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Abstract

Performance of a parallel computer depends on the computation power of the processors and

the performance of the communication network connecting them. With the increasing scale

and compute power of today’s parallel machines, interprocessor communication becomes

the bottleneck. Communication performance depends on the network topology and routing

scheme for packets. This master’s thesis explores the use of low diameter regular (LDR)

graph as a topology for interconnection networks. We generate graphs having same number

of nodes and connections per node as the hypercube, a widely used network topology. These

graphs have lower diameter and lower average internode distance than the corresponding

hypercubes, which implies that on an average, packets travel for a lower number of hops.

With a good routing scheme this would reduce the average message latency and lead to

better communication performance. We run experiments with this new topology in a par-

allel simulation framework for interconnection networks, BigNetSim. We show that LDR

graphs achieve better performance than equivalent hypercubes for standard network traffic

patterns. We have also developed a framework for implementing hardware collectives and

we compare collective communication performance for different topologies. We implement a

hybrid topology of a fat-tree and a LDR graph and evaluate its performance in comparison

with a hybrid of a fat-tree and a hypercube.
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Chapter 1

Introduction

In the recent years, there have been remarkable advances in the scale and compute power of

parallel computers. New parallel computers with hundreds of thousands of processors that

are capable of achieving hundreds of teraflops at peak speed have been built. For example,

the BlueGene (BG/L) machine, which is being developed by IBM, when completed will have

128K processors and is expected to achieve 360 teraflops at peak speed. Research projects in

varied application areas such as molecular dynamics, astronomy, genomics and engineering

design have been undertaken to exploit this tremendous amount of computational power.

Porting existing applications and developing new applications for such large scale

machines is a challenging task. If we can simulate the behavior of the application on a

large machine, we might be able to improve the design of a machine even before it is built.

The simulation could help in the development of algorithms which will scale well on such

machines and thus enable efficient use of the machines. The BigSim [20, 21] project aims at

developing a simulation framework that would facilitate the development of efficient scalable

applications on very large parallel machines. In most cases, there is a significant time gap

between the deployment of large scale machines and the development of applications to run

on them. Performance prediction of applications using BigSim can allow for optimization

of applications in advance, so that they are ready to run as soon as the machines become

available. Even after the machines are built, there are often long waiting periods involved
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in acquiring large number of nodes on these machines. A simulator like BigSim can serve as

a debugging and tuning environment which would be much more easily available than the

actual machines.

Parallel applications involve a lot of interprocessor communication. The inter-

connection networks that connect different computers in a parallel machine are responsible

for the communication performance and consequently for the overall performance of the

application. For correctly simulating a parallel computing environment, it is necessary to

accurately model the interconnection network. A network simulator BigNetSim [17], has

been developed, which simulates the packet level communication on the detailed contention-

based network models for large parallel computers. The size of data involved and the large

compute power required makes sequential simulation impossible, hence we use parallel sim-

ulation for BigNetSim. For accurate simulation of the communication time, BigNetSim

models in detail various entities of the network which include the switches, nodes, channels

and network properties such as the topologies, routing algorithms and flowcontrol.

BigNetSim has been developed as a generic framework, so that new topologies and

routing algorithms can be added and different types of networks can simulated. With the

detailed network model, it can accurately simulate the interconnection networks in many of

the widely used parallel computers today. Another application of this network simulator is

to enable development of new topologies which might be better than the ones used today.

While building and testing an actual network with the new topology can be difficult as well

as impractical from point of view of time and money, the network simulator is a much more

feasible alternative. Simulation can be used to compare these new ideas with currently used

ones, tune them for performance, and then deploy them on actual networks.

One idea is to use low diameter regular (LDR) graphs as an interconnection net-

work topology. We generate LDR graphs that have same number of connections per node

as hypercubes but that have lower diameter and lower average internode distance than cor-
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responding hypercubes. Message latency, i.e. the time taken for messages to travel from

source to destination, is an important measure of the communication performance. With

lower diameter and lower average internode distance, packets would travel a lower number

of hops on average and cause reduced contention. Thus, we would expect LDR graphs to

provide lower message latency thereby improving communication performance. We discuss

the motivation and generation of these graphs in detail in Chapter 4. Also, two or more

topologies could be combined in the same network to form a hybrid interconnection network.

