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Abstract

NAMD is a scalable molecular dynamics application,
which has proven its performance on several parallel com-
puter architectures. Strong scaling is necessary for molec-
ular dynamics as problem size is fixed, and a large num-
ber of iterations need to be executed to understand interest-
ing biological phenomenon. The Blue Gene/L machine is a
massive source of compute power. It consists of tens of thou-
sands of embedded Power PC 440 processors. In this paper,
we present several techniques to scale NAMD to 8192 pro-
cessors of Blue Gene/L. These include topology specific op-
timizations, new messaging protocols, load-balancing, and
overlap of computation and communication. We were able
to achieve 1.2 TF of peak performance for cutoff simula-
tions and 0.99 TF with PME.

1 Introduction

Molecular dynamics simulations of biomolecules, based
on classical mechanics, are extremely useful in understand-
ing the function of assemblages of biomolecules such as
proteins, DNA, cell membranes, and water molecules. Typi-
cal simulations involve 10,000 atoms to a few hundred thou-
sand atoms, with a few exceptional situations (such as sim-
ulations of ribosome or an entire virus coat) requiring over
a million atoms. With the number of particles to simulate
relatively small, the granularity available for parallelization
is rather small. For example, a single time-step of a 92,000
atom simulation of apolipo-protein A1 requires only about
10.4 seconds on single processor of IBM’s Blue Gene/L
machine, based on the embedded 440 core. Since millions
of time-steps are needed in a simulation, parallel comput-
ing is needed to make large studies in practical amounts of
time. But since only a few seconds must be parallelized
over thousands of processors, the problem is quite chal-
lenging. This challenge is compounded by the fact that the
number of atoms in a given protein is fixed, and so the sim-

ulation size does not significantly increase over the years.
With faster and larger computers, the challenge is to paral-
lelize the same computation at an ever finer granularity. In
contrast, simulations of continuum models, such as those
involved in weather modeling or structural dynamics, can
often be solved at a finer resolution (using finer grids, for
example) so one can keep the amount of work per processor
constant as larger machines are deployed.

IBM’s Blue Gene/L machine [7] represents a new design
point among parallel machines. The entire machine con-
sists of an unprecedented number of processors : 64k nodes
each with two cores. Even smaller partitions that are prac-
tically deployed in various centers around the world may
have thousands of processors. Each processor has a mod-
est amount of memory (512MB for a dual-core node). The
machine is also unique in its power consumption charac-
teristics, and achieves high scalability as several processors
can be packed in a relatively small region.

The challenge we explore in this paper is that of scaling
the performance of NAMD, a molecular dynamics program
widely used by biophysicists, to 8k processors on the Blue
Gene/L machine.

NAMD is a C++ based parallel program, implemented
using the Charm++ [8] parallel programming system. It
uses object based decomposition and measurement based
dynamic load balancing to achieve its high performance.
As explained in Section 2, it uses a combination of spa-
tial decomposition and force decomposition to generate a
high degree of parallelism. NAMD is one of the fastest and
most scalable program for biomolecular simulations that is
routinely used in published simulations. In 2002, a paper
describing its performance on the 750 node (3,000 proces-
sor) Lemieux machine at Pittsburgh supercomputing center,
shared the Gordon Bell award [14].

Although NAMD demonstrated scalability by scaling a
320,000 atom simulation to 3000 processors with more than
1TF of peak performance [11] for cutoff simulations, it was
clear that the code as it was did not scale beyond that. Fur-
ther, on the now-standard 92,000 atom benchmark, it was



able to scale performance only up to about 1024 processors
before reaching saturation. Since then, its performance has
been improved to some extent on other machines.

Molecular dynamics, however, has several advantages on
the Blue Gene/L machine [7]. Despite the low processing
power of the 440 embedded processor, it has a relatively
large 4MB L3 cache. The torus network [1] has a relatively
large bandwidth of 175MB/s on each of the six links. The
network also has good bandwidth for messages a few KB
of size [2], which are typical in NAMD. Moreover, the Blue
Gene/L native operating system does not run any operating
systemdaemonson the Compute Node Kernel [13]. On the
Pittsburgh Lemieux machine, performance is hindered [12]
when synchronization is needed in the order of the operat-
ing system quanta which was 10ms for the Tru-64 operating
system.

