of connecting the Bluegene processors in
many different topologies.

5.2.1 2D-Mesh pattern on 2D-Torus

Figure 1 compares the performance of random place-
ment, TopoLB and TopoCentLB in mapping a 2D-Mesh
pattern onto a 2D-Torus topology. In each case, the number
of tasks created is the same as the number of processors.
It can be seen that random placement produces mappings
that have very large values of hops-per-byte. We can an-
alytically compute the expected hops-per-byte for random
placement, which is same as the expected distance between
two random processors. Each dimension has a span of

√
p,

and with a wrap-around link the expected distance in each
dimension is

√
p

4 . Thus, the total expected distance between

two random processors is 2
√

p

4 , or
√

p

2 . As seen in Figure
1, the value of hop-bytes for random placement matches
closely with this expected value.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 H
op

s
pe

r
B

yt
e

Number of Processors

 2D-Mesh communication pattern mapped onto a 2D-Torus network

Random Placement

E[hops] for Random = sqrt(p)/2

TopoLB

TopoCentLB

Figure 1: Mapping 2D-Mesh communication pattern onto a
2d-Torus. Random placement matches expected value.

Since a 2D-Torus contains a 2D-Mesh, the ideal place-

ment can preserve neighborhood relationships and achieve
the hops-per-byte value of 1. It is interesting to note that
TopoLB actually produces an optimal mapping in most
cases. Figure 2 shows the comparison of TopoLB and
TopoCentLB and is essentially a zoomed-in version of fig-
ure 1. It is also seen that TopoCentLB also results in small
values of hops-per-byte, though TopoLB performs better
than TopoCentLB in all tested cases.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000
A

ve
ra

ge
 H

op
s

pe
r

B
yt

e

Number of Processors

 2D-Mesh communication pattern mapped onto a 2D-Torus network

Ideal

TopoLB

TopoCentLB

Figure 2: Mapping 2D-Mesh communication pattern onto a
2d-Torus. Zoomed in to compare TopoLB and TopoCentLB.

5.2.2 2D-Mesh pattern on 3D-Torus

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 H
op

s
pe

r
B

yt
e

Number of Processors

 2D-Mesh communication pattern mapped onto a 3D-Torus network

Random Placement

E[hops] for Random = 3*sqrt(p)/4

TopoLB

TopoCentLB

Figure 3: Mapping 2D-Mesh communication pattern onto a
3d-Torus. Random placement matches expected value.

Next we map the 2D-mesh communication pattern on a
3D-Torus topology of the same size. A comparison of the
average hops-per-byte values resulting from different map-
ping strategies is shown in figure 3. For a 3D-Torus, the
expected distance between two random processors is 3

3
√

p

4 .
As seen in figure 3, the actual value of hops-per-byte ob-
tained by random mapping matches this analytical formula
closely. The other two mapping strategies, TopoLB and
TopoCentLB, lead to considerable reduction in hops-per-
byte when compared to a random mapping.

In general, the task graph (2D-Mesh) is not a subgraph
of the topology graph (3D-Torus). Hence, it is not always
even feasible to preserve neighborhood relation when map-

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 H
op

s
pe

r
B

yt
e

Number of Processors

 2D-Mesh communication pattern mapped onto a 3D-Torus network

TopoLB

TopoCentLB

Figure 4: Mapping 2D-Mesh communication pattern onto a
3d-Torus. Zoomed in to compare TopoLB and TopoCentLB.

ping a 2D-Mesh onto a 3D-Torus with the same number of
nodes. Consequently, the optimal value of hops-per-byte
is, in general, larger than 1. However, for specific cases, it
is possible to preserve the neighborhood relation. For ex-
ample, a (8,8)2D-Mesh is a subgraph of a (4,4,4)3D-Torus,
so it is possible to preserve neighborhood relation. We can
see from figure 4 that in this case, TopoLB is able to reduce
hops-per-byte to its optimal value of 1 (the value when num-
ber of processors is 64 in the figure). For a larger number of
processors, TopoLB leads to a small value of hops-per-byte.
TopoCentLB also results in small values of hops-per-byte
which are about 10% higher than those from TopoLB.

5.2.3 LeanMD mapped onto different topologies

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

A
ve

ra
ge

 H
op

s
pe

r
B

yt
e

Number of Processors

leanMD mapped onto 2D-Torus

Random Placement

TopoCentLB

TopoLB

Figure 5: Comparison of different mapping strategies on 2D-
tori for LeanMD data

This section will describe the results of mapping com-
munication pattern from a real molecular dynamics simula-
tion program called LeanMD [17]. We have load informa-
tion dumps for LeanMD on different numbers of processors.
The total number of chares is 3240 + p where p is the num-
ber of processors. This gives virtualization ratios of 180 for
p = 18, 6 for p = 512 and 3 for p = 1024. Since the num-
ber of chares is greater than the number of objects, we need
to perform clustering of chares into p groups with balanced
communication load. We use METIS for this initial group-

ing. Once this grouping is performed on the original task
graph, a new task graph with the same size as the number of
processors is obtained. We then map this task graph using
different strategies.

