
Engineering with Computers manuscript No.
(will be inserted by the editor)

A system integration framework for coupled multiphysics simulations

Xiangmin Jiao?, Gengbin Zheng, Phillip A. Alexander, Michael T. Campbell, Orion S. Lawlor??,

John Norris, Andreas Haselbacher, Michael T. Heath

Center for Simulation of Advanced Rockets, University of Illinois, Urbana, IL 61801, USA

Received: date / Revised version: date

Abstract Multiphysics simulations are playing an in-

creasingly important role in computational science and

engineering for applications ranging from aircraft design

to medical treatments. These simulations require inte-

gration of techniques and tools from multiple disciplines,

and in turn demand new advanced technologies to inte-

grate independently developed physics solvers e�ectively.

In this paper, we describe some numerical, geomet-

rical, and system software components required by such

integration, with a concrete case study of detailed, three-

dimensional, parallel rocket simulations involving system-

level interactions among �uid, solid, and combustion, as

well as subsystem-level interactions. We package these

components into a software framework that provides state-

of-the-art, common-re�nement based methods for trans-

? Corresponding author. Current address: College of Com-

puting, Georgia Institute of Technology, Atlanta, GA 30332.

jiao@cc.gatech.edu.
?? Current address: Department of Computer Science, Uni-

versity of Alaska, Fairbanks.

ferring data between potentially nonmatching meshes,

novel and robust face-o�setting methods for tracking

Lagrangian surface meshes, as well as integrated sup-

port for parallel mesh optimization, remeshing, algebraic

manipulations, performance monitoring, and high-level

data management and I/O.

From these general, reusable framework components

we construct domain-speci�c building blocks to facilitate

integration of parallel, multiphysics simulations from high-

level speci�cations that are easy to read and can also be

visualized graphically. These reusable building blocks are

integrated with independently developed physics codes

to perform various multiphysics simulations.

Key words software framework; multiphysics simula-

tion; system integration; data abstraction

2 Xiangmin Jiao et al.

1 Introduction

Many real-world systems involve complex interactions

between multiple physical components. Examples include

natural systems, such as climate models, as well as en-

gineered systems, such as automobile, aircraft, or rocket

engines. Simulation of such systems helps improve our

understanding of their function or design, and poten-

tially leads to substantial savings in time, money, and

energy.

Simulation of multicomponent systems poses signi�-

cant challenges in the physical disciplines involved, as

well as computational mathematics and software sys-

tems. In terms of software design, the data exchanged

between modules must be abstracted appropriately so

that inter-module interfaces can be as simple and clean

as possible. The software architecture must encourage

good software practice, such as encapsulation and code

reuse, and provide convenience to code developers while

being nonintrusive. In addition, the framework must pro-

vide computational services to allow su�cient �exibility

for application scientists and engineers to choose appro-

priate discretization schemes, data structures, and pro-

gramming languages according to their tastes and needs.

Finally, to support cutting-edge research, the software

architecture must maximize concurrency in code devel-

opment of di�erent subgroups and support rapid proto-

typing of various coupling schemes through well-de�ned

service components.

In recent years, several software frameworks have been

developed for large-scale scienti�c applications, such as

Cactus [1], CCA [2], Alegra [3], Overture [4], POOMA

[5], and Sierra [6]. These frameworks share some similar

objectives, such as extensibility, modularity, and code

reuse. Unlike these other frameworks, our framework has

a unique object-oriented abstraction of interface data,

which enables cleaner and simpler inter-module inter-

faces. On top of the abstraction, our framework provides

a set of service components �ne-tuned for quick integra-

tion of multiphysics simulations.

In this paper we describe the software framework de-

veloped at the Center for Simulation of Advanced Rock-

ets (CSAR) at the University of Illinois for large-scale

integrated rocket simulations. We provide a technical

overview of the computational and computer science sup-

port for these rocket simulations. The remainder of the

paper is organized as follows. Section 2 brie�y overviews

the motivating application of our integration framework

and its software components. Section 3 presents the com-

munication-oriented integration interface for multicom-

ponent systems. Section 4 describes a few service util-

ities to support integration of such systems. Section 5

describes a high-level orchestration framework for the

integrated rocket simulations. Section 6 shows some per-

formance results of couple simulations using our frame-

work. Section 7 concludes the paper.

A system integration framework for coupled multiphysics simulations 3

2 Motivating Application

The motivating multiphysics application for the integra-

tion framework described in this paper is an ongoing

project at CSAR. The ultimate objective of CSAR is

to develop an integrated software system, Rocstar, for

detailed whole-system simulation of solid rocket motors

under normal and abnormal operating conditions. This

software system is applicable, however, to systems be-

yond rockets, such as simulations of gas turbines, �ap-

ping wings, and arterial blood �ows. We brie�y overview

the methodology and the software components of this

system.

Coupling Methodology. Simulation of a rocket motor in-

volves many disciplines, including three broad physical

disciplines��uid dynamics, solid mechanics, and com-

bustion�that interact with each other at the primary

system level, with additional subsystem level interac-

tions, such as particles and turbulence within �uids. Be-

cause of its complex and cross-disciplinary nature, the

development of Rocstar has been intrinsically demand-

ing, requiring diverse backgrounds within the research

team. In addition, the capabilities required from the in-

dividual physical disciplines are at the frontier of their

respective research agendas, which entails rapid and in-

dependent evolution of their software implementations.

To accommodate the diverse and dynamically chang-

ing needs of individual physics disciplines, we have adopted

a partitioned approach to enable coupling of individual

software components that solve problems in their own

physical and geometrical domains. With this approach,

the physical components of the system are naturally

mapped onto various software components (or modules),

which can then be developed and parallelized indepen-

dently. These modules are then integrated into a coher-

ent system through an integration framework, which,

among other responsibilities, manages the distributed

data objects and performs inter-module communications

on parallel machines.

Software Architecture. To enable parallel simulations of

rockets, we have developed a large number of software

modules. Fig. 1 shows an overview of the components of

the current generation of Rocstar. These modules serve

very diverse purposes and have diverse needs in their de-

velopment and integration. We loosely group these mod-

ules into the following four categories.

Fig. 1 Overview of Rocstar software components.

Physics modules solve physical problems in their re-

spective geometric domains. In general, they are sim-

ilar to stand-alone applications, are typically written

4 Xiangmin Jiao et al.

in Fortran 90 (F90), and use array-based data struc-

tures encapsulated in derived data types.

Integration interface provides data management and

function invocation mechanisms for inter-module in-

teractions.

Service modules provide speci�c service utilities, such

as I/O, communication, and data transfer. They are

typically developed by computer scientists but driven

by the needs of applications, and are usually written

in C++.

Orchestration (control)modules specify overall coupling

schemes. They contain high-level, domain-speci�c con-

structs built on top of service modules, provide call-

back routines for physics modules to obtain boundary

conditions, and mediate the initialization, execution,

�nalization, and I/O for physics and service modules.

In Rocstar, the above categories correspond to the

components at the lower-left, center, right, and top, re-

spectively, of Fig. 1. In addition, our system uses some

o�-line tools, such as those in the upper-left corner of

Fig. 1, which provide speci�c pre- or post-processing

utilities for physics modules. The focus of this paper is

the last three categories, which compose a hierarchical

framework. In the following sections, we describe these

software components in more detail.

3 Integration Interface

To facilitate interactions between modules, we have de-

veloped an object-oriented, data-centric framework called

Roccom. Roccom utilizes an object-oriented methodology

for abstracting and managing the data and functions of

a module. This abstraction is mesh- and physics-aware

and programming-language neutral, and supports encap-

sulation, polymorphism, and inheritance. Roccom sim-

pli�es inter-module interactions through high-level ab-

stractions, and allows the individual components to be

developed as independently as possible and integrated

subsequently with little or no changes.