For the above mentioned reasons, we believed that even
the ApoA1 system could be scaled to several thousand pro-
cessors on Blue Gene/L. Thorough a combination of tech-
niques that involve machine specific optimizations as well
as NAMD restructuring to generate more parallelism and
to limit the Amdahl bottlenecks, we are able to scale the
92,000 atom simulation to 8k processors in co-processor
mode and 4k processors in virtual node mode, while scaling
the 327,000 atom simulation to 8k processors in both modes
on the Blue Gene/L machine. One of the major problems
with strong scaling on Blue Gene/L is the inability of the
second on-chip core to work as a co-processor, due to the
lack of cache-coherence. We address this problem through
a novel technique of interleaving computation and commu-
nication, that achieves the same effect even in virtual node
mode.

The next section describes the basic parallel structure of
NAMD, including the parallelization strategy used. In sec-
tion 3 we describe the suite techniques along with the im-
provements they generated. Final benchmark performance
data and analysis are shown in Section 4. We illustrate the
performance improvements throughout with visualizations
obtained viaProjections, the Charm++ performance anal-
ysis tool. We hope that this case study will also be useful
for other applications aiming to attain high performance on
Blue Gene/L.

2 NAMD Parallelization Strategy
The dynamic components of NAMD are implemented

in the Charm++[10] parallel language. Charm++ imple-
ments an object-based message-driven execution model. In
Charm++ applications, there are collections of C++ objects,
which communicate by remotely invoking methods on other
objects by messages. Compared with conventional pro-
gramming models such as message passing, shared mem-
ory or data parallel programming, Charm++ has several ad-
vantages in improving locality, parallelism and load bal-

Figure 1. NAMD: Patches and Computes

ance [9, 3]. The flexibility provided by Charm++ is a key to
the high performance achieved by NAMD on thousands of
processors.

In Charm++ applications, users decompose the problem
into objects, and since they decide the granularity of the
objects, it is easier for them to control the degree of par-
allelism. As described below, NAMD uses a novel way of
decomposition that easily generates the large amount of par-
allelism needed to occupy thousands of processors.

Charm++’s object-based decomposition also help users
to improve data locality. Objects encapsulate states, and
Charm++ objects are only allowed to directly access their
own local memory. Access to other data is only possi-
ble via asynchronous method invocation to other objects.
Charm++’s parallel objects and data-driven execution adap-
tively overlaps communication and computation and hide
communication latency: when an object is waiting for some
incoming data, entry functions of other objects with all data
ready are free to execute. In Charm++, objects may even
migrate from processor to processor at runtime. Object mi-
gration is typically controlled by the Charm++ load bal-
ancer, described in Section 3.2.

NAMD 1 is parallelized via a form of spatial decomposi-
tion using cubes whose dimensions are slightly larger than
the cutoff radius. Thus, atoms in one cube need to inter-
act only with their 26 neighboring cubes. However, one
problem with this spatial decomposition is that the number
of cubes is limited by the simulation space. Even on a rela-
tively large molecular system, such as the 92K atom ApoA1
benchmark, we only have 144 (6 × 6 × 4) cubes. Further,
as density of the system varies across space, one may en-
counter strong load imbalance.

NAMD 2 addresses this problem with a novel combi-
nation of force [15] and spatial decomposition. For each
pair of neighboring cubes, we assign a non-bonded force
computation object, which can be independently mapped to
any processor. The number of such objects is therefore 14
times (26/2 + 1 self-interaction) the number of cubes. To
further increase the number and reduce the granularity of
these compute objects, they are split into subsets of interac-
tions, each of roughly equal work.



Figure 1 shows the different objects in NAMD. The
spatially decomeposed cubes, shown bysolid squaresare
calledhome patches. Each home patch is responsible for
distributing coordinate data, retrieving forces, and integrat-
ing the equations of motion for all of the atoms in the cube
of space owned by the patch. The forces used by the patches
are computed by a variety ofcompute objects, shown asdi-
amondsin the figure. There are several varieties of com-
pute objects, responsible for computing the different types
of forces (bond, electrostatic, constraint, etc.). Some com-
pute objects require data from one patch, and only calculate
interactions between atoms within that single patch. Other
compute objects are responsible for interactions between
atoms distributed among neighboring patches.