Figure 5 shows the average hops-per-byte when
LeanMD is mapped onto 2D-Tori of various sizes. For
p = 18, the virtualization ratio is 180, which is quite high.
Consequently, with such a large number of chares in each
group, almost all pairs of groups communicate with each
other. The average degree of the coalesced task-graph ob-
tained from METIS is 12.7, which means that each group
communicates with 70% of the groups. Hence it is diffi-
cult for any strategy to reduce hop-bytes as almost all the
groups communicate. For 512 processors, the virtualiza-
tion ration is 6 and the average degree of the coalesced task
graph is 19.5 which means that each group communicates
with about 4% of the other groups. This creates some av-
enues for intelligent placement of groups to keep the com-
munication local.

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000

A
ve

ra
ge

 H
op

s
pe

r
B

yt
e

Number of Processors

leanMD mapped onto 3D-Torus

Random Placement

TopoCentLB

TopoLB

Figure 6: Comparison of different mapping strategies on 3D-
tori for LeanMD data

As seen from figure 5, TopoLB leads to a 34% reduc-
tion in average hops-per-byte over random placement. A
topology-based refiner (implemented in CHARM++ load-
balancing framework) called RefineTopoLB can further re-
duce the value by about 12%. TopoCentLB also performs
well, leading to a 30% reduction; similar trend is seen for
1024 processors. Note that RefineTopoLB is intended to be
used for further reducing hop-bytes after applying the initial
load balancer like TopoLB. The refiner swaps tasks between
processors to see if hop-bytes are reduced or not. It swaps
only when hop-bytes get reduced.

Figure 6 shows the results for mapping onto 3D-Tori.
The relative performance of the different schemes in this
case is similar to the last case. TopoLB followed by Refine-
TopoLB leads to a reduction in hops-per-bytes in the 40%
range.

5.3 Network Simulation

In section 5.2 we discussed the reduction in the average
number of hops that each byte travels over the network. In
this section we will discuss how this reduction in the hops-
per-byte metric translates into gains in execution time and

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 m
es

sa
ge

 ti
m

e(
in

 u
s)

Channel bandwidth (in 100s of MB/s)

 2D-Mesh communication pattern mapped onto a 3D-Torus network (64 processors)

Random Placement(greedyLB)

TopoLB

TopoCentLB

Figure 7: 2D-mesh on 64-node 3D-Torus: Average message
latency using different mappings

and other characteristics on the network.
We will perform simulations using BigNetSim [23],

which is an interconnection network simulator. One of the
features of BigNetSim is that it can simulate application
traces on different kinds of interconnection networks. We
will be using a 3D-Torus network to simulate a 2D-jacobi
like program. In this benchmark program, each chare per-
forms some computation and then sends messages to its
four neighbors in each iteration. The amount of computa-
tion is kept low so that communication is a significant factor
in overall efficiency. This benchmark program is executed
with TopoLB, TopoCentLB, and GreedyLB (a CHARM++
load-balancer with essentially random placement) and event
traces are obtained. These event traces contain timestamps
for message sending and entry point (message receiving)
initiation. Event-dependency information is also available
in the traces so that these timestamps can be corrected de-
pending on the network being simulated while honoring
event ordering. Thus, we can vary the parameters for the
underlying interconnection networks and examine the ex-
pected effect on the execution of the traced program.

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 m
es

sa
ge

 ti
m

e(
in

 u
s)

Channel bandwidth (in 100s of MB/s)

 2D-Mesh communication pattern mapped onto a 3D-Torus network (64 processors)

Random Placement(greedyLB)

TopoLB

TopoCentLB

Figure 8: 2D-mesh on 64-node 3D-Torus: Detailed compara-
tive view of average latency in the un-congested domain

