Achieving Strong Scaling with NAMD on Blue Gene/L

Sameer Kumar Chao Huang, Gheorghe Almasj Laxmikant V. Kag?

1IBM T.J. Watson Research Center’University of lllinois at Urbana-Champaign

Yorktown Heights, NY 10598, USA Urbana, IL 61801, USA
{sameerk,gheorgh@us.ibm.com {chuang10, kalp@cs.uiuc.edu
Abstract ulation size does not significantly increase over the years.

With faster and larger computers, the challenge is to paral-

NAMD is a scalable molecular dynamics application, lelize the same computation at an ever finer granularity. In
which has proven its performance on several parallel com- contrast, simulations of continuum models, such as those
puter architectures. Strong scaling is necessary for molec-involved in weather modeling or structural dynamics, can
ular dynamics as problem size is fixed, and a large num- often be solved at a finer resolution (using finer grids, for
ber of iterations need to be executed to understand interest-example) so one can keep the amount of work per processor
ing biological phenomenon. The Blue Gene/L machine is aconstant as larger machines are deployed.
massive source of compute power. It consists of tens of thou- IBM’s Blue Gene/L machine [7] represents a new design
sands of embedded Power PC 440 processors. In this papelpoint among parallel machines. The entire machine con-
we present several techniques to scale NAMD to 8192 pro-sists of an unprecedented number of processors : 64k nodes
cessors of Blue Gene/L. These include topology specific opeach with two cores. Even smaller partitions that are prac-
timizations, new messaging protocols, load-balancing, andtically deployed in various centers around the world may
overlap of computation and communication. We were able have thousands of processors. Each processor has a mod-
to achieve 1.2 TF of peak performance for cutoff simula- est amount of memory (512MB for a dual-core node). The
tions and 0.99 TF with PME. machine is also unique in its power consumption charac-
teristics, and achieves high scalability as several processors
can be packed in a relatively small region.

The challenge we explore in this paper is that of scaling
the performance of NAMD, a molecular dynamics program

Molecular dynamics simulations of biomolecules, based Widely used by biophysicists, to 8k processors on the Blue
on classical mechanics, are extremely useful in understandGene/L machine.
ing the function of assemblages of biomolecules such as NAMD is a C++ based parallel program, implemented
proteins, DNA, cell membranes, and water molecules. Typi- using the Charm++ [8] parallel programming system. It
cal simulations involve 10,000 atoms to a few hundred thou- uses object based decomposition and measurement based
sand atoms, with a few exceptional situations (such as sim-dynamic load balancing to achieve its high performance.
ulations of ribosome or an entire virus coat) requiring over As explained in Section 2, it uses a combination of spa-
a million atoms. With the number of particles to simulate tial decomposition and force decomposition to generate a
relatively small, the granularity available for parallelization high degree of parallelism. NAMD is one of the fastest and
is rather small. For example, a single time-step of a 92,000most scalable program for biomolecular simulations that is
atom simulation of apolipo-protein A1l requires only about routinely used in published simulations. In 2002, a paper
10.4 seconds on single processor of IBM's Blue Gene/L describing its performance on the 750 node (3,000 proces-
machine, based on the embedded 440 core. Since millionssor) Lemieux machine at Pittsburgh supercomputing center,
of time-steps are needed in a simulation, parallel comput-shared the Gordon Bell award [14].
ing is needed to make large studies in practical amounts of Although NAMD demonstrated scalability by scaling a
time. But since only a few seconds must be parallelized 320,000 atom simulation to 3000 processors with more than
over thousands of processors, the problem is quite chal-1TF of peak performance [11] for cutoff simulations, it was
lenging. This challenge is compounded by the fact that the clear that the code as it was did not scale beyond that. Fur-
number of atoms in a given protein is fixed, and so the sim- ther, on the now-standard 92,000 atom benchmark, it was

1 Introduction

able to scale performance only up to about 1024 processors D\ D D

before reaching saturation. Since then, its performance has

been improved to some extent on other machines. &
Molecular dynamics, however, has several advantages on

the Blue Gene/L machine [7]. Despite the low processing D—Q— Q—D

power of the 440 embedded processor, it has a relatively

large 4MB L3 cache. The torus network [1] has a relatively /‘

large bandwidth of 175MB/s on each of the six links. The D \D

network also has good bandwidth for messages a few KB

of size [2], which are typical in NAMD. Moreover, the Blue]

GenelL native operating system does not run any operating Figure 1. NAMD: Patches and Computes

systemdaemon®n the Compute Node Kernel [13]. On the

Pittsburgh Lemieux machine, performance is hindered [12] gnce [9, 3]. The flexibility provided by Charm++ is a key to

when synchronization is needed in the order of the operat-the high performance achieved by NAMD on thousands of

ing system quanta which was 10ms for the Tru-64 operating processors.