A simulator like BigNetSim can be used as a testbed for trying out new ideas for improving

overall network performance.

1.1 Thesis Contribution

Principal contributions of this thesis are:

� Design and implementation of low diameter regular graph topology for interconnection

networks.

� Developing and optimizing a shortest-path based routing algorithm for LDR graphs.

� Extending the hardware collective framework for hypercube, LDR graphs, and hybrid

topologies for interconnection networks.

� Development of topology and routing scheme for hybrid networks of fat-trees and LDR

graphs.

I also fixed and adapted the original LDR graph generation algorithm to generate

input graph data for the LDR graph topology. I was involved in development of specific

components of BigNetSim such as the traffic generator and hybrid network design. My con-

tributions towards the debugging and optimization of BigNetSim, in part, have led to a much
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improved performance of the simulation and a more accurate modeling of interconnection

networks.

1.2 Thesis Organization

Chapter 2 describes POSE , the parallel discrete event simulation environment used for

developing the interconnection network simulator. Chapter 3 presents an overview of the

interconnection networks used in parallel computers, their properties and entities, and how

they are simulated in BigNetSim. We motivate the use of LDR graphs as a topology for

interconnection networks in Chapter 4. This chapter also explains the generation of these

graphs, routing schemes, and their implementation and performance. In Chapter 5, we dis-

cuss the design, implementation and performance of hybrid topologies for interconnection

networks. Chapter 6 discusses the framework for hardware collectives and collective com-

munication performance for different topologies. Chapter 7 presents some conclusions from

our work and directions for future research.
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Chapter 2

Parallel Discrete Event Simulation

We have implemented our network simulation using POSE [18] , a scalable general-purpose

parallel discrete event simulation environment. POSE has been built in Charm++ [8] , a

C++ based parallel programming system which supports the virtualization programming

model. The following overview of Charm++ is based on detailed description in [8] and [7]

and POSE overview is based on [18] and [19].

2.1 Charm++

Charm++ is an object-based, message-driven parallel programming environment. The basic

unit of parallelism in Charm++ is a message driven C++ object known as chare. Methods

can be invoked on a chare asynchronously from remote processors; these are known as entry

methods.

Charm++ is based on the concept of virtualization [7]. Each chare is a separate

execution component and the number of chares(N) is independent of the number of proces-

sors(P). In general, with N much greater than P , applications can run with millions of chares

on a much smaller number of processors. With virtualization, user’s view of the program is

that of the chares and their interactions. The runtime system takes care of the mapping of

chares to processors. This distinction between user’s view and actual system implementation

5



Figure 2.1. Charm++ Virtualization

is shown in Figure 2.1.

A dynamic Charm++ scheduler runs on each processor. The messages are stored

in a queue which is sorted by a specific strategy. The scheduler picks the next message from

the queue and invokes the corresponding method on the suitable object. As a result, no chare

can hold the processor idle. Other chares can run while a particular chare is waiting for a

message. This results in a good overlap of communication and computation and maximizes

the degree of parallelism. On the basis of this virtualization model, Charm++ has been

successfully used to simulate challenging applications like Molecular dynamics, Cosmology,

and Rocket Simulation.

2.2 POSE

POSE stands for Parallel Object-oriented Simulation Environment. It has been developed

by Terry Wilmarth, a member of the Parallel Programming Laboratory within the Depart-

ment of Computer Science at the University of Illinois at Urbana-Champaign. POSE is a

scalable parallel discrete-event simulation environment designed for simulation models with

fine granularity of computation.