3.1 Data Management

3.1.1 Object-Oriented Abstraction Roccom organizes data

into distributed objects called windows. A window en-

capsulates a number of data attributes (such as the mesh

and some associated �eld variables) of a module, any of

which can be empty. A window can be partitioned into

multiple panes, for exploiting parallelism or for distin-

guishing di�erent material or boundary-condition types.

In a parallel setting, a pane belongs to a single process,

while a process may own any number of panes. All panes

of a window must have the same types of data attributes,

although the sizes of attributes may vary. A module con-

structs windows at runtime by creating attributes and

registering the addresses of the attributes and functions.

Typically, the attributes registered with Roccom are per-

A system integration framework for coupled multiphysics simulations 5

sistent (instead of temporary) datasets, in the sense that

they last beyond a major coupled simulation step. Dif-

ferent modules can communicate with each other only

through windows, as illustrated in Fig. 2.

Fig. 2 Schematic of windows and panes.

A code module references windows, attributes, or

functions using their names, which are of character-string

type. Window names must be unique across all modules,

and an attribute or function name must be unique within

a window. A code module can obtain an integer han-

dle of (i.e., a reference to) an attribute/function from

Roccom with the combination of the window and at-

tribute/function names. The handle of an attribute can

be either mutable or immutable, where an immutable

handle allows only read operations to its referenced at-

tribute, similar to a const reference in C++. Each pane

has a user-de�ned positive integer ID, which must be

unique within the window across all processors but need

not be consecutive.

3.1.2 Data Attributes Data attributes of a window in-

clude mesh data, �eld variables, and window or pane

attributes. The former two types of attributes are as-

sociated with nodes or elements. A window or pane at-

tribute is associated with a window or pane, respectively.

Examples of window attributes include a data structure

that encapsulates the internal states of a module or some

control parameters. An example of a pane attribute is an

integer �ag for the boundary condition type of a surface

patch.

Attribute Layout. Within a pane, an attribute is concep-

tually a two-dimensional dataset: one dimension corre-

sponds to its lengths (i.e., the number of items, such as

the number of nodes/elements for nodal and elemental

attributes), and the other dimension corresponds to the

number of components per item. Its storage can have a

contiguous or staggered layout: in the former, the dataset

is stored in an array in which the data index within a

node/element (vs. the index of nodes/elements) corre-

sponds to the more rapidly changing dimension (i.e., the

last dimension of C arrays and the �rst dimension of

Fortran arrays); in the latter, the dataset is stored in

a transposed layout, or stored in separate arrays, each

of which contains one component of the dataset of all

nodes/elements. Sometimes a dataset is not stored in

consecutive memory space but is embedded in a larger

array with a constant stride between neighboring entries

of the dataset. To support this, Roccom allows users to

specify a stride for nodal or elemental attributes.

Mesh Data. In general, the name and type of an at-

tribute are de�ned by users, with the exception of mesh

6 Xiangmin Jiao et al.

data. Mesh data include nodal coordinates and element

connectivity, whose attribute names and data types are

prede�ned by Roccom. The nodal coordinates (�nc�) are

double-precision �oating-point numbers, with three com-

ponents per node. If the coordinates of a pane are stored

contiguously, the storage can be registered using the

name �nc�; otherwise, the x-, y-, and z- components must

be registered separately using names �1-nc�, �2-nc�, and

�3-nc�, respectively.

In Roccom, element connectivity is not a regular at-

tribute, because di�erent panes can have di�erent ele-

ment types. To di�erentiate a connectivity table from a

regular attribute, the name of a connectivity table has

two parts: the �rst part indicates the type of the element,

in the format of a colon followed by a type ID (e.g., �:t3�

or �:q4� for 3-node triangles and 4-node quadrilaterals,

respectively); the second part is a user-de�ned name to

distinguish di�erent connectivity tables of the same el-

ement type, and is separated from the �rst part by a

colon (e.g., �:t3:ghost�).

Roccom supports both surface and volume meshes,

which can be either multi-block structured or unstruc-

tured with mixed elements. For multi-block meshes, each

block corresponds to a pane in a window. Structured

meshes have no connectivity tables, and the shape of

a pane is registered using the name �:st�. For unstruc-

tured meshes, each pane has one or more connectivity

tables, where each connectivity table contains consecu-

tively numbered elements of the same type. Each connec-

tivity table must be stored in an array with contiguous

or staggered layout.

To facilitate parallel simulations, Roccom also allows

a user to specify the number of layers of ghost nodes and

cells for structured meshes, and the numbers of ghost

nodes and cells for unstructured meshes. In addition,

each pane can have a pane connectivity, which contains

the communication information for shared nodes along

partition boundaries and for ghost nodes and ghost ele-

ments in a prede�ned format.

Aggregate Attributes. In Roccom, although attributes are

registered as individual arrays, attributes can be refer-

enced as an aggregate. For example, the name �mesh�

refers to the collection of nodal coordinates and element

connectivity; the name �all� refers to all the data at-

tributes in a window. For staggered attributes, one can

use �i-attribute� (i ≥ 1) to refer to the ith component of

the attribute or use �attribute� to refer to all the com-

ponents collectively.

Aggregate attributes enable high-level inter-module

interfaces. For example, one can pass the �all� attribute

of a window to a parallel I/O routine to write all of the

contents of a window into an output �le with a single call.

As another example, it is sometimes more convenient

for users to have Roccom allocate memory for data at-

tributes and have application codes retrieve memory ad-

dresses from Roccom. Roccom provides a call for memory

allocation, which takes a window-attribute name pair as

A system integration framework for coupled multiphysics simulations 7

input. A user can pass in �all� for the attribute name

to have Roccom allocate memory for all the unregistered

attributes.

3.2 Inheritance

Roccom also introduces the novel concept of partial in-

heritance of windows to construct a sub-window by us-

ing or cloning a subset of the mesh or attributes of an-

other window. In multiphysics simulations, inheritance

of interface data is useful in many situations. First, the

orchestration module sometimes needs to create data

bu�ers associated with a computation module for the

manipulation of jump conditions. Inheritance of win-

dows allows the orchestration module to obtain a new

window for extension or alteration without altering the

existing window. Second, a module may need to operate

on a subset of the mesh of another module. In rocket

simulation, for example, the combustion module needs

to operate on the burning surface between the �uid and

solid. Furthermore, the orchestration module sometimes

needs to split a user-de�ned window into separate win-

dows based on boundary-condition types, so that these

subwindows can be treated di�erently (e.g., written into

separate �les for visualization). Fig. 3 depicts a scenario

of inheritance among three windows.

To support these needs, Roccom allows inheriting the

mesh from a parent window to a child window in either

of two modes. First, inherit the mesh of the parent as a

whole. Second, inherit only a subset of panes that sat-

Fig. 3 Scenario of inheritance of mesh and �eld attributes

among three windows.

isfy a certain criterion, with the option to exclude the

ghost nodes and cells of the parent from the child. After

inheriting mesh data, a child window can inherit data

members from its parent window, or other windows that

have the same mesh (this allows multiple inheritance).

The child window obtains the data only in the panes

it owns and ignores other panes. During inheritance, if

an attribute already exists in a child window, Roccom

overwrites the existing attribute with the new attribute.

Roccom supports two types of inheritance for data

members: using (without duplication) and cloning (with

duplication). The former makes a copy of the references

8 Xiangmin Jiao et al.

of the data member, which avoids the copying overhead

and guarantees data coherence between the parent and

child, and is particularly useful for implementing orches-

tration modules. The latter allocates new memory space

and makes a copy of the data attribute in the new win-

dow, with the option of changing the memory layout

during copying.