system. In Charm++ applications, users decompose the problem

For the above mentioned reasons, we believed that even., objects, and since they decide the granularity of the
the ApoAl system could be scaled to several thousand proiects, it is easier for them to control the degree of par-

cessors on Blue Gene/L. Thorough a combination of tech-5jejism. As described below, NAMD uses a novel way of
niques that involve machine specific optimizations as well y.omposition that easily generates the large amount of par-
as NAMD restructuring to generate more parallelism and 1qlism needed to occupy thousands of processors.

to limit the Amdahl bottlenecks, we are able to scale the — ~ object-based decomposition also help users
92,000 atom simulation to 8k processors in CO-processor, improve data locality. Objects encapsulate states, and

mode and 4k processors in virtual node mode, while scaling . ; :
; : i Charm++ objects are only allowed to directly access their
the 327,000 atom simulation to 8k processors in both modes) y y

the Blue Gene/L hi o tth . bl own local memory. Access to other data is only possi-
on the biue Lene/L. machine. ne or iné major problems , ¢ ;5 asynchronous method invocation to other objects.
with strong scaling on Blue Genel/L is the inability of the

d hi ¢ K due to th Charm++’s parallel objects and data-driven execution adap-
second on-chip core 1o Work as a co-processor, due 1o etively overlaps communication and computation and hide

lack oflciacze?coherf.nie.l We. address t?'st. probI(ZIm throughcommunication latency: when an object is waiting for some
a novet technique ot Interieaving computation and commu- incoming data, entry functions of other objects with all data
nication, that achieves the same effect even in virtual nOdeready are free to execute. In Charm++, objects may even

mode. . . . migrate from processor to processor at runtime. Object mi-
The next section describes the basic parallel structure of

. : o gration is typically controlled by the Charm++ load bal-
NAMD, mcludmg the pargllellzatlop strategy useq. In sec ancer, described in Section 3.2.
tion 3 we describe the suite techniques along with the im-

) NAMD 1 is parallelized via a form of spatial decomposi-
provements they generated. Final benchmark performancet-ion using cubes whose dimensions are slightly larger than
data and analysis are shown in Section 4. We illustrate the g cub . ghtly farger

; L L the cutoff radius. Thus, atoms in one cube need to inter-
performance improvements throughout with visualizations . .) .
. . N act only with their 26 neighboring cubes. However, one
obtained viaProjections the Charm++ performance anal- . . . N
: . : problem with this spatial decomposition is that the number
ysis tool. We hope that this case study will also be useful

L o o of cubes is limited by the simulation space. Even on a rela-
for other applications aiming to attain high performance on
Blue Gene/l. tively large molecular system, such as the 92K atom ApoAl

benchmark, we only have 148 & 6 x 4) cubes. Further,
. as density of the system varies across space, one may en-
2 NAMD Parallelization Strategy counter strong load imbalance.

The dynamic components of NAMD are implemented NAMD 2 addresses this problem with a novel combi-
in the Charm++[10] parallel language. Charm++ imple- nation of force [15] and spatial decomposition. For each
ments an object-based message-driven execution model. Ipair of neighboring cubes, we assign a non-bonded force
Charm++ applications, there are collections of C++ objects, computation object, which can be independently mapped to
which communicate by remotely invoking methods on other any processor. The number of such objects is therefore 14
objects by messages. Compared with conventional pro-times (26/2 + 1 self-interaction) the number of cubes. To
gramming models such as message passing, shared menfdrther increase the number and reduce the granularity of
ory or data parallel programming, Charm++ has several ad-these compute objects, they are split into subsets of interac-
vantages in improving locality, parallelism and load bal- tions, each of roughly equal work.

Figure 1 shows the different objects in NAMD. The
spatially decomeposed cubes, shownsbyid squaresare
calledhome patchesEach home patch is responsible for
distributing coordinate data, retrieving forces, and integrat-
ing the equations of motion for all of the atoms in the cube
of space owned by the patch. The forces used by the patches Y
are computed by a variety cbmpute objectshown agli- Y
amondsin the figure. There are several varieties of com- z z
pute objects, responsible for computing the different types X X
of forces (bond, electrostatic, constraint, etc.). Some com- Application Data Space Processor Grid
pute objects require data from one patch, and only calculate
interactions between atoms within that single patch. Other (a) Initial application and processor grids
compute objects are responsible for interactions between
atoms distributed among neighboring patches.

When running in parallel, some compute objects require z
data from patches not on the compute object’s processor. In
this case, groxy patchtakes the place of the home patch
on the compute object’s processor. During each time step,

the home patch requests new forces from local compute ob- Xy
jects, and sends its atom positions to all its proxy patches.
Each proxy patch informs the compute objects on the proxy v z
patch’s processor that new forces must be calculated. When - X
Application Data Space Processor Grid

the compute objects provide the forces to the proxy, the
proxy returns the data to the home patch, which combines
all incoming forces before computing velocities and ener-
gies on each atom. The new atom coordinates are then com-
puted and sent back to the proxies and the entire time step Figure 2. Patch allocation to processors
is repeated again. Thus, all computation and communica-