POSE encapsulates simulation entities in posers, which are equivalents of the chares

6



(a) (b)

Figure 2.2. (a) User’s view of a poser; (b) Internal POSE representation of a poser

in Charm++ . A structure of a poser is shown in Figure 2.2(a) . A poser stores it own virtual

time known as Object Virtual Time(OVT). OVT is the virtual time that has passed since the

start of the simulation relative to that object. Each poser has a set of event methods that are

entry methods, they receive messages that have a timestamp. These entry methods capture

incoming events, store them in a local event queue and invoke the local synchronization

strategy on them. The event queue also stores checkpoints for the object state. This detailed

internal representation of the poser is shown in Figure 2.2(b)

There are two ways in which a poser can advance its OVT. First is the elapse

function. Calling an elapse with a number of time units passed as an argument advances the

OVT of the poser by the time units specified. This indicates the time spent by the poser

doing work. For example, in the context of network simulation, a channel poser can elapse

time while it transmits a packet. Another way of advancing time on a poser is to invoke
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an event method on the poser with an offset. This offset is then added to the OVT of the

poser, which is a way of indicating some activity performed in the future or to indicate the

simulation time spent in transit. An equivalent example in the context of network simulation

is when a packet is sent across a channel to a switch, the method to receive the packet is

invoked on the switch with an offset equal to the time taken by the packet to transit the

channel. The OVT of the switch poser will be appropriately advanced.

To develop an efficient application using POSE and to achieve good performance,

it is important to decompose the problem into the smallest posers possible. This means

that the degree of virtualization must be high. With smaller posers, the checkpoint and

rollback overhead is less and object migration is easier. This also allows for better tuning of

synchronization strategies to the object’s behavior. An important drawback of higher degree

of virtualization is that with more objects in the simulation, there is more frequent context-

switching between entities for each event. Overhead of managing per-object information is

also higher. We studied these tradeoffs [17] in the context of network simulation. We found

that higher degree of virtualization has more pros than cons. For example, we observed

that the ‘switch’ poser was too large and breaking it in to finer posers (making each port a

separate poser) helped improve performance. Higher degree of virtualization also improved

the scalability of our simulation.

We present a brief overview of the optimistic synchronization strategy used by

POSE . The strategy is adaptive and can range from cautiously optimistic to highly op-

timistic. When the object receives an event it gets control of the processor and invokes

the synchronization strategy to process events. The strategy performs necessary rollbacks

and cancellations before beginning forward execution of events. Traditional optimistic ap-

proaches execute the earliest arriving event from a sorted list of events. POSE differs in

that it maintains a speculative window which decides how far in the future beyond the cur-

rent global virtual time (GVT) estimate an object may proceed. If there are events with
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timestamp > GVT but within the window, then they are executed. All these events within

the window are batched together and executed as a multi-event. This reduces the context-

switching overhead and batching of events benefits from a warmed cache. These benefits

outweigh the additional rollback overhead. The adaptive synchronization strategy and the

multi-events, along with other features of POSE , are discussed in detail in [19].
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Chapter 3

Interconnection Networks

Interconnection networks, as defined in [2] are programmable systems that transport data

between terminals. Interconnection networks occur at a variety of scales from small-scale on-

chip networks within a single processor to a large scale large-area or wide-area network. In

the context of our work, we are concerned with networks which are used to connect different

processors in a parallel computer system. With faster processors, we have faster computation

and consequently, often communication becomes the bottleneck for the performance of a

parallel computer. Better interconnection networks can help improve communication and

thereby improve the performance of the entire system. Interconnection Networks can be

broadly classified as direct networks and indirect networks.

3.1 Direct Networks

Each node in a direct network is connected to a router, so they are also called router based

networks. The neighboring nodes can be connected by a pair of unidirectional or bidirectional

channels. The function of a router can also be performed by a local processor, but dedicated

routers are used in parallel computers for overlapping communication and computation.

Every router has a certain number of input and output channels. Internal channels connect

the local processor or memory to the router. External channels connect different routers.

10



3.2 Indirect Networks

For indirect networks the communication between any two nodes has to be carried out

through switches. Every node has a network adapter that connects to a network switch.

