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ABSTRACT

Parallel computers today are designed with larger num-
ber of processors than ever before, connected by large
scale Interconnection Networks (INs). Communication
is the key to achieving high performance on such ma-
chines, making the study of Interconnection Networks
more important. Parallel simulations of Interconnec-
tion Networks present a unique problem characterized
by fine-grained computation and a strong dependence
among events. The absence of large lookaheads makes
it unsuitable to use a conservative simulation. Using an
optimistic Parallel Discrete Event Simulation (PDES)
allows us to extract reasonable parallelism from this
simulation. In this paper we present BigNetSim, an
Interconnection Network simulator. We analyze its per-
formance and present techniques related to enhancing
performance and scaling it to a large number of pro-
cessors on different artificial traffic patterns and real
application logs. In spite of the overheads of a paral-
lel optimistic simulation, we have achieved a breakeven
point with sequential simulation at 4 processors and
demonstrate perfect scaling to 128 processors. 1

1 Introduction

New parallel computers with hundreds of thousands of
processors, capable of achieving hundreds of teraflops
of peak speed have been built recently. For example,
BlueGene (BG/L) developed by IBM, when completed
will have 128K processors and is expected to achieve
360 teraflops at peak speed. Development of new appli-
cations and porting existing applications to such large
machines is a challenging task. Few applications today
efficiently scale to thousands of processors. Increasing

1This work was supported in part by the National Science
Foundation (NGS 0103645), the National Institutes of Health
(PHS 5 P41 RR05969-04), the Defense Advanced Research
Project Agency (NBCH30390004) and the Department of Energy
(B341494).

machine size by an order of magnitude presents greater
challenges.

Recent history has shown years of lag time between
the appearance of new parallel hardware and the deploy-
ment of scientific applications which can efficiently use
such hardware. Performance prediction of applications
via simulation can provide insights to help optimize ap-
plications so that they are ready to be run on actual
machines as soon as they become available. Even for
existing large parallel machines, time for tuning appli-
cations on large machines as well as the queueing time
before allocation of nodes can be very long. A simulator
presents a more available alternative so that minimal
supercomputing time is consumed by debugging and
performance optimization. Furthermore, if we can fore-
cast the behavior of target applications on a particular
hypothetical machine design, we can use the simulation
to inform the development process of future machines
built from that design.

The BigSim (Zheng et al. 2005) project aims at de-
veloping techniques to help develop efficient scalable ap-
plications on very large parallel machines via accurate
parallel simulation. Sequential simulation is inadequate
for extreme scale applications as the data involved is
too large to fit in the memory of a single machine.
An important component of the overall simulation is
BigNetSim, a parallel simulator for large-scale inter-
connection networks. It simulates packet level commu-
nication on detailed contention-based network models
for large parallel computers. Parallel simulation of net-
works with standard traffic patterns is a difficult task.
It becomes even more challenging when the network
is loaded with communication transactions generated
by real applications. The strong dependencies between
events can result in limited available work in segments
of the network.

In BigNetSim, simulated application computation
is performed by running the application on the BigSim
emulator. The application’s event dependency and com-
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munication activities are recorded and stored in log files.
BigNetSim reads these log files and models the com-
munication load on the interconnection network model.
This results in fine-grained simulation since the com-
putational overhead of modeling packet transmission is
negligible. The nature of the simulation makes event
safety extremely difficult to predictwith sufficiently large
lookahead to utilize conservative simulation strategies
efficiently. Thus, it is useful to use optimistic synchro-
nization for such a network simulation. We use Pose
(Wilmarth and Kalé 2004) as the simulation environ-
ment to develop BigNetSim.

The paper is organized as follows. Related work in
parallel network simulation is reviewed in Section 2. Sec-
tion 4 discusses the modelling of the network. Section
5 presents some performance optimization techniques
such as more fine-grained decomposition, increased vir-
tualization, immediate GVT calculation and breaking
application depedencies to avoid transient load imbal-
ance. The performance results with the standard traffic
patterns and with application work loads are discussed
in Section 6. This section also illustrates the impact of
the performance enhancements in the network simula-
tor. We present our conclusions in Section 7 and discuss
our plans for augmenting BigNetSim in near future.