tion is scheduled based on priority and the availability of ig gchieve good performance on a large number of proces-
required data. sors. Each core has a 32KB L1 cache and a shared 4MB
Some compute objects are permanently placed on pro-pn-chip L3 cache [7]. The large L3 cache is ideally suited
cessors at the start of the simulation, but others are movedgy gn application like NAMD as it has a small memory foot
during periodic load balancing phases. Ideally, all com- print. |n fact, on a few hundred nodes, NAMD will mainly
pute objects would be able to be moved around at any time.ryn from the L3 cache. The Blue Genel/L torus network also
However, where calculations must be performed for atoms a5 good throughput for relatively small messages and the

in several patches, it is more efficient to assume that somesix outgoing links are ideal for the atom coordinate multi-
compute objects will not move during the course of the sim- ¢4t

ulation. In general, the bulk of the computational load is However, we had to overcome several problems to get

represented by the non-bonded (electrostatic and van debood performance with NAMD. Due the absence of DMA
Waals) interactions, and certain types of bonds. These ob- '

ect desianed to be able to miarate during the si or a network interface controller, message passing has to
jlef. s a}{re et_5|gne 0 Ilelaff'e' 0 mlg[;:;\he uring. etsgru'be performed by the cores. Ideally one of the cores on
ation 1o optimize parafle! etliciency. € non-migratable .o glye Gene chip could have been used as a communi-
objects, including computations for bonds spanning multi-

I weh tonl Il fracti f1h K cation co-processor. But, due to the lack of cache coher-
pi€ patches, represent only a smatl fraction of the Work, SOence, the second core cannot effectively function as a com-
good load balance can be achieved without making them

. munication co-processor. Strong scaling is easier to achieve
migratable. with the overlap of computation and communication. More-
o . over, the bisection bandwidth of torus networks grows as
3 Blue Gene/L Optimizations O(N?/3), and hence messages going over several hops are

The Blue Gene/L machine at the Lawrence-livermore na- bound to have more bandwidth contention. So, applications
tional laboratory has 65536 dual core processor-chips con-must localize communication to nearby processors in order
nected by a 3D-torus interconnect [1]. However, these t0 achieve good performance.
are slow embedded processors based on the Power-PC 440 We also found it quite hard to get good sequential per-
core. They rely on the application to have massive scalingformance for NAMD on Blue Gene/L. The current perfor-

(b) Application grid after Z rotation

— H E—E BN

L Ee @Ol
' : B E—F H

z X
Application Data Space Processor Grid

Figure 4. Two-Away splitting along the X-Axis

(a) Aligned application and processor

grids
tion grid is then rotated to match the Blue Gene torus using
the aboveaxis-map
Z — ‘/ We use amrthogonal recursive bisectiqf©@RB) scheme
g to map patches to processors in NAMD. The ORB scheme
@0 @l oo | first splits the patch grid into two partitions of similar load.
os o] The load of each patch is computed through a function that
NEEEIC 2 e reflects the total computation and communication of that
®*e) patch. The total computation of each patch is determined
g : - 5 by the square of the number of atoms, while the communi-
cation is proportional to the number of atoms in that patch.
Processor Grid The processor grid is then split in the same ratio as the two
patch partitions along the corresponding axis, given by the
(b) ORB Allocation axis-map
This matching of patches to processors is shown by Fig-
Figure 3. Patch and compute allocation to ures 2(a), 2(b) and 3(a) (We only present the scenario where
processors the processors are more numerous than patches.) The com-

putation that is related to each patch is then placed on pro-
cessors near that patch (Figure 3(b)). Typically, on Blue
mance numbers are based on compiling with just 440 in- Gene, the Y and Z dimensions grow faster than the X di-
structions, thus not utilizing the dual FPU unit (double hum- mension, while, for many NAMD problems, the X axis is
mer) [4]. Even this performance was achieved after severalthe biggest. So such rotation is necessary. The axis mapping
weeks of hard work with the compiler team at IBM Toronto, is stored in a persistent data structure and used for mapping
to effectively software pipeline the inner loops of NAMD. computes and PME (See Section 3.3) objects.
We are still working on making use of the double hum-
mer to further increase the single processor performance 03.1.1 Two-Away Computation
NAMD. Even this sequential performance was quite hard Patches created by the cutoff metric are quite large with
to scale to 8k processors. We now present the techniqueseveral hundreds of atoms. This results in the integration
we used to overcome the above mentioned challenges andf forces and computation of energies typically requiring
achieve good parallel performance for NAMD. 5-10ms to finish on the 440 processor. Moreover, the coor-
dinate multicast from patches would be composed of large
messages with tens of kilo-bytes of data. This may restrict
the scalability of NAMD to a large number of processors.

To optimize communication performance on Blue To make patches more fine-grained, NAMD optionally
Genell, the application messages should be localized orsupportstwo-awaycomputation. Figure 4 illustrates split-
the torus. So, the mapping of patches to processors is critting of patches along the X axis. The split results in more
ical. Before patches are allocated to processors, the axis oEomputes for the interactions betweegighborsof the x-
the application grid have to be mapped with the axis of the neighbors of each patch. The integrates are now twice
Blue Gene torus. This would allow the application com- smaller. The two-away computes are smaller than one-away
munication load to be balanced along the three axis of thecomputes as fewer atoms will now be in the cutoff. With
torus. We first sort the axis of the patch grid and the torus objects of different sizes, we need a good load-balancer to
and then map the largest axis with each other. The applica-allocate computes to processors (Section 3.2).