When running in parallel, some compute objects require
data from patches not on the compute object’s processor. In
this case, aproxy patchtakes the place of the home patch
on the compute object’s processor. During each time step,
the home patch requests new forces from local compute ob-
jects, and sends its atom positions to all its proxy patches.
Each proxy patch informs the compute objects on the proxy
patch’s processor that new forces must be calculated. When
the compute objects provide the forces to the proxy, the
proxy returns the data to the home patch, which combines
all incoming forces before computing velocities and ener-
gies on each atom. The new atom coordinates are then com-
puted and sent back to the proxies and the entire time step
is repeated again. Thus, all computation and communica-
tion is scheduled based on priority and the availability of
required data.

Some compute objects are permanently placed on pro-
cessors at the start of the simulation, but others are moved
during periodic load balancing phases. Ideally, all com-
pute objects would be able to be moved around at any time.
However, where calculations must be performed for atoms
in several patches, it is more efficient to assume that some
compute objects will not move during the course of the sim-
ulation. In general, the bulk of the computational load is
represented by the non-bonded (electrostatic and van der
Waals) interactions, and certain types of bonds. These ob-
jects are designed to be able to migrate during the simu-
lation to optimize parallel efficiency. The non-migratable
objects, including computations for bonds spanning multi-
ple patches, represent only a small fraction of the work, so
good load balance can be achieved without making them
migratable.

3 Blue Gene/L Optimizations
The Blue Gene/L machine at the Lawrence-livermore na-

tional laboratory has 65536 dual core processor-chips con-
nected by a 3D-torus interconnect [1]. However, these
are slow embedded processors based on the Power-PC 440
core. They rely on the application to have massive scaling

(a) Initial application and processor grids

(b) Application grid after Z rotation

Figure 2. Patch allocation to processors

to achieve good performance on a large number of proces-
sors. Each core has a 32KB L1 cache and a shared 4MB
on-chip L3 cache [7]. The large L3 cache is ideally suited
for an application like NAMD as it has a small memory foot
print. In fact, on a few hundred nodes, NAMD will mainly
run from the L3 cache. The Blue Gene/L torus network also
has good throughput for relatively small messages and the
six outgoing links are ideal for the atom coordinate multi-
cast.

However, we had to overcome several problems to get
good performance with NAMD. Due the absence of DMA
or a network interface controller, message passing has to
be performed by the cores. Ideally one of the cores on
the Blue Gene chip could have been used as a communi-
cation co-processor. But, due to the lack of cache coher-
ence, the second core cannot effectively function as a com-
munication co-processor. Strong scaling is easier to achieve
with the overlap of computation and communication. More-
over, the bisection bandwidth of torus networks grows as
O(N2/3), and hence messages going over several hops are
bound to have more bandwidth contention. So, applications
must localize communication to nearby processors in order
to achieve good performance.

We also found it quite hard to get good sequential per-
formance for NAMD on Blue Gene/L. The current perfor-



(a) Aligned application and processor
grids

(b) ORB Allocation

Figure 3. Patch and compute allocation to
processors

mance numbers are based on compiling with just 440 in-
structions, thus not utilizing the dual FPU unit (double hum-
mer) [4]. Even this performance was achieved after several
weeks of hard work with the compiler team at IBM Toronto,
to effectively software pipeline the inner loops of NAMD.
We are still working on making use of the double hum-
mer to further increase the single processor performance of
NAMD. Even this sequential performance was quite hard
to scale to 8k processors. We now present the techniques
we used to overcome the above mentioned challenges and
achieve good parallel performance for NAMD.

3.1 Problem Mapping on Blue Gene/L

To optimize communication performance on Blue
Gene/L, the application messages should be localized on
the torus. So, the mapping of patches to processors is crit-
ical. Before patches are allocated to processors, the axis of
the application grid have to be mapped with the axis of the
Blue Gene torus. This would allow the application com-
munication load to be balanced along the three axis of the
torus. We first sort the axis of the patch grid and the torus
and then map the largest axis with each other. The applica-

Figure 4. Two-Away splitting along the X-Axis

tion grid is then rotated to match the Blue Gene torus using
the aboveaxis-map.