2 Related Work

Simulation has proved to be a useful technique for net-
work analysis over the years. Network simulator(NS)
(Information Sciences Institute ) is a widely used sim-
ulator which uses packet-level simulation and supports
simulation of TCP, routing, and multicast protocols
over general-purpose wired networks like the Internet
and wireless networks. However, sequential simulation
does not scale for large-scale networks due to increas-
ing memory requirements and simulation time. Paral-
lel/Distributed NS (COMPASS group ) includes exten-
sions and enhancements to the original NS to allow it to
run in parallel and benefit from the advantages of parallel
simulation. GTSNetS (Fujimoto et al. 2003), a parallel
packet-level simulation of a general-purpose network like
the Internet, achieves millions of packet transmissions
per second. GloMoSim (Zeng, Bagrodia, and Gerla ) is
a scalable simulation framework for wireless networks
and is based on the PARSEC (Bagrodia et al. 1998)
simulation environment which adopts the process inter-
action approach to PDES.

High performance interconnection networks present
certain unique issues. Achieving such performance re-
quires highly connected topologies, carefully chosen
routing algorithms, and particular buffering and flow
control decisions. Diverse traffic patterns have been sim-
ulated to study and analyze different network architec-

tures in SMART (Petrini and Vanneschi 1997). Recent
simulation efforts involve parallel simulation for better
scalability, a conservative parallel simulation of the IBM
SP2 network (Benveniste and Heidelberger 1995).

Á la carte (Berkbigler et al. 2003) is a Los Alamos
computer architecture toolkit for extreme-scale ar-
chitecture simulation which is based on the DaSSF
(Liu and Nicol 2002) framework. Another simulation
(Nicol et al. 2003) of large scale communication net-
works based on DaSSF achieves faster than real-time
simulation. Our work in interconnection network sim-
ulation differs in the fact that we use optimistic strate-
gies and virtualization for simulation. We use the Pose
(Wilmarth and Kalé 2004) simulation environment, an
optimistically-synchronized PDES environment based
on the Time Warp (Das et al. 1994) mechanism that
uses a variety of adaptive (Das 1996) synchronization
protocols.

3 Simulation Environment

Pose is a general-purpose optimistically-synchronized
PDES environment designed for simulations with fine
computation granularity and a low degree of parallelism.
Pose (Wilmarth and Kalé 2004) is implemented in
Charm++ (Kalé and Krishnan 1993), a C++-based
parallel programming system that supports virtualiza-
tion. Virtualization involves the decomposition of a
problem into N asynchronous chares or objects that
execute on P processors (Kalé 2004). For best perfor-
mance, N should be much greater than P . An advantage
of this approach is that no object can hold a processor
idle while it is waiting for a message. Since N>>P ,
there are other chares on a processor that can execute
in the interim. Thus, using virtualization maximizes
the degree of parallelism. This is discussed in further
detail in Wilmarth et al. (2005).

Posers represent sequential entities in the simula-
tion model, behaving as tiny LPs which encapsulate
very small portions of state as illustrated in Figure 1.
A poser encapsulates an object virtual time (OVT),
event methods which receive timestamped messages, a
state, a local event queue and a synchronization strategy
instance.

Pose requires the programmer to decompose the
simulation model into the smallest posers possible to
achieve the best performance. The benefits of this de-
composition are many. The local event queue limits
the scope of simulation overhead to the poser itself. A
finer decomposition enables less frequent checkpointing
on smaller states, reduces the likelihood and effects of
rollbacks, reduces the complexity of object migrations,
and makes it possible to use adaptive synchronization
strategies that are fine-tuned to an LP’s behavior. The
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Figure 1: Components of a poser

drawbacks of a high degree of virtualization are the
costs of management of per-object information and the
cost of more frequent context-switching between en-
tities for each event. These trade-offs are studied in
detail in Wilmarth et al. (2005) where we found that
the benefits of higher degrees of virtualization strongly
outweighed these costs, with finer decompositions con-
sistently outperforming coarser ones as problem size
increases. Higher degrees of virtualization also enable
programs to scale to more processors than do lower
degrees of virtualization.