3.1 Problem Mapping on Blue Gene/L

Two-away splitting of patches also makes the coordinate the heavy processors. After these three phases, a refine is
multicast messages smaller, but possibly to more destina-called every few thousand time steps to load-balance dy-
tions. We have observed that sending smaller messagesamic variance in processor loads from atom migrations.
to more destinations has higher bandwidth due to adaptive
routing on the torus. The Blue Gene torus network also 3.3 Particle Mesh Ewald
achieves a high bandwidth for fairly small messages. In
fact, with the APoA1 benchmark on 8k processors we had ~ The cut-off computation presented so far does not ac-

to split patches along all three dimensions X,Y and Z to count for the long range interactions between atoms. The
achieve the best performance. Particle Mesh Ewald method [5] is used to compute the

long-range electrostatic forces in NAMD. The paralleliza-
tion of PME was first achieved in NAMD 2.2, and it has
been further optimized to its current version in NAMD 2.6.
NAMD uses a measurement-based load balancer, emPME requires two 30Fast-Fourier-Transformpperations.
ploying the Charm++ load balancing framework. When a The FFTW library is currently used to do the serial work of
simulation begins, patches are distributed using the ORBthe FFTs. The 3D-FFT operations are parallelized through
scheme introduced in Section 3.1. The framework mea- g plane decomposition, where first a 2D FFT is computed
sures the execution time of each compute object (the ob-on a plane of the grid. Then there is a global transpose after
ject loads), and records other (non-migratable) patch workwhich the FFT is computed along the third dimension.
as “background load.” After the simulation runs for sev- PME computation in NAMD involves five computa-
eral time-steps (typically several seconds), the program sustjon phases and four communication phases. The message
pends the simulation to trigger the initial load balancing. driven NAMD/Charm++ framework can interleave these
NAMD retrieves the ObjeCt times and baCkgrOUnd load from phases with force Computation_ The phases involve com-
the framework, computes an improved load distribution, puting the PME charge grid in the patches. This is followed
and redistributes the migratable compute objects. by communication of this grid to the PME objects, which
The initial load balancer is aggressive, starting from the then perform a forward 3D-FFT and a backward 3D-IFFT
set of required proxies and assigning compute objects in or-yjth three computation phases and two all-to-all transpose
der from larger to smaller, avoiding creating new proxies gperations. Long-range forces are then sent back to the
unless necessary. To optimize performance on Blue Genepatches [14].
we place an initial set of required proxies on the neighbor- The plane decomposition restricts PME scaling to a few
ing processors of each patch processor. These neighboringyundred processors (108 processors of the APOA1 system
processors can compute the interaction of each patch withand 192 processors for the F1-ATPase benchmark). Fortu-
its neighboring patches. When two away computation is nately, the total PME computation is a small fraction of the
enabled, the initial proxy set also has proxies placed on theforce computation. Moreover, witiultiple time stepping
midpoints of a few neighboring two away patches. PME only has to be computed every few time-steps. We
The aggressive load balancer uses a greedy heuristiGyere still able to successfully scale NAMD with PME to 8k

which tires to optimize the following metrics: 1) compu- processors on Blue Genel/L, byapping PME objects close
tation load, the total amount of work allocated to each pro- g the patches with which they communicate.

cessor, 2) number of proxies, this determines the connectiv-
ity of the atom coordinate multicast, and 3) communication
hop-bytes.

Our greedyheuristic frist allocates the heavy computes
to processors. The compute is allocated to the lightest pro- Overlap of communication with computation is an es-
cessor withirk hops of the midpoint of the two patch pro- tablished technique to achieve strong scaling in applica-
cessors corresponding to this compute. If the compute ob-tions. However, on the Blue Gene/L machine, overlap of
ject overloads the above light processor more thaavean- computation and communication is hard to achieve because
load_cutoff of the average load, then the nearest acceptableof the absence of cache coherence between the two cores
processor is chosen. Preference is also given to processorgn a chip. Ideally, one of the cores could have been used
which already have proxies for either or both home patchesas a communication co-processor to achieve this overlap.
for that compute object. The co-processor mode [2] can achieve overlap for large

After this initial balancing step, only small refinements messages, by flushing the L1 caches of the main CPU and
are made, attempting to transfer single compute objects offthe co-processor during messaging. But, such cache-flushes
of overloaded processors without increasing communica-can hurt NAMD performance, resulting in no net gain.
tion. Two additional cycles of load balancing refines try However, we can take advantage of the fact that each
to reduce theverloadcutoff by moving work away from torus FIFO has 4 packet buffers. At full link bandwidth

3.2 Load-balancing

3.4 Overlap of Computation and Commu-
nication

N8 U O
(2 n LR e s L L L D b TR U R L

PPN 08— 0,
SRR O
PSRN - S R
(U RN A7/, A — 77, - - "