We use anorthogonal recursive bisection(ORB) scheme
to map patches to processors in NAMD. The ORB scheme
first splits the patch grid into two partitions of similar load.
The load of each patch is computed through a function that
reflects the total computation and communication of that
patch. The total computation of each patch is determined
by the square of the number of atoms, while the communi-
cation is proportional to the number of atoms in that patch.
The processor grid is then split in the same ratio as the two
patch partitions along the corresponding axis, given by the
axis-map.

This matching of patches to processors is shown by Fig-
ures 2(a), 2(b) and 3(a) (We only present the scenario where
the processors are more numerous than patches.) The com-
putation that is related to each patch is then placed on pro-
cessors near that patch (Figure 3(b)). Typically, on Blue
Gene, the Y and Z dimensions grow faster than the X di-
mension, while, for many NAMD problems, the X axis is
the biggest. So such rotation is necessary. The axis mapping
is stored in a persistent data structure and used for mapping
computes and PME (See Section 3.3) objects.

3.1.1 Two-Away Computation
Patches created by the cutoff metric are quite large with
several hundreds of atoms. This results in the integration
of forces and computation of energies typically requiring
5-10ms to finish on the 440 processor. Moreover, the coor-
dinate multicast from patches would be composed of large
messages with tens of kilo-bytes of data. This may restrict
the scalability of NAMD to a large number of processors.

To make patches more fine-grained, NAMD optionally
supportstwo-awaycomputation. Figure 4 illustrates split-
ting of patches along the X axis. The split results in more
computes for the interactions betweenneighborsof the x-
neighbors of each patch. The integrates are now twice
smaller. The two-away computes are smaller than one-away
computes as fewer atoms will now be in the cutoff. With
objects of different sizes, we need a good load-balancer to
allocate computes to processors (Section 3.2).



Two-away splitting of patches also makes the coordinate
multicast messages smaller, but possibly to more destina-
tions. We have observed that sending smaller messages
to more destinations has higher bandwidth due to adaptive
routing on the torus. The Blue Gene torus network also
achieves a high bandwidth for fairly small messages. In
fact, with the APoA1 benchmark on 8k processors we had
to split patches along all three dimensions X,Y and Z to
achieve the best performance.

3.2 Load-balancing

NAMD uses a measurement-based load balancer, em-
ploying the Charm++ load balancing framework. When a
simulation begins, patches are distributed using the ORB
scheme introduced in Section 3.1. The framework mea-
sures the execution time of each compute object (the ob-
ject loads), and records other (non-migratable) patch work
as “background load.” After the simulation runs for sev-
eral time-steps (typically several seconds), the program sus-
pends the simulation to trigger the initial load balancing.
NAMD retrieves the object times and background load from
the framework, computes an improved load distribution,
and redistributes the migratable compute objects.

The initial load balancer is aggressive, starting from the
set of required proxies and assigning compute objects in or-
der from larger to smaller, avoiding creating new proxies
unless necessary. To optimize performance on Blue Gene,
we place an initial set of required proxies on the neighbor-
ing processors of each patch processor. These neighboring
processors can compute the interaction of each patch with
its neighboring patches. When two away computation is
enabled, the initial proxy set also has proxies placed on the
midpoints of a few neighboring two away patches.

The aggressive load balancer uses a greedy heuristic
which tires to optimize the following metrics: 1) compu-
tation load, the total amount of work allocated to each pro-
cessor, 2) number of proxies, this determines the connectiv-
ity of the atom coordinate multicast, and 3) communication
hop-bytes.

Our greedyheuristic frist allocates the heavy computes
to processors. The compute is allocated to the lightest pro-
cessor withink hops of the midpoint of the two patch pro-
cessors corresponding to this compute. If the compute ob-
ject overloads the above light processor more than anover-
load cutoffof the average load, then the nearest acceptable
processor is chosen. Preference is also given to processors
which already have proxies for either or both home patches
for that compute object.