Pose uses an adaptive synchronization strategy to
control how events are executed on posers. The strategy
adapts to a poser’s behavior and ranges from cautiously
to aggressively optimistic. Traditionally, optimistic ap-
proaches sort arriving events and execute the earliest.
In our approach, a speculative window governs how
far into the virtual time future a poser may proceed.
When a poser has control, all the events within its win-
dow are executed as a multi-event. Multi-events reduce
scheduling and context switching overhead and benefit
from a warmed cache, compensating for some of the
drawbacks like the startup time taken to construct the
additional objects on the additional processors and a
small additional overhead for object management asso-
ciated with the high degree of virtualization. Adaptive
synchronization and multi-events are discussed in detail
in Wilmarth (2005).

Pose’s current strategy, Adept, is a general-purpose
strategy flexible enough to apply to a variety of simu-
lations. Adept adapts a poser’s speculation to its past,
current and likely future behavior. It outperforms tra-
ditional optimistic strategies as described in detail in
Wilmarth et al. (2005).

Pose makes use of a fully asynchronous GVT al-
gorithm invoked in a distributed fashion as processors
run out of sufficiently early events to execute and then
transmit processor-level data via a reduction to a central
processor which computes the latest GVT. Should idle
processors receive additional work, they may execute it
in the interim while waiting for the GVT to complete.

4 Simulation Model

BigNetSim is an effort to simulate large current
and future computer systems to study the be-
havior of applications developed for those systems.
It simulates with reasonable detail an integrated
model for computation (processors) and communica-
tion (interconnection networks). Our earlier work
on computation simulation for performance predic-
tion, BigSim (Zheng et al. 2004, Zheng et al. 2005), as-
sumed fixed message latencies. The BigSim emula-
tor (Saboo et al. 2001) was the first phase of our per-
formance prediction system. Charm++ and AMPI
(Huang, Lawlor, and Kalé 2003) applications can be
compiled to run on this emulator as though it were the
target architecture. The emulator captures a collection
of tasks (blocks of computation and communication)
on a number of processors (objects) along with their
dependencies and writes these tasks to log files. These
application tasks are translated into discrete events.
Each event has a timestamp and originating and desti-
nation objects. The logs are read by BigNetSim which
simulates the execution of the original tasks by elapsing
time, satisfying dependencies, and spawning additional
tasks by passing messages through a detailed network
contention model. This generates corrected times for
each event which can be used to analyze its performance
on the target machine.

In this paper, we focus on the simulation of intercon-
nection networks in BigNetSim. The logical components
of our abstract interconnection network model are im-
plemented with posers. The hardware modelling of each
node has two posers:

• A computation unit which manages the execu-
tion of computational tasks on the node

• A communication unit which manages incoming
and outgoing messages of the node

Each node has an additional virtual unit, a traffic gen-
erator, which generates artificial message traffic on the
Interconnection Network. This allows us to study the
interconnection network under a variety of conditions
without using application task logs. The traffic genera-
tor can send point-to-point messages, reductions, multi-
casts, broadcasts and other collective traffic. It supports
k-shift, ring, bit-transpose, bit-reversal, bit-complement
and uniform random traffic. These are based on com-
mon communication patterns found in real applications.
The frequency of message generation is determined by
a uniform or Poisson distribution.

Each computation node has a network interface card
(NIC) that collectsmessages from the computation node,
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Figure 2: BigNetSim conceptual model

packetizes and puts them out onto the network. The
NIC is modeled with two posers:

• A send NIC which packetizes and sends mes-
sages as packets. It models DMA and HCA
delays. The delays are categorized for small
and large messages and added to the message
send times. It responds to excessive load with
an injection threshold that models deteriorating
caching effects as it gets overloaded.

• A receive NIC which receives packets, combines
them into messages and passes the messages to
the node. Similar delay modeling is done to sim-
ulate precise NIC behaviour. These parameters
can be set at runtime, allowing us to simulate
different types of NICs.

Channels in the Interconnection Network, modeled as
posers, are duplex channels. They model channel delays.
A channel connects a switch and a NIC or two switches.
The Interconnection Network has switches connected as
specified by the topology. Switches can be distinguished
as:

• Input Buffered (IB): A packet in a switch is
stored at the input port until its next route is
decided and leaves the switch if it finds available
space on the next switch in the route.