(a) No Overlap
(a) bad coarse grainsize

2) =) /7N W S—_ T —

A NY778 - O 7270 O, O 1
772 A 72770 {2777 I S -
e T 7772 R 7772/ R T R S R—ugy 7%
S 277 7277 O O N S

(b) Overlap of communication with computation

Figure 5. NAMD Timeline (b) improved finer grainsize

of 175 MB/s, it takes about 4096 processor cycles to fill Figure 6. Histogram of object computation
these buffers. A network poll of the six FIFOs only takes ~ with NAMD APoA1 on 4096 processors
about 200 processor cycles with the new messaging layer
developed by the authors. So we can interleave computation
while the packets travel on the network. Moreover, with
the complex communication pattern of NAMD, we can only
achieve a total bandwidth of about two links, making each
link less busy overall.

n NAMD. When PERIOD clock cycles have elapsed
CmiNetworkProgress() calls AdvanceCommunication()
which makes flushes the packets from the torus. The
performance gains from overlap of communication and
computation on 4096 processors is shown in Figures 5(a)

void CmiNetworkProgress() { and 5(b).
new_time=rts_get_timebase(); In the no-overlap case the application waits for packets
if(new_time<lastProgress+PERIOD){ to arrive, which results in the black regions in the time-
return; line (Figure 5(a)). When communication is overlapped
} with computation, the packets stream in while the proces-
lastProgress = new_time; sor computes, minimizing the black regions (Figure 5(b)).
AdvanceCommunications(); Observe that the average utilization of the processors goes
} up from abou6% to 74%.

/INAMD force compute loop
for (i=0;i<i_upper;++i){
CmiNetworkProgress(); . Grainsize is critical to NAMD scaling, as a course grain
;%r;sr;pi?én%gﬁgts&p—':p—o[']’ can restrict scaling and performance. The minimum step
time is at least the size of the largest object. For good load
balancing, mean computation of each object should be five
to ten times smaller than the step-time. Having a very fine

3.5 Grainsize Analysis

for (k=0; k<npairi; ++k){
/ICalculate forces

} grain on the other hand, will generate too many objects, re-
} sulting in higher object context switching and runtime over-
heads. So, we use a grain size which is typically a few times
To enable progress every few thousand cydlzsjNet- less than the target time-step, tunable at runtime.

workProgress()is called from the outer compute loop Figure 6 shows the histograms of the NAMD APoAl

benchmark objects with more than 0.5ms computation, messages use rendezvous protocol. However, there is a
from two 4096 processor runs with different grain sizes. rendezvous round-trip setup overhead. We designed a new
Observe that in Figure 6(a) there are quite a few large ob-message protocol callegttive-put to avoid the rendezvous
jects with more than 1ms of computation. However in Fig- overhead by putting messages into a persistent buffer. In
ure 6(b), there are very few such objects. Infact, the latter traditional one-sided communication put, the receiver has
grain size is responsible for the 4.3 ms timestep presentedo verify the completion of the put either by polling on a

in Section 4. flag or by a callback at sender side. Either of these incurs
an unnecessary overhead. We avoid this overhead by having
3.6 Communication Optimizations the put carry the message handler along, so that the handler

Blue Gene/L nod ed i 3-di . Ican process the message locally on the destination. After
ue Gene/l nodes are organized into 3-dimensiona using active-put in multicast operations, we noticed a per-

torus nenNork for pomt—tq—ppmt communication, with a formance improvement on large runs of several thousand
bandwidth of 175MB/s. It is important for NAMD to have processors

highly efficient gommunication opgrations tg take full ad- Topology optimizations: in both multicast and reduc-
var;ta?er?f t_he hlgh_netwrc:rk ba_mdNWA'\?\;l% For '?]Stancﬁ’ at tzetions, the root node sends or receives a large number of
en r? t edlnte(zjgratlon_g ase In I ,heac patc Sin Smessages. Especially in large runs on several thousand pro-
outthe up ated atomin o.rmatlon .to all the computes WNOS€,assors, a multicast typically involves sending out 64 to
compL_Jtatlon depends on it (Sge F'g%”e 1)._Correspond|ng|y,loo messages. A communication bottleneck occurs and it
there.tl)s a shubfseque;t reguclt(lon \;]V'th Wh'hChTtr?e COMPULES o hold up the node for unnecessarily long period of time.
contribute the force data back to the patch. These commu-pse, switching back and forth between computation and

nication operations could cause excessive amounts of over;(he network progress engine could result in undue overhead.

he?d both(;n t.hﬁ procgssorfand n the_ nerork. W‘? ha_ve EXWe addressed this issue by organizing the neighbors into a
perimented with a variety of communication optimizations, spanning tree so that the communication hot-spots are of-

.SUCh as improvedIFO mappingschemes and NEWMEeSSag- finaded. In addition, we designed a topology-based span-
ing protocols to solve these problems. We discuss some o ning tree for the 3-D torus network to minimize the total
the optimizations in this section. hop-byte counts