After this initial balancing step, only small refinements
are made, attempting to transfer single compute objects off
of overloaded processors without increasing communica-
tion. Two additional cycles of load balancing refines try
to reduce theoverloadcutoff, by moving work away from

the heavy processors. After these three phases, a refine is
called every few thousand time steps to load-balance dy-
namic variance in processor loads from atom migrations.

3.3 Particle Mesh Ewald

The cut-off computation presented so far does not ac-
count for the long range interactions between atoms. The
Particle Mesh Ewald method [5] is used to compute the
long-range electrostatic forces in NAMD. The paralleliza-
tion of PME was first achieved in NAMD 2.2, and it has
been further optimized to its current version in NAMD 2.6.
PME requires two 3DFast-Fourier-Transformoperations.
The FFTW library is currently used to do the serial work of
the FFTs. The 3D-FFT operations are parallelized through
a plane decomposition, where first a 2D FFT is computed
on a plane of the grid. Then there is a global transpose after
which the FFT is computed along the third dimension.

PME computation in NAMD involves five computa-
tion phases and four communication phases. The message
driven NAMD/Charm++ framework can interleave these
phases with force computation. The phases involve com-
puting the PME charge grid in the patches. This is followed
by communication of this grid to the PME objects, which
then perform a forward 3D-FFT and a backward 3D-IFFT
with three computation phases and two all-to-all transpose
operations. Long-range forces are then sent back to the
patches [14].

The plane decomposition restricts PME scaling to a few
hundred processors (108 processors of the APoA1 system
and 192 processors for the F1-ATPase benchmark). Fortu-
nately, the total PME computation is a small fraction of the
force computation. Moreover, withmultiple time stepping,
PME only has to be computed every few time-steps. We
were still able to successfully scale NAMD with PME to 8k
processors on Blue Gene/L, bymapping PME objects close
to the patches with which they communicate.

3.4 Overlap of Computation and Commu-
nication

Overlap of communication with computation is an es-
tablished technique to achieve strong scaling in applica-
tions. However, on the Blue Gene/L machine, overlap of
computation and communication is hard to achieve because
of the absence of cache coherence between the two cores
on a chip. Ideally, one of the cores could have been used
as a communication co-processor to achieve this overlap.
The co-processor mode [2] can achieve overlap for large
messages, by flushing the L1 caches of the main CPU and
the co-processor during messaging. But, such cache-flushes
can hurt NAMD performance, resulting in no net gain.

However, we can take advantage of the fact that each
torus FIFO has 4 packet buffers. At full link bandwidth



(a) No Overlap

(b) Overlap of communication with computation

Figure 5. NAMD Timeline

of 175 MB/s, it takes about 4096 processor cycles to fill
these buffers. A network poll of the six FIFOs only takes
about 200 processor cycles with the new messaging layer
developed by the authors. So we can interleave computation
while the packets travel on the network. Moreover, with
the complex communication pattern of NAMD, we can only
achieve a total bandwidth of about two links, making each
link less busy overall.

void CmiNetworkProgress() {
new_time=rts_get_timebase();
if(new_time<lastProgress+PERIOD){

return;
}
lastProgress = new_time;
AdvanceCommunications();

}

//NAMD force compute loop
for (i=0;i<i_upper;++i){

CmiNetworkProgress();
const CompAtom &p_i=p_0[i];
//Compute Pairlists
//........
for (k=0; k<npairi; ++k){

//Calculate forces
}

}

To enable progress every few thousand cycles,CmiNet-
workProgress() is called from the outer compute loop

(a) bad coarse grainsize

(b) improved finer grainsize

Figure 6. Histogram of object computation
with NAMD APoA1 on 4096 processors

in NAMD. When PERIOD clock cycles have elapsed
CmiNetworkProgress() calls AdvanceCommunication()
which makes flushes the packets from the torus. The
performance gains from overlap of communication and
computation on 4096 processors is shown in Figures 5(a)
and 5(b).