• Output Buffered (OB): A packet in a switch
decides beforehand on the next route to take
and is buffered at the output port until space
is available on the next switch along the route.

IB switches are mostly popular in current architec-
tures, but research (Kumar, Kale, and Stunkel 2005)
shows the potential that OB switches offer. We believe
that OB can be the choice for future switch designs.
Switches are modeled in much detail. Ports, buffers
and virtual channels at ports to avoid head-of-the-line
blocking are modeled. Hardware collectives are imple-
mented on the switch to enable broadcasts, multicasts
and other collective operations efficiently. These are con-
figurable and can be used if the system being simulated
supports them. We also support configurable strate-
gies for arbitration, input virtual channel selection and
output virtual channel selection. The configurability
of the switch provides a flexible design, satisfying the
requirements of a large number of networks.

At a higher level the entire design is extremely
modular. New topologies and routing algorithms can
be easily plugged into the system. We use virtual cut-
throughpacket switchingwith a credit-basedflowcontrol
to keep track of packets in the network. The system
supports virtual topologies for virtual channel routing
which is essential for deadlock-free routing algorithms
on most topologies.

Topologies implemented include N-dimensional
meshes and Tori, N-dimensional Hypercubes and K-
ary N-trees and Hybrid topologies. All topologies have
physical and virtual channel routing algorithms. Most
routing algorithms are adaptive. To support adaptivity
based on the network load, we developed a contention
model and a load model for the Interconnection Net-
work. Each port of a switch has information which is
dynamically updated and fed to the routing engine to
make informed decisions to minimize contention. The
load model maintains load information on each of the
neighbors while the contention model maintains infor-
mation about the number of packets contending for a
particular output port of a switch.

5 Performance Optimization and Scaling

This section discusses performance optimization tech-
niques to enhance performance and scalability of the
simulation.

Some important factors related to performance are:

• Number of GVT synchronizations: This metric
gives an estimate of how much parallelism the
simulation has within the threshold controlled
by the simulation. A large number of synchro-
nizations implies there is very little speculative
work within allowable limits.

• Phase time: This is the real time elapsed be-
tween two GVT synchronizations. Phase time
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is directly proportional to the amount of par-
allelism in the simulation.

• Rollback fraction: The proportion of total time
taken for undoing speculative execution which
could not be committed due to some dependence
violation.

• Communication fraction: The fraction of the
total time spent communicating between pro-
cessors. Since this application involves a large
amount of communication with very small mes-
sage sizes, communication becomes an impor-
tant factor to consider.

• Speedup: The speedup of the simulation com-
pared to sequential execution of the same prob-
lem, if it fits in the memory of a single node. Se-
quential simulation is more efficient as it avoids
synchronization. Events are simply executed in
non-decreasing timestamp order.

One throttling mechanism used by Pose’s adaptive
synchronization strategy is the speculative window.
When rollbacks occur, the window size is reduced to the
average rollback offset from the current GVT. In the ab-
sence of rollbacks, this window is allowed to expand. In
almost all runs the rollback fraction is under control and
speculation remains below 20%. Problems arise with
ill-designed simulations which exhibit a high rollback
fraction in spite of a tightly constrained speculative win-
dow. This motivates the need for a finely decomposed
simulation model to reduce the likelihood of rollbacks
and maximize computation and communication overlap.

Figure 3: Usage Profile before optimization

Initial analysis revealed that the phase time was
very small, at 5ms, and that it decreased with larger
problem size. Real speedup was poor, with a breakeven
point (the number of parallel processors needed to
equal the performance of a sequential execution) at
close to twelve (Wilmarth et al. 2005). Increasing the

number of processors worsened the problem as each
synchronization grew more expensive. Idle time on each
processor increased as there was a greater probability
of a small load imbalance on any one of the processors
causing all processors to wait for the last processor to
finish its work. Thus, the simulation’s ability to scale
was also limited.

Figure 4: Overview before optimization

Figures 3, 4, 5 and 6 are projections
(Kale et al. 2005) generated graphs for a 100ms time
interval for a 16 processor simulation of a 2048 node
hypercube network. The former two graphs cater to
the analysis of the simulation before the optimizations,
while the latter two depict the improvements to the
simulation that we finally achieved.