The execution of application traces is simulated on a
(4,4,4)3D-Torus interconnection network. Since TopoLB

and TopoCentLB lead to a reduction in the average hops that
a packet travels, the actual network load (and contention)
generated for the same application is reduced. Hence, it is
expected that an application mapped using these schemes
would be able to tolerate reduction in link bandwidth better
than a naive random mapping. Figure 7 shows the average
message latency for different values of link bandwidth. It
can be seen that in the case of a random placement, the av-
erage latency increases dramatically as congestion sets in
due to a reduction in bandwidth. TopoCentLB can tolerate
a further reduction in network bandwidth while TopoLB is
the most resilient; this is because a smaller value of hops-
per-byte leads to a smaller number of packets on each link.
Consequently, the links can service the traffic with a smaller
bandwidth. In the case of random placement, larger loads
on individual links lead to messages being stranded in the
buffers at the switches for a longer time. Figure 8 shows the
zoomed-in view of figure 7 for the purpose of comparison
of the schemes in the low congestion region. Even in this
case, it can be seen that among the three schemes TopoLB
leads to least average message latency.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
ot

al
 ti

m
e

fo
r

ex
ec

ut
io

n
(in

 m
s)

Channel bandwidth (in 100s of MB/s)

 2D-Mesh communication pattern mapped onto a 3D-Torus network (64 processors)

Random Placement(greedyLB)

TopoLB

TopoCentLB

Figure 9: Completion time for the execution of 2000 iterations

The total time for the entire execution to finish is also
improved by using intelligent mapping. Figure 9 shows the
total time required for the completion of 2000 iterations of
the benchmark. For smaller bandwidth, optimizations ob-
tained by TopoLB and TopoCentLB show a very large gain.
In this region, random placement leads to congestion which
causes communication to be delayed and iterations progress
much slower. Total execution time under random placement
can be more than double the time required under TopoLB.
TopoCentLB also leads to a large reduction over random
placement. However, TopoLB outperforms TopoCentLB by
about 10-25%.

5.4 Results on Bluegene

In this section, we present performance results on Blue-
gene [1]. As earlier, we use a 2D Jacobi-like benchmark
program. Elements are arranged logically in a 2D Mesh.
In each iteration, every element performs some computa-
tion and sends a message to each of its four neighbors.
The actual network topology in which the physical Blugene

processors are connected can be configured as either a 3D-
Mesh or a 3D-Torus. We present results on both these net-
work topologies.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800

T
im

e
fo

r
40

00
 it

er
at

io
ns

 (
in

 s
)

Number of Processors

 2D-Mesh communication pattern mapped onto a 3D-Torus network of Bluegene

TopoLB

TopoCentLB

Random Placement

Figure 10: Comparison of mapping strategies on Bluegene 3D-
Torus network.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600

T
im

e
fo

r
40

00
 it

er
at

io
ns

 (
in

 s
)

Number of Processors

 2D-Mesh communication pattern mapped onto a 3D-Mesh network of Bluegene

TopoLB

TopoCentLB

Random Placement

Figure 11: Comparison of mapping strategies on Bluegene 3D-
Mesh network.

Figures 10 and 11 compare the time required to com-
plete 4000 iterations of the benchmark for different map-
ping strategies. The size of messages sent in each iteration
is 100KB. This makes the communication to computation
ratio high. We can see that both TopoLB and TopoCentLB
lead to reduction in time when compared to random map-
ping. Note that the number of elements is same as the
number of processors, so the computational load on pro-
cessors is balanced. The reduction in execution time can be
attributed to communication optimizations.

It can be seen from the figures that the total time re-
quired under Mesh connection is generally higher than that
for Torus connection. This is because there are additional
wrap-around paths in a torus network which help in keep-
ing average load on links lower. However, the effect is more
pronounced for random placement than the other two strate-
gies. This may be because random placement leads to long-
range messages while TopoLB and TopoCentLB maps el-
ements such that most messages travel over only a small
number of hops. If messages travel over a very small num-

ber of hops, removal of wrap-around links does not affect
the distance travelled by messages in most cases.

6 Conclusions and future work

We presented a heuristic aimed at solving the task map-
ping problem that arises in the context of parallel comput-
ing.

Our heuristic algorithm provides a solution to the prob-
lem of mapping tasks onto physical processors connected in
a given topology, so that most of the communication occurs
between nearby processors. We show that TopoLB provides
a good mapping in terms of average number of hops trav-
elled by each byte, and compares favorably with some other
schemes. In particular, we found that TopoLB was able to
map a 2D-Mesh onto a 2D-Torus almost optimally in many
cases, although it does not consider the shapes of the graphs
specifically. We also developed another similar, but simpler
and faster, scheme called TopoCentLB for the purpose of
comparison of its results with TopoLB. We have shown, via
simulations, that an efficient mapping which reduces the to-
tal communication load on the network, or hop-bytes, leads
to lower network latencies on average, and provides bet-
ter tolerance to network bandwidth constraints and network
contention. We validate this conclusion with experiments
on Bluegene where we find that communication-intensive
programs can be made more efficient with good mappings.