In the no-overlap case the application waits for packets
to arrive, which results in the black regions in the time-
line (Figure 5(a)). When communication is overlapped
with computation, the packets stream in while the proces-
sor computes, minimizing the black regions (Figure 5(b)).
Observe that the average utilization of the processors goes
up from about66% to 74%.

3.5 Grainsize Analysis

Grainsize is critical to NAMD scaling, as a course grain
can restrict scaling and performance. The minimum step
time is at least the size of the largest object. For good load
balancing, mean computation of each object should be five
to ten times smaller than the step-time. Having a very fine
grain on the other hand, will generate too many objects, re-
sulting in higher object context switching and runtime over-
heads. So, we use a grain size which is typically a few times
less than the target time-step, tunable at runtime.

Figure 6 shows the histograms of the NAMD APoA1



benchmark objects with more than 0.5ms computation,
from two 4096 processor runs with different grain sizes.
Observe that in Figure 6(a) there are quite a few large ob-
jects with more than 1ms of computation. However in Fig-
ure 6(b), there are very few such objects. Infact, the latter
grain size is responsible for the 4.3 ms timestep presented
in Section 4.

3.6 Communication Optimizations

Blue Gene/L nodes are organized into 3-dimensional
torus network for point-to-point communication, with a
bandwidth of 175MB/s. It is important for NAMD to have
highly efficient communication operations to take full ad-
vantage of the high network bandwidth. For instance, at the
end of the integration phase in NAMD, each patch sends
out the updated atom information to all the computes whose
computation depends on it (See Figure 1). Correspondingly,
there is a subsequent reduction with which the computes
contribute the force data back to the patch. These commu-
nication operations could cause excessive amounts of over-
head both in the processor and in the network. We have ex-
perimented with a variety of communication optimizations,
such as improvedFIFO mappingschemes and new messag-
ing protocols to solve these problems. We discuss some of
the optimizations in this section.

FIFO mapping schemes:each Blue Gene/L node has
several outgoing and incoming FIFOs [1]. A FIFO pinning
function maps an outgoing packet with destination displace-
ment{dx, dy, dz} onto one of the 6 sending FIFOs. Our
goal is to improve the overall utilization of the FIFOs with
a better FIFO mapping scheme. Figure 7 is a simplified 2-
D illustration of our pinning schemes. The Naive Scheme,
which prefers X-FIFOs, makes a dramatically unequal di-
vision of the space and is incapable of producing a bal-
anced mapping. The Cone Scheme divides the space into
6 equal portions and assigns each to a FIFO. However, this
scheme can still suffer from load imbalance in the neighbor-
hood multicast in NAMD, where it is not uncommon for the
neighborhood to have an elongated shape along one dimen-
sion, for example, when the two-away splitting is enable
(See Section 3.1.1 and Figure 4). To mend this situation,
we applied the Chessboard Scheme which ensures balanced
mapping even in the presence of a disproportional neigh-
borhood. A destination coordinate{dx, dy, dz} is simply
mapped to FIFO(dx + dy + dz)%6. Finally, on top of
the above static mapping schemes, a fully adaptive FIFO
pinning function, which picks an available FIFO dynami-
cally, is implemented and offers the biggest performance
improvement. We call this schemedynamic fifo mapping.

Messaging protocols: on the Blue Gene/L torus Net-
work, messages can have different routing protocols to suit
various communication patterns. For example, short mes-
sages from reductions use eager protocol, while long data

messages use rendezvous protocol. However, there is a
rendezvous round-trip setup overhead. We designed a new
message protocol calledactive-put to avoid the rendezvous
overhead by putting messages into a persistent buffer. In
traditional one-sided communication put, the receiver has
to verify the completion of the put either by polling on a
flag or by a callback at sender side. Either of these incurs
an unnecessary overhead. We avoid this overhead by having
the put carry the message handler along, so that the handler
can process the message locally on the destination. After
using active-put in multicast operations, we noticed a per-
formance improvement on large runs of several thousand
processors.

Topology optimizations: in both multicast and reduc-
tions, the root node sends or receives a large number of
messages. Especially in large runs on several thousand pro-
cessors, a multicast typically involves sending out 64 to
100 messages. A communication bottleneck occurs and it
can hold up the node for unnecessarily long period of time.
Also, switching back and forth between computation and
the network progress engine could result in undue overhead.
We addressed this issue by organizing the neighbors into a
spanning tree so that the communication hot-spots are of-
floaded. In addition, we designed a topology-based span-
ning tree for the 3-D torus network to minimize the total
hop-byte counts.