Figure 3 presents a plot of processor utilization
against the processors. The first bar shows the average
utilization. Each entry method (function call) is repre-
sented by a different color on the plot, with the pink
and red colors representing the simulation environment
book-keeping tasks, while the white region represents
idle time on a processor. The other colors are the entry
methods which do the real work. It should be noted that
not all the work here is forward execution, a significant
part of it is work that is later cancelled.

Figure 4 shows an overview of the actual execution.
Each horizontal bar represents a processor. The green
color represents the work done by POSE while the yellow
represents actual simulation methods. The black area
represents idle time on a processor. Each phase is clearly
visible with a reduction followed by broadcasting the
new GVT across all processors at the end of every phase.

Frequent synchronizationswere caused by the switch
poser, which was large and complex with many locally
parallel events. Tracing the number of events on each ob-
ject revealed that the switch handled many more events
than any other poser. This caused it to rollback more
often, rarely allowing the GVT to advance. It also had
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the largest state-size, making each checkpoint expen-
sive. The solution was to decompose the switch into
more fine-grained posers. Each poser representing
a parallel entity in the switch.

Ports are logical parallel entities in a switch. Each
port can be modelled as a separate poser that maintains
its own state and is connected to channels or NICs. The
refactoring of the switch into ports was meticulously
done, so as to avoid adding new events to the simu-
lation. It was essential to keep the number of events
per packet hop low, so that the refactoring does not
degrade the speed of the interconnection network sim-
ulation. Currently, we have a refactored version for an
Output Buffered (OB) switch. An Input Buffered (IB)
switch shares much more information between ports at
each arbitration, making it difficult to decompose. We
hope to find efficient ways to refactor the IB switch
without stripping it of functionality.

Our results showed that thephase timehad increased
and the number of GVT iterations had decreased. The
rollback fraction remained within tolerable limits even
for a large speculative window, On average the simu-
lation time was reduced by half, however, good scaling
eluded us. With larger problem sizes on a large number
of processors, the CPU utilization was low. The problem
manifested as fine load imbalances in the phases between
each GVT calculation. The Pose GVT algorithm was
fully asynchronous (i.e. GVT calculation proceeds con-
currently with forward execution of events), but relied
on idling processors for initiation of the GVT reduction
and the most loaded processor for the completion of a
phase. When a processor ran out of work, it would start
a GVT update, but other processors were not required
to send their updated information until they too ran
out of work to do. Once all processors supplied this in-
formation, the GVT reduction could reach completion.
Thus, subtle variations in available work caused idle
time for some processors during a phase. The solution
was expedited GVT calculation.

The first idle processor triggers all processors to
provide updated information immediately, after which
they could continue with forward execution of available
work. This reduced the transient load imbalance but
increased the number of GVT calculations. This is
evident if we compare the figure 4 with figure 5. The
former shows a green line at the end of each phase for
each processor, while the latter shows a synchronized
thin green line across all processors at the same time.
This represents a new calculation of GVT so that the
least loaded processor does not have to wait for long
before the phase ends. This optimization improved
the performance of larger sized problems on a large
numbers of processors by another 50% where these
subtle load imbalances between processors within

phases were more likely to occur.

Figure 5: Overview after optimization

There still remained a wide load imbalance. Load
seemed to be shifting from one processor to another in
different phases following a fixed pattern based on a
particular traffic pattern on a particular network. This
hinted at the existence of application specific dependen-
cies in workload on the posers. We had been partitioning
the input problem based on the communication graph
of the application to minimize communication. This
seemed logical as the application is largely dominated
by communication. However, this caused posers that
communicate more often to be placed on the same pro-
cessor, causing a strong dependence relation. Work from
one processor was passed to another in a fixed pattern
in spite of randomness in the input. We used various
initial placements of objects to try to break the de-
pendencies. Partial random, partially METIS-based
(Karypis and Kumar 1996), and fully random place-
ment were used, while maintaining computation load
balance.