3.3 Data Integrity

In complex systems, data integrity has profound signif-

icance for software quality. Two potential issues can en-

danger data integrity: dangling references and side ef-

fects. We address these issues through the mechanisms

of persistency and immutable references, respectively.

Persistency. Roccom maintains references to the datasets

registered with its windows. To avoid dangling references

associated with data registration, we impose the follow-

ing persistency requirement: the datasets registered with

a window must outlive the life of the window. This no-

tion of persistency is simple and intuitive, and is some-

times used as the �preferred approach to implement-

ing systems� in similar contexts such as object-oriented

databases [7]. Under this model, any persistent object

can refer to other persistent objects without the risk of

dangling references. In a heterogeneous programming en-

vironment without garbage collection, persistency can-

not be enforced easily by the runtime system; instead, we

treat it as a design pattern that application code devel-

opers should follow. Fortunately, typical physics codes

allocate memory spaces during an initialization stage

and deallocate memory during a �nalization stage, which

naturally adapts to this design pattern.

Immutable References. Another potential issue for data

integrity is side e�ects due to inadvertent changes to

datasets. To address this problem, some traditional object-

oriented paradigms require that a client can change the

state of a supplier object only through the supplier's

public interfaces. However, it has been noted that this

integrity model is unnecessarily restrictive for complex

systems [8]. For the internal states of the modules, Roc-

com facilitates the traditional integrity model through

member functions that we will describe shortly. For in-

terface datasets, we adopt the concept of �deeply im-

mutable references� [8] and enforce access control for im-

mutable handles of data attributes. In Roccom, a service

module can obtain accesses to another module's data at-

tributes only through its function arguments, and Roc-

com enforces at runtime that an immutable handle can-

not be passed to mutable arguments. Furthermore, as

we describe later, service modules of Roccom are imple-

mented using a C++ interface that conforms to deeply

immutable references at the language level, so Roccom's

application can be free of side e�ects with minimal run-

time overhead.

A system integration framework for coupled multiphysics simulations 9

3.4 Functions

A window can contain not only data members but also

function members. A module can register a function into

a window to allow other modules to invoke the function

through Roccom. Registration of functions enables a lim-

ited degree of runtime polymorphism. It also overcomes

the technical di�culty of linking object �les compiled

from di�erent languages, where the mangled function

names can be platform and compiler dependent.

Member Functions. Except for very simple functions, a

typical function needs to operate with certain internal

states. In object-oriented programs, such states are en-

capsulated in an �object�, which is passed to a function

as an argument instead of being scattered into global

variables as in traditional programs. In some modern

programming languages, this object is passed implicitly

by the compiler to allow cleaner interfaces.

In mixed-language programs, even if a function and

its context object are written in the same programming

language, it is di�cult to invoke such functions across

languages because C++ objects and F90 structures are

incompatible. To address this problem, we introduce the

concept of member functions of attributes into Roccom.

Speci�cally, during registration a function can be spec-

i�ed as the member function of a particular data at-

tribute in a window. Roccom keeps track of the data

attribute and passes it implicitly to the function during

invocation in a way similar to C++ member functions.

In addition, the registered functions can be regular C++

member functions or even virtual functions. This feature

allows advanced language interoperability between C++

and F90 without sacri�cing object-orientedness of the

interface of complex modules.

Optional Arguments. Roccom supports the semantics of

optional arguments similar to that of C++ to allow cleaner

codes. Speci�cally, during function registration a user

can specify the last few arguments as optional. Roccom

passes null pointers for those optional arguments whose

corresponding actual parameters are missing during in-

vocation.

3.5 Architecture of Roccom

The core of Roccom is composed of three parts: an Appli-

cation Programming Interface (API), a C++ class inter-

face for development of service modules, and a runtime

system for the bookkeeping associated with data objects

and invocation of functions.

3.5.1 Roccom API The Roccom API supplies a set of

primitive function interfaces to physics and orchestra-

tion modules for system setup, window management, in-

formation retrieval, and function invocation. The subset

of the API for window management serves essentially

the same purpose as the Interface De�nition Language

(IDL) of some other frameworks (such as the BABEL

of CCA [2]), except that Roccom parses the de�nitions

of the windows at runtime. Roccom provides di�erent

10 Xiangmin Jiao et al.

bindings for C++ and F90, with similar semantics. In

the following, we mention a few highlights of the API.

Data Management and Retrieval. The basic interface

functions that all modules must use are the construction

of windows and registration of data attributes. Fig. 4

shows a sample F90 code fragment that creates a win-

dow with two panes. Typically, data registered in a win-

dow are accessed by service modules through C++ inter-

faces, which can enforce data integrity as discussed later.

A physics module may also want to access a dataset

through Roccom, for example, if a window was created

by, or inherited from, another module. To support this

need, Roccom provides an API for retrieving informa-

tion about panes and attributes, such as the number of

panes, the list of pane IDs, the numbers of nodes and

elements in the panes, and the metadata of attributes.

As an advanced feature, Roccom allows an F90 code to

obtain the addresses of a dataset in Roccom through F90

pointers, which would then make the F90 code assume

ownership of the dataset. This feature enables the capa-

bility of managing memory spaces in C++ for F90 codes,

which is convenient for developing some service utilities.

Because ownership is transferred to the F90 code, data

integrity is not compromised.

Function Registration and Invocation. A module regis-

ters a function with Roccom in a similar manner to regis-

tering window attributes. The arguments of a registered

function can be pointers or references to primitive data

INTEGER :: nn1, nn2 ! sizes of nodes

INTEGER :: ne1, ne2 ! sizes of elements

INTEGER :: types(2)

INTEGER, POINTER :: conn1(3,ne1), conn2(4,ne2)

DOUBLE PRECISION, POINTER :: coors1(3,nn1), coor2(3,nn2)

DOUBLE PRECISION, POINTER :: disp1(3,nn1), disp2(3,nn2)

DOUBLE PRECISION, POINTER :: loc1(ne1,3), loc2(ne2,3)

EXTERNAL fluid_update

CALL COM_NEW_WINDOW("fluid")

! Create a node-centered double-precision dataset

CALL COM_NEW_ATTRIBUTE("fluid.disp", "n", COM_DOUBLE, 3, "m")

! Create an element-centered double-precision dataset

CALL COM_NEW_ATTRIBUTE("fluid.loc", "e", COM_DOUBLE, 3, "m/s")

! Create a pane with ID 11 of a triangular surface mesh

CALL COM_SET_SIZE("fluid.nc", 11, nn1)

CALL COM_SET_ARRAY("fluid.nc", 11, coors1)

CALL COM_SET_SIZE("fluid.:t3:", 11, ne1)

CALL COM_SET_ARRAY("fluid.:t3:", 11, conn1)

! Create a pane with ID 21 of a quadrilateral surface mesh

CALL COM_SET_SIZE("fluid.nc", 21, nn2)

CALL COM_SET_ARRAY("fluid.nc", 21, coors2)

CALL COM_SET_SIZE("fluid.:q4", 21, ne2)

CALL COM_SET_ARRAY("fluid.:q4", 21, ne2)

! Register addresses of data attributes in staggered layout

CALL COM_SET_ARRAY("fluid.disp", 11, disp1, 1)

CALL COM_SET_ARRAY("fluid.loc", 11, loc1, 1)

CALL COM_SET_ARRAY("fluid.disp", 21, disp2, 1)

CALL COM_SET_ARRAY("fluid.loc", 21, loc2, 1)

! Register a function that takes two input arguments

types(1)=COM_DOUBLE; types(2)=COM_DOUBLE

CALL COM_SET_FUNCTION("fluid.update", fluid_update, "ii", types)

CALL COM_WINDOW_INIT_DONE("fluid")

Fig. 4 Sample F90 code fragment for window registration.