Congestion control: on Blue Gene/L, congestion con-
trol is sometimes required to ensure high efficiency. Blue
Gene/L MPI enforces its congestion control with a message
pacing mechanism which allows for only a window of si-
multaneously outstanding packets from any message. For
example, assuming the window size is 16, when we have 32
messages of about 10KB each to send out, MPI will send
16 packets from each of all 32 messages and then wait for
their acknowledgments. This works fine with MPI mes-
sages, yet it would hurt the efficiency of NAMD. This is
because Charm++ usesactive messages, where each mes-
sage has some computation associated with it on the re-
ceiver. Thus, ensuring the prompt arrival and processing of
full messages is more critical than packet-level congestion
control. In Charm++, we devised a tunable parameter for
the maximum number of outstanding send requests. Only
packets from messages in the window will be sent out and
the window advances when a full message has been dis-
patched. This message level congestion control improves
efficiency as well as fairness of communication in NAMD.

4 Performance Results
Before presenting the parallel performance of NAMD on

a large number of processors, we first quantify the gains of
many of the optimizations presented in the previous section.
Table 1 shows the performance improvements as our tech-
niques are implemented step by step. However, the perfor-



Figure 7. FIFO Mapping Schemes

NAMD v2.5 v2.6 Blocking Fine grained
40 25.2 24.3

Congestion control New LDB Chessboard
20.5 14.0 13.6

Dynamic Mapping Fast memcpy Non-blocking
13.5 13.3 11.9

Table 1. Improving Performance (ms) of the
ApoA1 Cutoff Benchmark on 1024 proces-
sors

#Procs MPI Msglayer
Blocking Non-

Send Blocking

512 27.8 26.7 23.7
1024 17.3 14.4 13.8
2048 10.2 9.7 8.6
4096 7.3 6.8 6.2

Table 2. PME Performance (ms) with ApoA1
Benchmark

mance improvement of each technique may depend on the
order in which optimizations were used. Here, we present
an arbitrary order of the optimization techniques.

The performance improvement of NAMD version-2.6
over version-2.5 mainly comes from a serial speedup of
about40%, due to a higher degree of software pipelining
and the elimination aliasing problems in the inner compute
loops. In Table 1, the new topology aware load balancer has
the biggest parallel performance gains.

Table 2 presents a performance comparison of NAMD
using MPI and NAMD on top of a native message layer de-
veloped by the authors. Currently MPI only supports a static
FIFO mapping scheme for point-to-point messages. More-
over, non blocking communication in the MPI version of
NAMD has poor performance as it uses expensive MPItest

#Procs Time/step(ms) Speedup GFLOPS

4 2200 4 1.31
128 82 107 35
512 21.7 406 133
1024 11.9 739 242
2048 7.3 1205 394
4096 4.3 2047 695
8192 3.5 2514 871

Table 3. NAMD Cutoff Performance on Non-
blocking Msglayer with ApoA1 Benchmark

#Procs Time/step(ms) Speedup GFLOPS

4 2611 4 1.23
128 97.2 107 33
512 23.7 441 135
1024 13.8 757 233
2048 8.6 1214 373
4096 6.2 1685 536
8192 5.2 2008 651

Table 4. NAMD PME Performance on Non-
blocking Msglayer with ApoA1 Benchmark

#Procs Time/step(ms) Speedup GFLOPS

32 1120 32 7
128 284 126 29
512 73.9 485 113
1024 39.2 914 219
2048 21.8 1644 393
4096 11.8 3037 726
8192 7.1 5048 1210

Table 5. NAMD Cutoff Performance on Non-
blocking Msglayer with ATPase Benchmark



#Procs Time/step(ms) Speedup GFLOPS

32 1228 32 7
128 324 121 28
512 86.2 456 105
1024 43.2 910 224
2048 26.9 1461 360
4096 15.1 2602 641
8192 9.8 4010 991

Table 6. NAMD PME Performance on Non-
blocking Msglayer with ATPase Benchmark

and MPI Iprobe calls while calling progress. So the MPI
version uses blocking communication. The table compares
MPI, with the native blocking and non-blocking versions
respectively. On 4096 processors, the native non-blocking
version does better than MPI by about18%.