Fully random initial placement was substantially
better than all other placements. This could be
attributed to it being able to break all control
dependences in the problem more effectively and
use virtualization to the maximum. The improvement
provided was substantial. This solution, in spite
of being counter-intuitive, as it inherently increases
communication, minimizes the overall runtime. We
intend to perform further studies to find a better
initial placement of objects, if possible, as this would
be important to reduce communication, which is the
bottleneck for large problem sizes.
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Figure 6: Usage Profile after optimization

The final version with all the above techniques in-
corporated in the simulation performed nearly 3 times
better thanwhatwe startedwith (Wilmarth et al. 2005)
and exhibits very good scaling to large problem sizes
and substantially large number of processors. Figure 6
shows that the processor utilization is now much higher
than previously, with little idle time on each processor.
In addition, the percentage of rollbacks decreased as
the large switch poser responsible for most rollbacks
was taken out. This results in a larger proportion of
forward execution in the simulation.

6 Results

This section presents performance results for BigNetSim
on artificial and application generated traffic loads.

6.1 Standard Traffic Patterns

Figure 7: BigNetSim events/sec with TrafficGen

A uniform random traffic pattern using a Poisson
traffic generation frequency is used to generate packets
in the network. This pattern was selected because it
would closely resemble the behavior of an arbitrary col-
lection of applications running on a supercomputer. The

random selection of destinations result in a repeatable
but random asymmetric load on the network. Network
sizes range from 256 to 8192 nodes. Each run has each
node in the simulated network generating 1000 packets.
All runs were made on Turing2.

Figure 8: BigNetSim time with TrafficGen

We present some runs on Turing for the N-
dimensional Hypercube mentioned earlier in this sec-
tion. We plot events per second, time of simulation
and real speedup as a function of the number of pro-
cessors for input network sizes from 256 nodes to 8192
nodes. Figure 7 shows that for various problem sizes
the number of events/sec it can simulate is nearly con-
stant for a fixed number of processors. The simulation
scales well as the number of processors increase. For
smaller problem sizes, the performance dips down on
large number of processors because there is not enough
work per processor to maintain a reasonable overlap of
communication and computation. Very large problem
sizes on small numbers of processors run out of virtual
memory and physical memory, leading to poor perfor-
mance. Points in the graphs for large problem sizes on
small number of processors are missing for this reason.

Figure 8 reiterates the same facts that Figure 7
shows. The simulation demonstrates good self scaling.
The execution time for most problem sizes decreases
linearly with increasing number of processors. The same
explanation as above explains the points which do not
follow this pattern.

Figure 9 is a plot of speedup over sequential simu-
lation. The breakeven point is approximately 4, when
parallel performance executes faster than sequential sim-
ulation and the scaling seems to be near perfect as the
number of processors increases.

Table 1 gives an estimate of the number of packet
hops in the simulated networks. The average ratio of
events to packet hops varies from 4.5 for small networks
to closer to 4 events per packet hop for larger networks

2Turing is a cluster of 640 dual 2GHz G5 processors 4 GB
RAM Apple Xserves connected by Myrinet.
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Figure 9: BigNetSim speedup with TrafficGen

simulated above. It also presents the number of posers
for each network size.

Table 1: Interconnection Network simulation param-
eters

Network size
256 512 1024 2048 4096 8192

Packet Hops 1.2 2.82 6.15 13.3 28.7 61.5
(in millions)

Posers 5.1 11.3 24.6 53.3 115 246
(in thousands)

We analyze the communication requirements of the
parallel simulation next. For the 8192 node simulation
on 128 processors, the problem fits in memory comfort-
ably but communication reaches close to 50MB/s per
processor. Most of these are small messages, with mes-
sage sizes between 250 and 300 bytes. Communication
performance is poor for most interconnection networks
for frequent small messages. The Myrinet communica-
tion layer handles this huge volume of communication,
but for a 16384 node network, the communication layer
starts dropping and resending packets at an alarming
rate, freezing the network cards, causing the simulation
to slow down considerably and in most cases not ending
within the specified time. Thus, tuning communication
strategies to handle small message communication on
this scale is our next challenge.

6.2 Application Generated Traffic

Next we evaluate the communication requirements of
real applications using BigNetSim. One such applica-
tion is the simulation of biomolecules using molecular
dynamics. Molecular dynamics simulations comprise
a substantial fraction of current supercomputing time,
and therefore represent a highly typical workload for

a high performance interconnection network. NAMD
(Phillips, Zheng, Kumar, and Kalé 2002), a state of the
art parallel molecular dynamics application, was chosen
for its unprecedented scalability and widespread usage
in the molecular dynamics community.