A system integration framework for coupled multiphysics simulations 11

types (such as integer, double, or char), or, more power-

fully, pointers to Attribute objects (typically for service

utilities) or to the raw address registered with a win-

dow attribute (as with the context object of a member

function). To register a function, a module speci�es a

function pointer and the number, intentions (for input

or output), and base data types of its arguments. For

technical reasons, we impose a limit on the maximum

number of the arguments that a registered function can

take, but the limit can be adjusted, if desired, by a minor

change to Roccom's implementation.

Inter-module function invocation is done through Roc-

com, as demonstrated in Fig. 5. COM_call_function takes

the handle of the callee function, the number of argu-

ments, and the actual arguments to be passed to the

callee. If an argument of the callee is an Attribute ob-

ject, the caller passes a reference to the handle of the at-

tribute. This allows mixed-language interoperability. For

data integrity, Roccom enforces that an immutable han-

dle can be passed only to a read-only input argument. In

a parallel setting, the invoked function will typically be

executed on the same processor as the caller, supporting

SPMD style parallelism. With a customized implemen-

tation of COM_call_function, Roccom can also allow the

callee to run on di�erent processors, enabling transpar-

ent remote procedure calls.

Dynamic Loading of Modules. In the Roccom framework,

each module can be built into a shared object, which is

INTEGER :: f_h ! function handle

INTEGER :: a1_h, a2_h, a3_h ! attribute handles

f_h = COM_GET_FUNCTION_HANDLE("Rocblas.add")

a1_h = COM_GET_ATTRIBUTE_HANDLE_CONST("fluid.nc")

a2_h = COM_GET_ATTRIBUTE_HANDLE_CONST("fluid.disp")

a3_h = COM_GET_ATTRIBUTE_HANDLE("fluid.loc")

! Compute loc=nc+disp

CALL COM_CALL_FUNCTION(f_h, 3, a1_h, a2_h, a3_h)

Fig. 5 Sample F90 code fragment for function invocation.

linked into the executable only at runtime. A dynam-

ically loaded shared object facilitates plug-and-play of

modules, and can also e�ectively avoid name-space pol-

lution among modules, because such an object can have

its own local name scope. Roccom accommodates dy-

namic loading by providing a COM_load_module func-

tion, which takes a module's name and a window name

as arguments, and loads the shared object of the module

using the dynamic linking loader dlopen. Each module

provides an initialization routine Module_load_module,

which constructs a window with a given name. Roccom

tries to locate the routine using both the C and Fortran

naming conventions and then invokes it following the

corresponding calling convention. This technique further

enhances transparency of C++/F90 interoperability.

3.5.2 C++ Class Interfaces Roccom provides a uni�ed

view of the organization of distributed data objects for

service modules through the abstractions of windows and

panes. Internally, Roccom organizes windows, panes, at-

12 Xiangmin Jiao et al.

tributes, functions, and connectivities into C++ objects,

whose associations are illustrated in Fig. 6, on a UML

class diagram [9].

Fig. 6 UML associations of Roccom's classes.

A Window object maintains a list of its local panes,

attributes, and functions; a Pane object contains a list of

attributes and connectivities; an Attribute object con-

tains a reference to its owner window. By taking ref-

erences to attributes as arguments, a function can fol-

low the links to access the data attributes in all local

panes. The C++ interfaces conform to the principle of

deeply immutable references, ensuring that a client can

navigate through only immutable references if the root

reference was immutable. Through this abstraction, de-

velopers can implement service utilities independently of

application codes, and ensure applicability in a hetero-

geneous environment with mixed meshes, transparently

to physics modules.

3.5.3 Roccom Runtime System The runtime system keeps

track of the user-registered data and functions. During

function invocation, it translates the function and at-

tribute handles into their corresponding references with

an e�cient table lookup, enforces access protection of

the attributes, and checks whether the number of ar-

guments of the caller matches the declaration of the

callee. Furthermore, the runtime system also serves as

the translator for transparent language interoperability.

For example, if the caller is in F90 whereas the callee

is in C++, the runtime system will null-terminate the

character strings in the arguments before passing to the

callee.

Through the calling mechanism, Roccom also pro-

vides tracing and pro�ling capabilities for inter-module

calls to aid in debugging and performance tuning. It also

exploits hardware counters through PAPI [10] to obtain

performance data such as the number of �oating-point

instructions executed by modules. A user can enable

such features using command-line options without ad-

ditional coding. For submodule-level pro�ling, pro�ling

services are provided through the standardMPI_Pcontrol

interface, as well as a native interface for non-MPI based

codes. By utilizing the MPI_Pcontrol interface, appli-

cations developers can collect pro�ling information for

arbitrary, user-de�ned sections of source code without

breaking their stand-alone codes.

A system integration framework for coupled multiphysics simulations 13

3.6 Message Passing Communication Subsystem

In the Rocstar code suite, each of its physics components�

�uids, solids, and combustion�began as an indepen-

dently developed parallel message passing program writ-

ten using MPI to maximize portability. These rocket

simulations involve dynamically changing geometry, and

hence may require mesh adaptivity and dynamic load

balancing. Typical implementations of MPI o�er little or

no automatic support for such dynamic behaviors. As a

result, programming productivity and parallel e�ciency

may su�er.

Adaptive MPI (AMPI) [11,12] is an adaptive and

portable implementation of MPI that exploits the idea

of Processor Virtualization [13] to tackle this challenge.

AMPI, while still retaining the familiar programming

model of MPI, is better suited for such complex appli-

cations with a dynamic nature. AMPI and its under-

lying system Charm++ are developed at the Paral-

lel Programming Laboratory led by Professor Kalé at

University of Illinois at Urbana-Champaign in collab-

oration with CSAR. The Roccom system provides inte-

grated support to ease adapting its software components

to take advantage of processor virtualization.

3.6.1 Processor Virtualization The key concept behind

AMPI is processor virtualization. Standard MPI pro-

grams divide the computation into P processes, and typ-

ical MPI implementations simply execute each process

on one of the P processors. In contrast, an AMPI pro-

grammer divides the computation into a number V of

virtual processors (VPs), and the AMPI runtime system

maps these VPs onto P physical processors. In other

words, AMPI provides an e�ective division of labor be-

tween the programmer and the system. The programmer

still programs each process with the same syntax as spec-

i�ed in the MPI Standard. Further, not being restricted

by the physical processors, the programmer is able to de-

sign more �exible partitioning that best �ts the nature of

the parallel problem. The runtime system, on the other

hand, has the opportunity of adaptively mapping and re-

mapping the programmer's virtual processors onto the

physical machine. Adaptive MPI implements its MPI

processors as Charm++ user-level threads bound to

Charm++ communicating objects (See Fig. 7). Dur-

ing execution, several MPI �processors� can run on one

physical processor as user-level threads.

Fig. 7 Implementation of AMPI virtual processors.

3.6.2 Integration with AMPI In the AMPI execution

environment, several MPI threads run in one process.