FIF? mapping s%hgmes:'eacﬁlféue fegeI/:II‘Frgd? hf':\s Congestion control: on Blue Gene/L, congestion con-
several outgoing and incoming .S[] 2 PFOPINNING 461 j5 sometimes required to ensure high efficiency. Blue
function maps an outgoing packet with de;tmatmn displace- Gone/L MPI enforces its congestion control with a message
ment.{dx@y,dz} onto one of th? 6 §end|ng FIFOs. Qur pacing mechanism which allows for only a window of si-
goal is to improve th_e overall Ut'l'z"’_‘t'on of Fhe F!FOS, W'th multaneously outstanding packets from any message. For
a *?e“er F.”:O mapping §cheme. Figure 7'is a'S|mpI|f|ed 2- example, assuming the window size is 16, when we have 32
D |I_Iustrat|on of our pinning schemes. Th_e Naive Scheme_:, messages of about 10KB each to send out, MPI will send
Wh_'Ch prefers X-FIFOs, ”?a'fes a dramatically ur_1equa| di- 16 packets from each of all 32 messages and then wait for
vision of the, space and is incapable F’f, producing a bfal'their acknowledgments. This works fine with MPI mes-
anced mapping. The ane Scheme divides the space 'n,t%ages, yet it would hurt the efficiency of NAMD. This is
6 equal portions and assigns each to a FIFO. However, th'soecause Charm++ usastive messagesvhere each mes-
scheme can still suffer from load imbalance in the neighbor- sage has some computation associated with it on the re-
hopdh[)nulrtllcagt mrl]\lAMD, wlhere It 'Z n(r)]t uncolmmon fordt_he ceiver. Thus, ensuring the prompt arrival and processing of
neighborhood to have an elongated shape along one dimeng, messages is more critical than packet-level congestion
sion, for gxample, when Fhe two-away SP"“‘”Q IS _enaple control. In Charm++, we devised a tunable parameter for
(See Seonn 3.1.1 and Figure 4). To mend this situation, ihe maximum number of outstanding send requests. Only
we ap.plled the Qhessboard Scheme Whlch ensures bala_‘”ceﬂackets from messages in the window will be sent out and
mapping even m_the_ presence of a dlspropo_rt|or_1al N€IGN"the window advances when a full message has been dis-
borhood. A destination coordinat@lz, dy, dz} is simply - yaiehed. This message level congestion control improves

mapped to FIFQ(dz + dy + dz)%G6. Finally, on top of eficiency as well as fairess of communication in NAMD.
the above static mapping schemes, a fully adaptive FIFO

pinning function, which picks an available FIFO dynami-

cally, is implemented and offers the biggest performance4 Performance Results

improvement. We call this schendgnamic fifo mapping. Before presenting the parallel performance of NAMD on
Messaging protocols: on the Blue Gene/L torus Net- a large number of processors, we first quantify the gains of

work, messages can have different routing protocols to suitmany of the optimizations presented in the previous section.

various communication patterns. For example, short mes-Table 1 shows the performance improvements as our tech-

sages from reductions use eager protocol, while long dataniques are implemented step by step. However, the perfor-

¥

Naive

Figure 7. FIFO Mapping Schemes

NAMD v2.5 v2.6 Blocking | Fine grained
40 25.2 24.3

Congestion control New LDB Chessboard
20.5 14.0 13.6

Dynamic Mapping| Fast memcpy| Non-blocking
13.5 13.3 11.9

Table 1. Improving Performance (ms) of the
ApoAl Cutoff Benchmark on 1024 proces-
sors

#Procs|| MPI Msglayer
Blocking Non-
Send Blocking
512 27.8 26.7 23.7
1024 || 17.3 14.4 13.8
2048 || 10.2 9.7 8.6
4096 7.3 6.8 6.2

Table 2. PME Performance (ms) with ApoAl
Benchmark

mance improvement of each technique may depend on the

order in which optimizations were used. Here, we present
an arbitrary order of the optimization techniques.

The performance improvement of NAMD version-2.6
over version-2.5 mainly comes from a serial speedup of
about40%, due to a higher degree of software pipelining
and the elimination aliasing problems in the inner compute
loops. In Table 1, the new topology aware load balancer has
the biggest parallel performance gains.

Table 2 presents a performance comparison of NAMD
using MPI and NAMD on top of a native message layer de-
veloped by the authors. Currently MPI only supports a static
FIFO mapping scheme for point-to-point messages. More-
over, non blocking communication in the MPI version of
NAMD has poor performance as it uses expensive &3t

Cone

Y

Chessboard

| #Procs|| Time/step(ms)| Speedup| GFLOPS|

4 2200 4 131
128 82 107 35
512 21.7 406 133
1024 11.9 739 242
2048 7.3 1205 394
4096 4.3 2047 695
8192 3.5 2514 871

Table 3. NAMD Cutoff Performance on Non-
blocking Msglayer with ApoAl Benchmark

| #Procs|| Time/step(ms)| Speedup| GFLOPS|

4 2611 4 1.23
128 97.2 107 33
512 23.7 441 135
1024 13.8 757 233
2048 8.6 1214 373
4096 6.2 1685 536
8192 5.2 2008 651