TodemonstrateBigNetSimperformance at amodest
scale, representing a more typical application use than
the extreme scale example in Wilmarth et al. (2005),
we simulated a small 64 node run for 1000 timesteps
of a single GlpF aquaporin channel (4210 atoms) on
32 real nodes of Turing. BigNetSim was then run us-
ing those application trace files to simulate runs with
a hypercube interconnection network with contention
modelling on and off. The running time prediction
accuracy of this simulator has been presented earlier
in Wilmarth et al. (2005). Here we will evaluate the
performance of the simulator.

Table 2: Namd simulation Performance Scaling

Number of processors
Seq 1 2 4 8 16 32

with IN 35.8 135 69.9 33.4 19.9 15 22

w/o IN 12.2 23.2 16.7 8.48 5.97 5 6.1

Table 2 presents a scaling set of runs for the NAMD
GlpF simulation. It shows simulation execution time for
BigNetSim with NAMD from 1 to 32 processors. The
current simulation model for application simulations is
log file based. Log file based post mortem simulation
presents additional constraints as the log size becomes
large. File system and memory constraints can dominate
overall simulation performance.

The above experiment is on a small log size
(megabytes per simulated processor) which easily fits in
the memory of each processor. With file performance
thereby factored out, we achieve good performance scal-
ing as well as a breakeven with sequential simulation at
4 processors, which reiterates our earlier results. This
demonstrates the ability of BigNetSim to perform with
sufficient accuracy and good performance for real ap-
plications as well as simulated ones. But as the logs
are small, the problem size we are trying to simulate is
also small, not allowing the simulation to have enough
parallelism to scale to a large number of processors,
as there is not enough work. Some optimizations, like
replicating data on all the nodes performing the sim-
ulation, improve the simulation performance for small
log sizes, however, these simple optimizations are not
scalable to large log sizes. To scale this, we need to get
rid of log-based simulations and integrate BigSim and
the Interconnection Network Simulator more tightly, so
that they interact at runtime. There are a number
of issues with this integration which we are analyzing
carefully.
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7 Conclusions and Future Research

Simulation of detailed contention-based interconnection
network models for predicting parallel performance is
still quite challenging. This problem is characterized
by the fine granularity of computation and abundant
amount of communication, as the entire state is largely
shared across a number of processing units. Further-
more, traces of iterative applications frequently evince a
low degree of parallelism when only their network load
is being modeled. Despite these challenges, we have
had significant break-throughs using our performance
optimization techniques to achieve a breakeven with se-
quential simulation at four processors and very good
scaling until 128 processors.

Our optimistic simulation environment, POSE, in-
troduces a new object model based on virtualization.
Judicious use of the advantages this simulation environ-
ment presents fosters the development of applications,
which demonstrate extremely good scaling and a very
good overall performance. We have successfully demon-
strated the use of optimizations, such as fine-grained
decomposition, greater virtualization, and immediate
GVT calculation to improve performance and scala-
bility. BigNetSim has achieved 2.5 million events/sec
for a 245,000 modelled entities (posers) on 128 pro-
cessors. This translates to approximately 2000 posers,
contributing an average of 20,000 events/sec per pro-
cessor simulating a total of approximately 0.625 million
packet hops/sec.

A challenge that remains to be solved is to optimize
the handling of small messages. Achieving better per-
formance for small messages in the Charm++ runtime
system is critical for improving the overall performance
of BigNetSim. We expect to optimize overall commu-
nication through adaptive message combining, smaller
message envelopes, and performance optimizations in
the Charm++ messaging layer. Some improvements
are possible with POSE reduction handling to distribute
messaging load across all processors. This would balance
out the communication load and allow us to simulate
larger networks.

BigNetSim itself will be enhanced to include higher
fidelity NIC modelling. Further performance predic-
tions for other applications like FEM, CPAIMD, leanMD
will be undertaken in more detail. Performance pre-
diction design currently involves log based simulations
which ultimately constrains scaling to file system per-
formance with exploding log sizes. Tighter integration
with BigSim to perform simultaneous emulation and
detailed interconnect modelling will also be explored.
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