Thus, global variables in the application must be pri-

14 Xiangmin Jiao et al.

vatized so that each MPI thread has access to its own

copies of global variables. One simple solution adopted

in Rocstar is to collect all global variables of each mod-

ule into a global data structure, which is then passed

as a parameter to each function that requires access to

the global variables. This global structure is allocated

per thread at the initialization phase, and is registered

with Roccom as an attribute associated with the win-

dow of that module. This attribute is then designated

as the context object of the �member functions� of the

window, and is passed to the function implicitly at run-

time by Roccom. Each thread has a private copy of Roc-

com, contained in an array of Roccom objects. Roccom

and Charm++ have been prewired so that the proper

Roccom object is selected during a context switch. This

approach allows the application components to take ad-

vantage of processor virtualization with little e�ort, and

at the same time encourages object-oriented design of

the components.

3.6.3 Bene�ts of Processor Virtualization The bene�ts

of processor virtualization in parallel programming are

discussed in detail in [13]. The Charm++ system takes

full advantage of these bene�ts. AMPI inherits most of

the merits from Charm++, while furnishing the famil-

iar MPI programming environment. The following is a

list of the bene�ts enjoyed by the AMPI-enabled Roc-

star.

Automatic load balancing. If some of the physical pro-

cessors become overloaded, the runtime system can mi-

grate a few of their MPI threads to relatively under-

loaded physical processors. The AMPI runtime system

and load balancing framework [14] can make such load

balancing decision based on automatic instrumentation.

Adaptive overlapping of communication and computa-

tion. If one of the MPI threads is blocked on a receive,

another MPI thread on the same physical processor can

run. This largely eliminates the need for the programmer

to specify manually some static computation/communication

overlapping, as is often required in MPI. Fig. 8 illustrates

an example using the Projections [15] visualization tool.

The solid blocks represent computation and the gaps are

idle time when CPU is waiting for incoming messages.

As the degree of virtualization (number of MPI threads

on each physical processor) increases, there are more op-

portunities for the smaller blocks to �ll in the gaps (idle

time) and consequently the CPU utilization increases.

Flexibility to run on arbitrary number of processors. Since

more than one MPI threads can be executed on one phys-

ical processor, AMPI is capable of running MPI pro-

grams on any arbitrary number of processors. This fea-

ture proves to be useful in application development and

debugging phases. This is one of the most notable ben-

e�ts of AMPI that CSAR developers cherish. For exam-

ple, one may face a communication bug that manifests

itself only when the dataset was partitioned for 480 pro-

A system integration framework for coupled multiphysics simulations 15

(a) Pro�les of 8 threads on 8 processors. (b) Pro�les of 64 threads on 8 processors.

Fig. 8 Adaptive overlapping of communication and computation

cessors. Finding and �xing the problem would be very

di�cult, as such a large number of processes are hardly

available in debugging or interactive mode and may re-

quire long waiting time to obtain even in batch mode

at supercomputer centers. Using AMPI, the developers

are able to debug the problem interactively, using 480

MPI threads distributed over a small number of physi-

cal processors on a local cluster, resolving the problem

in a more productive manner.

4 Framework Service Utilities

On top of Roccom, we have developed a number of reusable

service modules, including middleware services, such as

communication and I/O, as well as computational ser-

vices, such as data transfer and mesh optimization. In

the following, we describe these services and their roles

in the integrated simulations.

4.1 Interpane Communication

Traditional message-passing paradigms typically provide

general but low-level inter-process communications, such

as send, receive, and broadcast. In physical simulations

using �nite element or �nite volume methods, communi-

cations are typically across panes or partitions, whether

the panes or partitions are on the same or di�erent pro-

cesses. The Roccom framework provides high-level inter-

pane communication abstractions, including performing

reductions (such as sum, max, and min operations) on

shared nodes, and updating values for ghost (i.e., locally

cached copies of remote values of) nodes or elements.

Communication patterns between these nodes and ele-

ments are encapsulated in the pane connectivity of a win-

dow, which can be provided by application modules or

constructed automatically in parallel using geometric al-

gorithms. These inter-pane communication abstractions

simplify parallelization of a large number of modules, in-

cluding surface propagation and mesh smoothing, which

we will discuss shortly.

4.2 Data Input/Output

In scienti�c simulations, data exchange between a mod-

ule and the outside world can be very complex. For �le

I/O alone, a developer must already face many issues, in-

cluding various �le formats, parallel e�ciency, platform

16 Xiangmin Jiao et al.

compatibility, and interoperability with o�-line tools. In

a dynamic simulation, the situation is even more com-

plex, as the code may need to exchange its mesh and

data attributes with mesh repair or remeshing services,

or receive data from remote processes.

To meet these challenges, we use the window abstrac-

tion of Roccom as the medium or �virtual �le� for all data

exchanges for a module, regardless whether the other

side is a service utility, �les of various formats, or re-

mote machines, and let middleware services take care of

the mapping between the window and the other side. For

example, �le I/O services map Roccom windows with sci-

enti�c �le formats (such as HDF and CGNS), so that the

details of �le formats and optimization techniques be-

come transparent to application modules. Furthermore,

as illustrated in Fig. 9, all application modules obtain

data from an input window through a generic function

interface, obtain_attribute(), which is supported by a

number of services, including �le readers and remesh-

ing tools. This design allows physics modules to use the

same initialization routine to obtain data under di�erent

circumstances, including initial startup, restart, restart

after remeshing, and reinitialization after mesh repair.

4.3 Inter-Mesh Data Transfer

In multiphysics simulations, the computational domains

for each physical component are frequently meshed inde-

pendently, which in turn requires geometric algorithms

to correlate the surface meshes at the common interface

Fig. 9 Abstraction of data input.

between each pair of interacting domains to exchange

boundary conditions. These surface meshes in general

di�er both geometrically and combinatorially, and are

also partitioned di�erently for parallel computation. To

correlate such interface meshes, we have developed novel

algorithms to construct a common re�nement of two tri-

angular or quadrilateral meshes modeling the same sur-

face, that is, a �ner mesh whose polygons subdivide the

polygons of the input surface meshes [16]. To resolve

geometric mismatch, the algorithm de�nes a conform-

ing homeomorphism and utilizes locality and duality to

achieve optimal linear time complexity. Due to the non-

linear nature of the problem, our algorithm uses �oating-

point arithmetic, but nevertheless achieves provable ro-

bustness by identifying a set of consistency rules and an

intersection principle to resolve any inconsistencies due

to numerical errors.

After constructing the common re�nement, we must

transfer data between the nonmatching meshes in a nu-

merically accurate and physically conservative manner.

Traditional methods, including pointwise interpolation

and some weighted residual methods, can achieve either

A system integration framework for coupled multiphysics simulations 17

accuracy or conservation, but none could achieve both

simultaneously. Leveraging the common re�nement, we

developed more advanced formulations and optimal dis-

cretizations that minimize errors in a certain norm while

achieving strict conservation, yielding signi�cant advan-

tages over traditional methods, especially for repeated

transfers in multiphysics simulations [17]. For parallel

runs, the common re�nement also contains the corre-

lation of elements across partitions of di�erent meshes,

and hence provides the communication structure needed

for inter-module, inter-process data exchange.

4.4 Surface Propagation

In Rocstar, the interface must be tracked as it regresses

due to burning. In recent years, Eulerian methods, espe-

cially level set methods, have made signi�cant advance-

ments and become the dominant methods for moving

interfaces [18][19]. In our context, Lagrangian represen-

tation of the interface is crucial to describe the boundary

of volume meshes of physical regions. However, previous

numerical methods, either Eulerian or Lagrangian, have

di�culties in capturing the evolving singularities (such

as ridges and corners) in solid rocket motors.