Due to the massively large sizes of machines like Blu-
gene, a distributed approach toward keeping communica-
tion localized in a neighborhood may be needed for scala-
bility in the future. Hybrid approaches (semi-distributed),
such as that in [22], may also prove effective and need to be
investigated further.

References
[1] An Overview of the BlueGene/L Supercomputer. In Su-

percomputing 2002 Technical Papers, Baltimore, Maryland,
2002. The BlueGene/L Team, IBM and Lawrence Livermore
National Laboratory.

[2] S. Arunkumar and T. Chockalingam. Randomized heuris-
tics for the mapping problem. International Journal of High
Speed Computing (IJHSC), 4(4):289–300, Dec. 1992.

[3] T. Baba, Y. Iwamoto, and T. Yoshinaga. A network-topology
independent task allocation strategy for parallel computers.
In Supercomputing ’90: Proceedings of the 1990 ACM/IEEE
conference on Supercomputing, pages 878–887, Washing-
ton, DC, USA, 1990. IEEE Computer Society.

[4] F. Berman and L. Snyder. On mapping parallel algorithms
into parallel architectures. J. Parallel Distrib. Comput.,
4(5):439–458, 1987.

[5] S. H. Bokhari. On the mapping problem. IEEE Trans. Com-
puters, 30(3):207–214, 1981.

[6] S. W. Bollinger and S. F. Midkiff. Processor and link assign-
ment in multicomputers using simulated annealing. In ICPP
(1), pages 1–7, 1988.

[7] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation
onto a hypercube by recursive mincut bipartitioning. In Pro-
ceedings of the third conference on Hypercube concurrent
computers and applications, pages 210–221, New York, NY,
USA, 1988. ACM Press.

[8] Z. Fang, X. Li, and L. M. Ni. On the communication com-
plexity of generalized 2-d convolution on array processors.
IEEE Trans. Comput., 38(2):184–194, 1989.

[9] R. P. B. Jr. and J. P. Shen. Interprocessor traffic schedul-
ing algorithm for multiple-processor networks. IEEE Trans.
Computers, 36(4):396–409, 1987.

[10] R. Jyothi, O. S. Lawlor, and L. V. Kale. Debugging support
for Charm++. In PADTAD Workshop for IPDPS 2004, page
294. IEEE Press, 2004.

[11] L. V. Kalé. The virtualization model of parallel program-
ming : Runtime optimizations and the state of art. In LACSI
2002, Albuquerque, October 2002.

[12] L. V. Kale and S. Krishnan. Charm++: Parallel Program-
ming with Message-Driven Objects. In G. V. Wilson and
P. Lu, editors, Parallel Programming using C++, pages
175–213. MIT Press, 1996.

[13] G. Karypis and V. Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J. Sci.
Comput., 20(1):359–392, 1998.

[14] G. Karypis and V. Kumar. Multilevel algorithms for multi-
constraint graph partitioning. In Supercomputing ’98: Pro-
ceedings of the 1998 ACM/IEEE conference on Super-
computing (CDROM), pages 1–13, Washington, DC, USA,
1998. IEEE Computer Society.

[15] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and Dis-
tributed Computing, 48:96 – 129, 1998.

[16] S.-Y. Lee and J. K. Aggarwal. A mapping strategy for par-
allel processing. IEEE Trans. Computers, 36(4):433–442,
1987.

[17] V. Mehta. Leanmd: A charm++ framework for high per-
formance molecular dynamics simulation on large parallel
machines. Master’s thesis, University of Illinois at Urbana-
Champaign, 2004.

[18] J. M. Orduña, F. Silla, and J. Duato. A new task map-
ping technique for communication-aware scheduling strate-
gies. In 30th International Workshops on Parallel Process-
ing (ICPP 2001 Workshops), Valencia, Spain, pages 349–
354, 3-7 September 2001.

[19] P. Sadayappan. Nearest-neighbor mapping of finite element
graphs onto processor meshes. IEEE Trans. Computers,
36(12):1408–1424, 1987.

[20] H. Stone. Multiprocessor scheduling with the aid of network
flow algorithms. IEEE Trans. Software Engineering, 3:85–
93, Jan. 1977.

[21] K. Taura and A. Chien. A heuristic algorithm for map-
ping communicating tasks on heterogeneous resources. In
HCW ’00: Proceedings of the 9th Heterogeneous Comput-
ing Workshop (HCW ’00), page 102, Washington, DC, USA,
2000. IEEE Computer Society.

[22] G. Zheng. Achieving High Performance on Extremely Large
Parallel Machines. PhD thesis, Department of Computer
Science, University of Illinois, Urbana-Champaign, 2005.

[23] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé.
Simulation-based performance prediction for large parallel
machines. In International Journal of Parallel Program-
ming, number to appear, 2005.