Table 4. NAMD PME Performance on Non-
blocking Msglayer with ApoAl Benchmark

| #Procs|| Time/step(ms)| Speedup| GFLOPS|

32 1120 32 7
128 284 126 29
512 73.9 485 113

1024 39.2 914 219
2048 21.8 1644 393
4096 11.8 3037 726
8192 7.1 5048 1210

Table 5. NAMD Cutoff Performance on Non-
blocking Msglayer with ATPase Benchmark

| #Procs|| Time/step(ms)] Speedup] GFLOPS|

32 1228 32 7
128 324 121 28 120 = p—
512 86.2 456 105 % Vil Node
1024 432 910 224 b N
2048 26.9 1461 360 e _
4096 15.1 2602 641 E
8192 9.8 4010 991 E &0 A
Table 6. NAMD PME Performance on Non- 5
blocking Msglayer with ATPase Benchmark N N
and MPLIprobe calls while calling progress. So the MPI 0 128 o1 1oms mm 008
version uses blocking communication. The table compares Procsssors
MPI, with the native blocking and non-blocking versions
respectively. On 4096 processors, the native non-blocking (a) ApoAl Benchmark
version does better than MPI by abdats.
Tables 3, 4 and 5, 6 show the time per step, speedup and
GFLOPS reached on scaling runs, for both the 92K atom = Co-Processor
ApoA1 benchmark and the 327K atom ATPase benchmark. 300 Vst tace
Compared with the previous results presented [14], the new AN
results show major improvement. For the ApoAl bench- _ ¥
mark, the time per step is further reduced to 3.5 ms at 871 E A
GFLOPS for cutoff and 5.2 ms at 651 GFLOPS with PME. E Ny
The larger simulation of the ATPase benchmark has better & ' A
scaling to 8192 processors. It achieve® TFLOPS with 100
cutoff and0.99 TF with PME. The limited parallelism of =
the plane decomposition based PME appears to have be- = - L
come an Amdahl bottleneck. 0 B —
128 512 1024 2048 4008 o182

So far we have only presented NAMD performance in
co-processor mode. When both cores on the BGL chip
are used for computation, its termedwatual node mode (b) ATPase Benchmark
However, now both cores have to share memory and net-
work bandwidths. Figures 8(a) and 8(b) compare NAMD
performance in the two modes for ApoAl and ATPase re- Figure 8. NAMD Performance, Co-Processor
spectively. Observe that virtual node mode only has a Mode vs. Virtual Node mode
slightly lower performance than co-processor mode. In fact,
most of the optimizations presented in Section 3 are appli-|load-balancing and overlap of computation and communi-
cable to both co-processor mode and virtual node mode. cation on a variety of communication architectures.

Our performance results for the APoA1 system are com-
5 Related Work parable to Blue Matter (in some cases even better) till 8k
nodes. We are still to experiment with 16k nodes. In this

Blue Matter [6] is another application that has achieved paper, we also present the performance scaling on a large
strong scaling and good parallel performance with classi- problem like ATPase, which was possible in virtual node
cal molecular dynamics on Blue Gene/L. This application mode as NAMD is quite memory efficient.
is designed specifically for the Blue Gene/L machine. It
also uses a spatial decomposition scheme like NAMD and
makes very good use of hardware collective support from
the BGL network architecture. We presented the several performance optimization

We have kept NAMD general and use Blue Gene spe- schemes that were used to achieve good parallel perfor-
cific optimizations through abstractions in Charm++ and the mance for NAMD on Blue Gene/L. We scaled NAMD with
Blue Gene message layer. We also use different parallelizaPME on 8192 processors for both APoA1 and ATPase. The
tion techniques and algorithms from Blue Matter. NAMD floating point performance of ATPase on 8192 processors
derives its scaling and performance mainly from efficient is 1.2TF for cutoff and 0.99TF for PME, with speedups of