To meet this challenge, we have developed a novel

method, called face-o�setting methods, based on a new

entropy-satisfying Lagrangian formulation. Face-o�setting

methods deliver an accurate and stable entropy-satisfying

solution without requiring Eulerian volume meshes. A

fundamental di�erence between face-o�setting and tra-

ditional Lagrangian methods is that our methods solve

the Lagrangian formulation face by face, and then recon-

struct vertices by constrained minimization and curvature-

aware averaging, instead of directly moving vertices along

some approximate normal directions. This method al-

lows part of the surface to be �xed or to be constrained

to move along certain directions (such as constraining

the propellant to burn along the case). It supports both

structured and unstructured meshes, with an integrated

node redistribution scheme that su�ces to control mesh

quality for moderately moving interfaces. Fig. 10 shows

the propagation of a block-structured surface mesh for

the �uids domain of the Attitude Control Motor (ACM)

rocket, where the front and aft ends burn along the cylin-

drical case.

When coupled with mesh adaptation, the face-o�setting

method can capture signi�cant burns. Fig. 11 shows a

sample result of the burning of a star grain section of

a rocket motor using the face o�setting method coupled

with surface remeshing using MeshSim from Simmetrix

(http://www.simmetrix.com). The interior (the �ns) of

the propellant burns at uniform speed and exhibits rapid

expansion at slots and contraction at �ns. The �n tips

transform into sharp ridges during propagation, as cap-

tured by the face o�setting method.

4.5 Mesh Optimization

In Rocstar, each physics module operates on some type of

mesh. An outstanding issue in integrated rocket simula-

18 Xiangmin Jiao et al.

Fig. 10 Simulation of burning of Attitude Control Motor along the case with block-structured meshes using face o�setting.

Left sub�gure shows initial geometry; middle and right sub�gures show meshes of initial geometry and after 30% burn,

respectively. Colors indicate magnitude of total displacements of vertices.

Fig. 11 Simulation of uniform burning of section of star grain of solid rocket using face o�setting and mesh repair. Green

curves indicate ridges in evolving geometry.

tions is the degradation of mesh quality due to the chang-

ing geometry resulting from consumption of propellant

by burning, which causes the solid region to shrink and

the �uid region to expand, and compresses or in�ates

their respective meshes. This degradation can lead to

excessively small time steps when an element becomes

poorly shaped, or even outright failure when an ele-

ment becomes inverted. Some simple mesh motion al-

gorithms are built into our physics modules. For exam-

ple, simple Laplacian smoothing is used for unstructured

meshes, and a combination of linear trans�nite interpo-

lation (TFI) [20] with Laplacian smoothing is used for

structured meshes in Roc�o. These simple schemes are

insu�cient when the meshes undergo major deforma-

tion or distortion. To address this issue, we take a three-

tiered approach, in increasing order of aggressiveness:

mesh smoothing, mesh repair, and global remeshing.

Mesh smoothing copes with gradual changes in the

mesh. We provide a combination of in-house tools and

integration of external packages. Our in-house e�ort fo-

cuses on parallel, feature-aware surface mesh optimiza-

tion, and provides novel parallel algorithms for mixed

meshes with both triangles and quadrilaterals. To smooth

volume meshes, we utilize the serial MESQUITE pack-

age [21] from Sandia National Laboratories, which also

A system integration framework for coupled multiphysics simulations 19

works for mixed meshes, and we parallelized it by lever-

aging our across-pane communication abstractions.

If the mesh deforms more substantially, then mesh

smoothing becomes inadequate and more aggressive mesh

repair or even global remeshing may be required, al-

though the latter is too expensive to perform very fre-

quently. For these more drastic measures, we currently

focus on only tetrahedral meshes, and leverage third-

party tools o�-line, including Yams and TetMesh from

Simulog and MeshSim from Simmetrix, but we have work

in progress to integrate MeshSim into our framework for

on-line use. Remeshing requires that data be mapped

from the old mesh onto the new mesh, for which we have

developed parallel algorithms to transfer both node- and

cell-centered data accurately, built on top of the paral-

lel collision detection package developed by Lawlor and

Kalé [22]. Fig. 12 shows an example where the deformed

star grain is remeshed with the temperature �eld of the

�uids volume transferred from the old to the new mesh.

Fig. 12 Example of remeshing and data transfer of deformed

star grain.

5 Orchestration Framework

In coupled rocket simulations, the individual physics mod-

ules solve for the solutions on their respective physical

domains, and boundary (or jump) conditions must be ex-

changed periodically among them to conduct a coherent

simulation. In this context, the orchestration of the in-

teractions among di�erent modules poses a series of chal-

lenges. First, for modularity and extensibility, a physics

module should be as independent as possible, so that it is

transparent whether the module is running in a coupled

or standalone mode, and what physics solver is being

used at the other end of a coupled simulation. Second,

the enforcement of jump conditions, such as conservation

of mass, momentum, and energy, may require sophisti-

cated manipulation of bu�er data and involve complex

bu�er management. Third, the numerical coupling algo-

rithms may be very di�cult to analyze theoretically, and

therefore the orchestration module must be �exible and

systematic enough to support rapid prototyping of dif-

ferent schemes, and provide aids for developers to debug

and gain insights of di�erent schemes.

To meet these challenges, we have developed Rocman

a control and orchestration module to coordinate mul-

tiple physics modules in coupled simulations and pro-

vide facilities to extend and implement new coupling

schemes. Rocman is the front-end of the coupled code

that directly interacts with end-developers of coupled

simulations. It encapsulates the manipulation of bound-

20 Xiangmin Jiao et al.

ary data involved in the jump conditions and the in-

teractions between the applications. This is not only a

good software design, but also enables isolating the ap-

plications to the extent that one physics module can be

removed from a simulation (in the sense of not being

active) without in�uencing the other(s), which in turn

allows step-wise integration and eases debugging. Roc-

man is a high-level infrastructure, built on top of the

Roccom integration framework. With a novel design us-

ing the idea of action-centric speci�cation and automatic

scheduling of reusable actions to describe the intermod-

ule interactions, Rocman facilitates the diverse needs of

di�erent applications and coupling schemes in an easy-

to-use fashion.

5.1 Rocman Components

Rocman contains �ve types of key components: top-level

iterations, agents for physics modules, actions, sched-

ulers, and coupling schemes.

One of the major tasks of Rocman is to drive the

simulation. For this purpose, it provides top-level itera-

tions including time-marching schemes for both steady

and unsteady simulations. In the driver code, Rocman in-

vokes time integration of the coupling scheme by passing

in the current time and obtaining a new time, until the

system reaches a designated time or a converged state.

An agent serves a physics module. It represents a

domain-speci�c simulation (�uid, solid, or combustion)

in a coupling scheme. The most basic task of an agent is

to initialize the physics module and manage its persis-

tent bu�er data for use during intermodule interactions

on behalf of the physics module using the windows and

partial-inheritance data abstractions of Roccom.

Interactions between physics modules are encapsu-

lated in actions. An action is a functional object imple-

menting a designated calculation. An action also de�nes

the input data, on which it operates and the output data

produced by the calculation. It typically invokes a se-

quence of calls to service utilities via Roccom's function

invocation mechanism.

A scheduler is a container of actions, and is respon-

sible for determining the orders of initialization, execu-

tion, and �nalization of its actions. A scheduler provides

a procedure add_action() to its user for registering ac-

tions. After all the actions have been registered with a

scheduler, the scheduler can then automatically schedule

these actions based on the data �ow among actions. The

automatic scheduling constructs a call graph, which is a

directed acyclic graph (DAG) for the actions, in which

each edge between a pair of actions is identi�ed by the

data passing from one action to the other. This auto-

matic scheduling of actions greatly simpli�es the work of

an application developer, who now needs to be concerned

about only the data movement among actions without

having to worry about the order of its execution. Fur-

thermore, constructing a call graph of actions exposes

parallelism among actions and potentially enables con-

current execution of all independent actions that have

A system integration framework for coupled multiphysics simulations 21

their input data ready. In the future, we plan to extend

the run-time scheduling to allow concurrent execution of

actions.