Each switch has a set of ports. Each port has an input and output link. A set of ports in

each switch is connected to processors or connected to other switches. The interconnection

of switches define various topologies. Transmitting a message in an indirect network from

one node to another requires travelling to the switch of the first node, hopping across the

network, reaching the destination node’s switch, and then reaching the node itself.

3.3 Topology

Topology is the layout of connections of nodes in the network. The topology is important as

it decides various important properties of the network such as bisection bandwidth, diameter,

and average internode distance.

� The bisection bandwidth refers to the bidirectional capacity of a network between two

equal-sized partitions of nodes. The cut across the network is taken at the narrowest

point in each bisection of the network.

� Diameter refers to the length of the longest shortest path between any two nodes in a

topology. It is the largest number of edges which must be traversed in order to travel

from one node to another when paths which backtrack, detour, or loop are excluded

from consideration.

� Average internode distance refers to the average of lengths of the shortest paths between

all pairs of nodes in the topology.

We briefly discuss two common topologies here.
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Figure 3.1. 2-ary 4-cube

3.3.1 Hypercube

Hypercube is a network with logarithmic complexity which has the structure of a generalized

cube. In this topology, the nodes are placed at the vertices of a 2-ary M-cube, where M refers

to the dimension. For example, a 2-ary 4-cube is shown in Figure 3.1.

For a hypercube of N nodes, the degree of each node is the same and is log(N).

The diameter of the hypercube is log(N) and the average internode distance is log(N)/2.

Hypercube is commonly used as a topology for direct networks.

3.3.2 Fat Tree

Fat-tree network [12] refers to the k-ary n-tree. The graph k-ary n-tree has been defined

in [14] and [9]. It is a type of fat-tree which can be defined as follows:

Definition : A k-ary n-tree is a fat-tree that has two types of vertices: P = kn processing

nodes and nkn−1 switches. The switches are organized hierarchically with n levels that have

kn−1 switches at each level. Each node can be represented by the n-tuple {0, 1, ..., k − 1}n,
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Figure 3.2. 16 Node fat-tree

while each switch is defined as an ordered pair 〈w, l〉 where w ε {0, 1, ..., k − 1}n−1 and

l ε {0, 1, ..., n− 1}. Here the parameter l represents the level of each switch and w identifies

a switch at that level. The root switches are at level l = n− 1, while the switches connected

to the processing nodes are at level 0.

Fat-tree networks have various advantages, such as high bisection bandwidth, scal-

able topology, compact switches, and simple routing. They are used extensively in current

generation high performance networks such as Quadrics and Infiniband. A Complete 16

node fat-tree is shown in Figure 3.2.

Both these topologies are implemented in BigNetSim. It also includes other topolo-

gies including the new topology based on low diameter regular graphs, which we discuss in

detail in the next chapter.

3.4 Routing

A route is an ordered set of channels a1, a2, a3, · · · , an where the output node of channel

ai is the input node of channel ai+1. Depending on the type of network, there could be a

single route or multiple routes between a source and a destination. A good routing algorithm

balances the load uniformly across channels. There are two major classification of routing
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algorithms - fixed and adaptive.

3.4.1 Fixed Routing

Deterministic or fixed routing algorithms choose the same path between any two nodes,

which is a function of the source and destination address. This can lead to load imbalance

in the network for some load patterns. There can be increased contention in a specific

part of the network, particularly in random traffic patterns. However, they are simple and

inexpensive to implement. Deterministic algorithms are still prevalent today since designing

a good randomized adaptive algorithm for irregular topologies is difficult.

3.4.2 Adaptive Routing

A routing technique is said to be adaptive if, for a given pair of source and destination,

the path taken by a particular packet depends on dynamic network conditions, such as

network contention, congested channels, or presence of faults. It provides fault tolerance

to the system by introducing alternate paths since failure of a link will effectively leave the

network disconnected in deterministic routing while the network will still remain connected

in adaptive routing. Although the adaptive technique has clear advantages, it introduces a

lot of complexity in the switch, which makes it costly.