Processars

Summary and Future Work

5048 and 4090 respectively. This impressive performance [4] S. Chatterjee, L. R. Bachega, P. Bergner, K. A. Dockser,
can be attributed to the novel mechanism to achieve overlap J. A. Gunnels, M. Gupta, F. G. Gustavson, C. A. Lapkowski,
of communication with computation, along with topology G. K. Liu, M. Mendell, R. Nair, C. D. Wait, T. J. C. Ward,
aware load balancing; while communication performance and P. Wu. Design and exploitation of a high-performance
was optimized by the persistent active-put protocol, mes- g'e'\geDafr'gﬁgz%'%ch;t‘)”'rtnfgas(';g)936‘7“7‘3/'55'\"2%%“;”a' of
sage bas_ed congestion control and dynamic fifo mapping. [5] T. Darden, D. York, pand L Pedersen. . Particle mesh
We Stl" havg several challenges ahead of us. The cur- Ewald. An Nlog(N) method for Ewald sumsin large sys-
rent floating point performance is less than expected. The tems. 98:10089-10092, 1993.
inner compute loops do not utilize the double hummer. The [6] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. C. Ward,
inner loops compute on data structures that are of size 24 M. Giampapa, Y. Zhestkov, M. C. Pitman, F. Suits, A. Gross-
bytes, and hence hard to program with the double hummer field, J. Pitera, W. Swope, R. Zhou, R. S. Germain, and
which requires 16 byte alignment. Moreover, the PME and S. Feller. Blue Matter: Strong Scaling of Molecular Dy-
Energy compute loops have register spills due to the limited namics on Blue Gene/LIBM Research Technical Report
number of registers in the processor architecture. We need _ RC36882005. , _
to devise techniques to address the above mentioned serial [7] A. Gara, M. A. _Blumnch, D. Chen, G.L-T. Ch'.u’ P. Co-
performance issues. teus, M._ E. Giampapa, R. A. Har_lng, P. Heidelberger,
. . . . D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,
We are investigating a pencil based PME sch_eme, which B. D. Steinmacher-Burow, T. Takken. and P. Vranas.
has three transposes and much more parallelism than the Gyerview of the Blue Gene/L System ArchitecturéBM
current plane based scheme. The third transpose however, journal of Research and Developmer9(2/3):195-212,
may make the pencil based scheme unsuitable for smaller 2005.
number of processors. But on a large number of processors [8] L. V. Kalé. The virtualization model of parallel program-
its gains will be evident. ming : Runtime optimizations and the state of artLIxCSI
We are also in the process of developing asynchronous 2002 Albuguerque, October 2002. _
non-blocking interfaces for the hardware collectives on [9] L. V-Kale, M. Bhandarkar, and R. Brunner. Run-time Sup-
Blue Gene/L. The full potential of this machine is not uti- port for Adaptive Load Balancing. In J. Rolim, edittec-

lized without the use of its hardware collective support. For ture Notes in Computer Science, Proceedings of 4th Work-
pport. shop on Runtime Systems for Parallel Programming (RT-

example, we intend to optimize the coordinate multicast in SPP) Cancun - Mexicovolume 1800, pages 11521159,
NAMD through row and column broadcasts. March 2000.
[10] L. V. Kale, M. Bhandarkar, N. Jagathesan, S. Krishnan, and
7 Acknowledgement J. Yelon. Converse: An Interoperable Framework for Paral-
lel Programming. IrProceedings of the 10th International
The authors would like to acknowledge the efforts by the Parallel Processing Symposiypages 212-217, April 1996.
Parallel Programming Laboratory and the Theoretical and [11] L. V. Kalé, S. Kumar, G. Zheng, and C. W. Lee. Scaling
Computational Biophysics Group at University of lllinois, molecular dynamics to 3000 processors with projections: A
and especially help from Gengbin Zheng and Jim Phillips. performance analysis case study.Terascale Performance
We are grateful for the funding provided by the National Analysis Workshop, International Conference on Computa-
Institute of Health (NIH PHS 5 P41 RR05969-04). tional Science(ICCSMelbourne, Australia, June 2003.

[12] D. J. Kerbyson, F. Petrini, and S. Pakin. The Case of the
Missing Supercomputer Performance: Achieving Optimal

References Perform ance on the 8,192 Processors of ASCI Q, November
2003.

[1] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, [13] J. E. Moreira, G. Almasi, C. Archer, R. Bellofatto,
A. Gara, M. E. Giampapa, P. Heidelberger, S. Singh, B. D. P. Bergner, J. R. Brunheroto, M. Brutman, J. G. Cas-
Steinmacher-Burow, T. Takken, M. Tsao, and P. Vranas. tanos, P. G. Crumley, M. Gupta, T. Inglett, D. Lieber,
Blue Gene/L torus interconnection networkBM Journal D. Limpert, P. McCarthy, M. Megerian, M. Mendell,
of Research and Developme#®(2/3):265-276, 2005. M. Mundy, D. Reed, R. K. Sahoo, A. Sanomiya, R. Shok,

[2] G. Almasi, C. Archer, J. G. Castanos, J. A. Gunnels, C. C. B. Smith, and G. G. Stewart. Blue Gene/L programming
Erway, P. Heidelberger, X. Martorell, J. E. Moreira, K. Pin- and operating environmentBM Journal of Research and
now, J. Ratterman, B. D. Steinmacher-Burow, W. Gropp, and Development49(2/3):367-376, 2005.

B. Toonen. Design and implementation of message-passing [14] J. C. Phillips, G. Zheng, S. Kumar, and L. V. KalNAMD:
services for the Blue Gene/L supercomputd8M Journal Biomolecular simulation on thousands of processors. In
of Research and Developme#A®(2/3):393-406, 2005. Proceedings of SC 200Baltimore, MD, September 2002.

[3] R. K. Brunner and L. V. Ka&. Adapting to load on work- [15] S. J. Plimpton and B. A. Hendrickson. A new parallel
station clusters. IThe Seventh Symposium on the Frontiers method for molecular dynamics simulation of macromolec-
of Massively Parallel Computatiorpages 106-112. IEEE ular systems’J. Comp. Chem? 17(3):326—337, 1996.

Computer Society Press, February 1999.