A coupling scheme is composed of a number of agents

and a scheduler. The scheduler determines the orders

that must be followed for invoking initialization, execu-

tion, and �nalization of agents and actions. The coupling

scheme is the only code an end-developer of a new cou-

pling scheme must write. Rocman provides a rich set

of prede�ned basic actions, which can then be used as

building blocks for new coupling schemes.

5.2 Coupling Scheme Visualization

Understanding and debugging a complex coupling scheme

poses a great challenge for a user when a variety of sched-

ulers and actions are involved. Rocman provides a vi-

sualization tool that displays the data �ow of actions

to help users comprehend and debug coupling schemes.

When a coupling scheme is constructed, an output �le

is generated that describes the coupling scheme and its

schedulers and actions in the Graph Description Lan-

guage (GDL). The output �le can then be visualized by

tools such as AiSee (http://www.aisee.com).

As a concrete example, Fig. 13 illustrates a simpli-

�ed �uid and solid coupling scheme with subcycling of

individual physics modules. In a �system time step�, the

tractions are �rst transferred from the �uids interface

mesh onto the solids interface mesh (step 1), and a �nite-

element analysis of elasticity is then performed to com-

Fig. 13 Illustration of simpli�ed time stepping scheme for

solid-�uid interaction.

pute the displacements of the interface (step 2). Dur-

ing the process, the solids module may perform multiple

smaller time steps based on its stability limit, and ob-

tain jump conditions (tractions) from Rocman, which

performs interpolation in time. After the solids module

reaches the designated system time step, Rocman trans-

fers the displacements of the interface (step 3). The �uids

module then solves for tractions by obtaining mesh mo-

tion and solids velocity as boundary conditions (step 4).

Fig. 14 shows a sample C++ code fragment that de�nes

such a solid-�uid coupling scheme.

Fig. 15 shows the visualization of this simpli�ed cou-

pling scheme. In the graph, each node represents an ac-

tion or a scheduler (a container of actions), correspond-

ing to the steps in the above description of the coupling

scheme. Each edge represents the execution order of ac-

tions and is labeled with data passed between actions.

This �gure was generated automatically using the GDL

output of Rocman, except for the circled numbers, which

were added manually. A scheduler node can be unfolded

in AiSee graph viewer to reveal the details of the actions

22 Xiangmin Jiao et al.

// Create solid and fluid agents

SolidAgent *solid_agent = new SolidAgent(this, solidmodule, com);

add_agent(solid_agent);

const std::string isolid_i = solid_agent->isolid_i;

FluidAgent *fluid_agent = new FluidAgent(this, fluidmodule, com);

add_agent(fluid_agent);

const std::string ifluid_i = fluid_agent->ifluid_i;

// step 1: define actions for load transfer from fluid to solid

solid_agent->add_bcinitaction(new LoadTransfer_FS(

fluid_agent, solid_agent,

ifluid_i+".ts",

isolid_i+".ts", isolid_i+".pf"));

// step 2 : solid main physics routines and

// callback for boundary conditions

scheduler.add_action(solid_agent->get_main_action());

solid_agent->add_bcaction(new Extrapolate_Linear(solid_agent,

isolid_i+".ts", "_alp"), 1);

// step 3: define actions for motion transfer from solid to fluid

fluid_agent->add_bcinitaction(new GetDeformedMesh(

fluid_agent, solid_agent,

isolid_i+".x", isolid_i+".uhat",

isolid_i+".nc"));

fluid_agent->add_bcinitaction(new MeshMotionTransfer(

fluid_agent, solid_agent,

isolid_i+".u", ifluid_i+".vm"));

fluid_agent->add_bcinitaction(new DeformationVelTransfer(

fluid_agent, solid_agent,

isolid_i+".vs",

ifluid_i+".vs"));

// step 4: Fluid main Physics routine and

// callback for boundary conditions

scheduler.add_action(fluid_agent->get_main_action());

fluid_agent->add_bcaction(new Interpolate_Linear(fluid_agent,

ifluid_i+".vs", "_alp"), 2);

fluid_agent->add_gmaction(new ComputeMeshMotion(fluid_agent,

ifluid_all+".vm"));

Fig. 14 Sample Solid/Fluid coupling code.

that the scheduler contains. This visualization capability

helps development of new coupling schemes by allowing

them to be debugged visually at a high level.

Fig. 15 Sample visualization of �uid-solid coupling scheme

using aiSee.

This orchestration framework makes it very easy to

experiment with new coupling algorithms, while retain-

ing the clarity of the overall control �ow. As an example,

a slightly modi�ed coupling scheme that performs �uid

dynamics �rst can be de�ned as in Fig. 16. The corre-

sponding visualization of the scheme is shown in Fig. 17.

In this implementation of the new coupling scheme, only

the execution order of the actions is changed so that

�uid is solved before solid, while all actions are reused.

This greatly simpli�es quick prototyping of new coupling

schemes.

6 Performance Results

An indirect function invocation through Roccom is about

two orders of magnitude more expensive than direct in-

A system integration framework for coupled multiphysics simulations 23

Fig. 16 Illustration of simpli�ed time stepping scheme for

�uid-solid interaction.

Fig. 17 The visualization of the �uid-solid coupling scheme

using aiSee.

vocation of a function call (about 7.5µs v.s. 15ns on

an IBM POWER3 SP), which is comparable with other

frameworks, such as CCA [2]. The overhead of access-

ing the metadata of attributes through Roccom is also of

about the same order. Because the granularity of compu-

tations in multiphysics simulations is usually relatively

large (typically on the order of tens of milliseconds or

higher), the overhead of data management and calling

mechanism is negligible. In a parallel environment, Roc-

com itself does not incur spurious interprocess commu-

nication, and hence an integrated system should deliver

good e�ciency if the individual components are e�cient.

To demonstrate the above claim of e�ciency, we mea-

sure the scalability of Rocstar using a scaled problem,

i.e., the problem size is proportional to the number of

processors, so that the amount of work per process re-

main constant. Ideally, the wall-clock time should remain

constant if scalability is perfect. Fig. 18 shows the wall-

clock times per iteration using explicit-implicit coupling

between Roc�u (an unstructured �uid code) and Roc-

solid (an implicit solid code) with a �ve to one ratio (i.e.,

�ve explicit �uid time steps for each implicit solid time

step), up to 480 processors on ASC White (Frost), based

upon IBM's POWER3 SP technology. Fig. 19 shows

the wall-clock time for explicit-explicit coupling between

Roc�o (a structured �uid code) and Rocfrac (an explicit

solid code), up to 480 processors on ALC. In both cases,

the scalability is excellent even for very large numbers of

processors. The interface code, dominantly data transfer

between �uid and solid interfaces, takes less than 2% of

overall time. Times for other modules are negligible and

hence are not shown.

The Rocstar suite also enjoys the bene�ts of the AMPI.

Table 1 shows a sample comparison of running a 480-

processor dataset of the Titan IV SRMU Prequali�ca-

tion Motor #1 on di�erent numbers of processors with

AMPI and with the native MPI. This motor exploded

during a static test �ring on April 1, 1991, caused by

excessive deformation of the aft propellant segment just

24 Xiangmin Jiao et al.

Fig. 18 Scalability of Rocstar with Roc�o and Rocsolid on

IBM SP.