3.5 Simulation model

The model is an effort to simulate the basic units of a network, namely switch, channel,

network interface cards, and finally, nodes which inject messages into the network and receive

messages intended to them. The conceptual model of BigNetSim is shown in Figure 3.3

Each of these entities are modeled as posers.
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Figure 3.3. BigNetSim conceptual model

3.5.1 Switch

The switch assumes a packet switching strategy and uses virtual cut-through strategy to

forward messages through the switches. Switches can be distinguished as:

� Input Buffered (IB): A packet in a switch is stored at the input port until the next

switch in its route is decided and leaves the current switch if it finds available space

on the next switch in the route.

� Output Buffered (OB): A packet in a switch decides beforehand about the next switch

in its route and is buffered at the output port until space is available on the next switch

along the route.

It has a simple and fair arbitration strategy which uses aging of packets to determine which

packet competing for which port should get higher priority. We use credit based flow control

in the network; the credits are equivalent to buffer space. A switch computes how many

credits it has available on a specific downstream switch and based on the amount, it decides

whether it can send a packet or not. The model also supports configurable strategies for
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input virtual channel selection and output virtual channel selection. The configurability

of the switch provides a flexible design satisfying the requirements of a large number of

networks.

3.5.2 Channel

The channel is a simple entity which receives a packet and delivers it to the next object it is

connected to, which could be either a switch or a destination node. The channel models the

delay equivalent to the time it would take for a packet to travel from one switch or node to

another along that channel.

3.5.3 Network Interface Card

The network interface card divides a message into separate packets, based on the maximum

transmission unit of the network, and sends them. It models DMA and HCA delays. The

delays are categorized for small and large messages, then added to the message send times.

It responds to excessive load with an injection threshold that models deteriorating caching

effects as it gets overloaded. At the receiving end, the NIC assimilates the packets into the

message and passes the data to the node.

3.5.4 Node and Traffic Patterns

The node generates the packets and injects them into the network. The traffic generator

module can be used to generate different traffic patterns. Six different traffic patterns exist,

which determine the destination node that it can generate:

� k-shift : address of the destination node for node i is (i + k)mod(N)

� Ring : equivalent to 1-shift
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� Bit transpose: address of the destination node is a transpose of that of the source node

i.e. di = s(i+b/2)mod(N)

� Bit reversal : address of the destination node is a reversal of the bit address of the

source node i.e. di = sb−i−1

� Bit complement : address of the destination node is a bitwise complement of the address

of the source node.

� Uniform distribution: This is a random traffic in which each node is equally likely to

send to any of the other nodes.

The traffic generation time distribution can either be deterministic or it can follow

a Poisson distribution.

3.5.5 Topologies and Routing Strategies

Implementation of a topology in our model involves defining the neighbors for a switch and

the mapping of these neighbors to the port numbers on the current switch. Routing strategy

decides the output port on which the packet is to be sent. Topologies and routing strategies

can be created separately, and the architectures can be created to use these topologies and

routing strategies. Various topologies have been implemented such as the hypercube, fat-tree

and mesh3D topologies. Corresponding routing strategies such as hamming-distance routing

for hypercubes; dimension-ordered and Torus routing for 3D-mesh topologies; and Up-Down

routing for fat-tree topologies have also been implemented.
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Chapter 4

Low Diameter Regular Graphs

4.1 Background

Communication performance of an interconnection network depends substantially on the

topology. When large number of processors are connected together, the topology should be

dense, i.e. the diameter must be small. Secondly, for a uniform treatment of all processors,

the topology must be regular, i.e. each node in the topology graph must have the same

degree. Low diameter regular (LDR) graph refers to a dense regular topology that can scale

to a large number of nodes.