Tables 3, 4 and 5, 6 show the time per step, speedup and
GFLOPS reached on scaling runs, for both the 92K atom
ApoA1 benchmark and the 327K atom ATPase benchmark.
Compared with the previous results presented [14], the new
results show major improvement. For the ApoA1 bench-
mark, the time per step is further reduced to 3.5 ms at 871
GFLOPS for cutoff and 5.2 ms at 651 GFLOPS with PME.
The larger simulation of the ATPase benchmark has better
scaling to 8192 processors. It achieves1.2 TFLOPS with
cutoff and0.99 TF with PME. The limited parallelism of
the plane decomposition based PME appears to have be-
come an Amdahl bottleneck.

So far we have only presented NAMD performance in
co-processor mode. When both cores on the BGL chip
are used for computation, its termed asvirtual node mode.
However, now both cores have to share memory and net-
work bandwidths. Figures 8(a) and 8(b) compare NAMD
performance in the two modes for ApoA1 and ATPase re-
spectively. Observe that virtual node mode only has a
slightly lower performance than co-processor mode. In fact,
most of the optimizations presented in Section 3 are appli-
cable to both co-processor mode and virtual node mode.

5 Related Work

Blue Matter [6] is another application that has achieved
strong scaling and good parallel performance with classi-
cal molecular dynamics on Blue Gene/L. This application
is designed specifically for the Blue Gene/L machine. It
also uses a spatial decomposition scheme like NAMD and
makes very good use of hardware collective support from
the BGL network architecture.

We have kept NAMD general and use Blue Gene spe-
cific optimizations through abstractions in Charm++ and the
Blue Gene message layer. We also use different paralleliza-
tion techniques and algorithms from Blue Matter. NAMD
derives its scaling and performance mainly from efficient

(a) ApoA1 Benchmark

(b) ATPase Benchmark

Figure 8. NAMD Performance, Co-Processor
mode vs. Virtual Node mode

load-balancing and overlap of computation and communi-
cation on a variety of communication architectures.

Our performance results for the APoA1 system are com-
parable to Blue Matter (in some cases even better) till 8k
nodes. We are still to experiment with 16k nodes. In this
paper, we also present the performance scaling on a large
problem like ATPase, which was possible in virtual node
mode as NAMD is quite memory efficient.

6 Summary and Future Work

We presented the several performance optimization
schemes that were used to achieve good parallel perfor-
mance for NAMD on Blue Gene/L. We scaled NAMD with
PME on 8192 processors for both APoA1 and ATPase. The
floating point performance of ATPase on 8192 processors
is 1.2TF for cutoff and 0.99TF for PME, with speedups of



5048 and 4090 respectively. This impressive performance
can be attributed to the novel mechanism to achieve overlap
of communication with computation, along with topology
aware load balancing; while communication performance
was optimized by the persistent active-put protocol, mes-
sage based congestion control and dynamic fifo mapping.

We still have several challenges ahead of us. The cur-
rent floating point performance is less than expected. The
inner compute loops do not utilize the double hummer. The
inner loops compute on data structures that are of size 24
bytes, and hence hard to program with the double hummer
which requires 16 byte alignment. Moreover, the PME and
Energy compute loops have register spills due to the limited
number of registers in the processor architecture. We need
to devise techniques to address the above mentioned serial
performance issues.

We are investigating a pencil based PME scheme, which
has three transposes and much more parallelism than the
current plane based scheme. The third transpose however,
may make the pencil based scheme unsuitable for smaller
number of processors. But on a large number of processors
its gains will be evident.

We are also in the process of developing asynchronous
non-blocking interfaces for the hardware collectives on
Blue Gene/L. The full potential of this machine is not uti-
lized without the use of its hardware collective support. For
example, we intend to optimize the coordinate multicast in
NAMD through row and column broadcasts.
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