Fig. 19 Scalability of Rocstar with Roc�u and Rocfrac on

Linux cluster.

below the aft joint slot [23]. Fig. 20 shows a cutaway view

of the �uids domain and the propellant deformation, ob-

tained from Rocstar's 3-Dsimulations at nearly 1 second

after ignition for an incompressible neoHookean material

model. The timing comparison in Table 1 was obtained

on the Turing Apple cluster with Myrinet interconnect

at CSAR. For comparison, 480-procs Titan dataset was

simulated with Rocstar on AMPI (implemented on the

native GM library) and MPICH/GM. With 480 MPI

threads, we ran AMPI-enabled Rocstar simulations on

various number of physical processors ranging from 16 to

480 processors. As comparison, we ran the same simula-

tion with MPICH/GM on 480 processors. The 480-procs

dataset requires 480 physical processors for MPICH/GM

to achieve the best performance. The results in Table 1

shows that our AMPI implementation is very e�cient

� for the runs on 480 processors where in AMPI there

is only one MPI thread per processor that is compara-

ble to the case with MPICH/GM, AMPI outperforms

MPICH/GM by around 12%. We achieved the best per-

formance on 240 processors with AMPI, in which case

there were 2 MPI threads on a physical processor. This

virtualization degree of 2 gives AMPI run-time the op-

portunity to schedule MPI threads in a more e�cient

way by taking advantage of the adaptive overlapping of

communication and computation (Sec. 3.6.3).

Fig. 20 Titan IV propellant slumping. Left: Cutaway view

of �uids domain. Right: Propellant deformation after 1 sec-

ond.

A system integration framework for coupled multiphysics simulations 25

AMPI MPI

procs 16 30 60 120 240 480 480

time(s) 15.33 8.41 5.02 3.01 1.66 2.40 2.732

Table 1 Rocstar performance comparison of 480-procs

dataset for Titan IV SRMU rocket motor.

7 Conclusion

In this paper, we presented a hierarchical software frame-

work for integration of coupled multiphysics simulations.

The framework is composed of an object-oriented inte-

gration interface, a set of computational and middle-

ware service utilities, and a high-level domain-speci�c

orchestration module. This framework facilitates inte-

gration of independently developed software modules,

allows di�erent software components to evolve relatively

independently of each other, and enables rapid prototyp-

ing of various coupling schemes. The data abstractions

of the framework also simplify adapting object-oriented

software modules to use AMPI and take advantage of

processor virtualization transparently for better paral-

lel performance. This software framework demonstrated

great e�ciency in the Rocstar suite for detailed whole-

system simulation of solid rocket motors, while greatly

improved programming productivity.

Acknowledgments

We thank many of our colleagues at CSAR, especially

Damrong Guoy, Xiaosong Ma (now at NCSU), and Soumyadeb

Mitra for their contributions to Roccom and service util-

ities, and Prof. Philippe Geubelle, Drs. Robert Fiedler,

Luca Massa, Ali Namazifard, and Bono Wasistho for

their input on the Rocman orchestration framework. The

CSAR research program is supported by the U.S. De-

partment of Energy through the University of California

under subcontract B523819.

References

1. Allen G, Dramlitsch T, Foster I, Karonis N, Ripeanu

M, Seidel E, Toonen B (2001) Supporting e�cient exe-

cution in heterogeneous distributed computing environ-

ments with Cactus and Globus. In: Proceedings of Su-

percomputing '01 (CDROM), Denver, CO

2. Allan B, Armstrong R, Wolfe A, Ray J, Bernholdt D

(2002) The CCA core speci�cation in a distributed mem-

ory spmd framework. Concurrency and Computation

Practice and Experience 5:323�345

3. Budge KG, Peery JS (1998), Experiences developing

ALEGRA: A C++ coupled physics framework. In: Work-

shop on Object Oriented Methods for Interoperable Sci-

enti�c and Engineering Computing

4. Bassetti F, Brown D, Davis K, Henshaw W, Quinlan D

(1998) Overture: An object-oriented framework for high

performance scienti�c computing. In: Proceedings of Su-

percomputing '98 (CDROM), San Jose, CA

5. Reynders J et al. (1996) POOMA: A framework for sci-

enti�c simulations on parallel architectures. In: Wilson

G, Lu P (eds.) Parallel Programming Using C++, pp

553�594

26 Xiangmin Jiao et al.

6. Taylor LM (1999) Sierra: A software framework for devel-

oping massively parallel, adaptivity, multi-physics, �nite

element codes. In: Wilson G, Lu P (eds.) International

Conference on Parallel and Distributed Processing Tech-

niques and Applications

7. Liskov B, Castro M, Shrira L, Adya A (1999) Providing

persistent objects in distributed systems. Lecture Notes

in Computer Science 1628:230�257

8. Hakonen H, Leppanen V, Raita T, Salakoski T, Teuhola

J (1999) Improving object integrity and preventing side

e�ects via deeply immutable references. In: Proceedings

of Sixth Fenno-Ugric Symposium on Software Technol-

ogy, FUSST'99, pp 139�150

9. Stevens P, Pooley R (1999) Using UML: Software Engi-

neering with Objects and Components. Addison-Wesley

10. London K, Dongarra J, Moore S, Mucci P, Seymour K,

Spencer T (2001) End-user tools for application perfor-

mance analysis using hardware counters. In: Interna-

tional Conference on Parallel and Distributed Comput-

ing Systems

11. Huang C, Lawlor O, Kalé LV (2003) Adaptive MPI. In:

Proceedings of the 16th International Workshop on Lan-

guages and Compilers for Parallel Computing (LCPC

03). College Station, TX

12. Huang C, Zheng G, Kumar S, Kalé LV (2005) Perfor-

mance evaluation of adaptive MPI. In: PPL Technical

Report 05-04, University of Illinois, Urbana, IL

13. Kalé LV (2002) The virtualization model of parallel pro-

gramming : Runtime optimizations and the state of art.

In: Los Alamos Computer Science Institute (LACSI)

2002. Albuquerque, NM

14. Zheng G (2005) Achieving high performance on ex-

tremely large parallel machines. Ph.D. thesis, Depart-

ment of Computer Science, University of Illinois at

Urbana-Champaign

15. Kale LV, Zheng G, Lee CW, Kumar S (2005) Scaling

applications to massively parallel machines using projec-

tions performance analysis tool. In: Future Generation

Computer Systems Special Issue on: Large-Scale System

Performance Modeling and Analysis, to appear

16. Jiao X, Heath MT (2004) Overlaying surface meshes,

part I: Algorithms. Int. J. Comput. Geom. Appl. 14:379�

402

17. Jiao X, Heath MT (2004) Common-re�nement based

data transfer between nonmatching meshes in mul-

tiphysics simulations. Int. J. Numer. Meth. Engrg.

61:2401�2427

18. Osher S, Fedkiw R (2003) Level Set Methods and Dy-

namic Implicit Surfaces. Springer

19. Sethian JA (1999) Level Set Methods and Fast Marching

Methods. Cambridge University Press

20. Thompson JF, Soni BK, Weatherill NP (eds.) (1999)

Handbook of Grid Generation. CRC Press, Boca Raton

21. Freitag L, Leurent T, Knupp P, Melander D (2002)

MESQUITE design: Issues in the development of a mesh

quality improvement toolkit. In: 8th Intl. Conf. Numer.

Grid Gener. Comput. Field Sim., pp 159�168

22. Lawlor OS, Kalé LV (2002) A voxel-based parallel colli-

sion detection algorithm. In: Proc. Internat. Conf. Su-

percomputing, pp 285�293

23. Wilson WG, Anderson JM, Vander Meyden M (1992)

Titan IV SRMU PQM-1 overview. AIAA Paper 92-3819