There has been extensive research in the construction and applications of regular

graphs with small diameter. An upper limit on the number of nodes in a regular graph of

degree d > 2 and diameter k is called the Moore bound [5] and it is given by

N(d, k) <= (d(d − 1)k − 2)/(d − 2) (4.1)

The Moore graph is a graph which achieves the Moore bound. These are complete

graphs, polygon graphs (regular graphs of degree 2), as well as three others:

� (nodes, degree, diameter) = (10,3,2) : This is known as the Petersen graph. It is shown

in Figure 4.1
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Figure 4.1. Petersen graph

� (nodes, degree, diameter) = (50,7,2) : This is known as the Hoffman-Singleton graph[5]

� (nodes, degree, diameter) = (3250,57,2): This is a possible but yet undiscovered

graph[1]

De Bruijn graphs[15] are a set of dense topologies which have been used in varied

areas such as VLSI design and communication networks. Star graph[16] is another example

of dense regular topology which is symmetric. D-Trees[6] is a class of tree-based dense

interconnection network topologies which can interconnect more nodes than star graphs and

n-cubes of comparable diameter.

4.2 Motivation

Low diameter and low average internode distance are desirable properties for an interconnec-

tion network topology. In routing, it implies low average packet hops and less average time

spent by messages at intermediate nodes in the path. In addition to lower message latency,

lower diameter also leads to larger communication neighbourhood for a particular node. The

neighbourhood of a node refers to the set of vertices within a specific number of hops. A

larger neighbourhood results in a more uniform load distribution which consequently leads
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to better utilization of processors.

In LDR graphs, each node has the same number of neighbors. If the number of

neighbors is log(N), where N is the number of nodes in the graph, then the number of

connections is exactly the same as a corresponding hypercube of the same number of nodes.

For example, for a 64 node network, we can build an LDR graph of connectivity 6 per

node. We, consequently, get a graph of 192 edges. This is the same as the total number of

connections in a hypercube of 64 nodes. The idea behind keeping the number of connections

the same for both the LDR graph and the hypercube is that we can build the LDR graph

with the same number of wires as is needed for a hypercube. Given this similarity with the

hypercube, we want to see if we can get better performance with a newer topology. For this

we need a well-defined procedure to generate an LDR graph, which is outlined in the next

section.

(a) (b)

Figure 4.2. (a) 8 node Hypercube; (b) 8 node LDR graph

As an example, Figure 4.2 shows an 8 node LDR graph that we generated and a

corresponding 8 node hypercube. Both have the same number of nodes and same number of

connections per node. The diameter of the LDR graph is 2, as compared to the hypercube
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Nodes Conn. HC dia. LDG dia. HC avg. i.n.d. LDG avg. i.n.d.
8 3 3 2 1.5 1.375
16 4 4 3 2 1.77
32 5 5 3 2.5 2.11
64 6 6 4 3 2.45
128 7 7 4 3.5 2.65
256 8 8 4 4 2.87
512 9 9 5 4.5 3.09
1024 10 10 5 5 3.3
2048 11 11 5 5.5 3.48

Table 4.1. LDR graph v/s Hypercube

diameter of 3. The average internode distance (avg. i.n.d.) for the LDR graph is 1.375,

which is less than 1.5 for the corresponding hypercube.

Table 4.1 is a list of example LDR graphs we generated and how they compare

with corresponding hypercubes.

We observe that the LDR graph gives us a lower diameter and a lower average

internode distance than the corresponding hypercube. The gains increase with increasing

network size, which should make LDR graph an even better alternative for large network

sizes. This gives us the motivation that the LDR graph can serve as a better alternative

topology to a hypercube.

With this motivation we implement the LDR graph as a topology and compare its

performance against the hypercube

4.3 Generating an LDR graph

In this section, we describe the procedure to generate a LDR graph. This was originally

developed by Prof. Laxmikant V. Kale. The spanning tree is used as the basic structure to

build the LDR graph. If the number of nodes of the LDR graph is ‘V ’ and the connectivity

is ‘C’, we initially build a spanning tree of V nodes wherein each node in the graph has
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C − 1 children. This assures a degree of V for non-leaf nodes which have 1 parent and C − 1

children. An exception is the root which has no parent. To complete the LDR graph, we

need to complete the connections for the root and other nodes with incomplete connections.

Each new edge is added using the following procedure:

1. Pick a vertex ‘A’ with maximum incomplete connections.

2. Pick another vertex ‘B’ randomly from the remaining vertices.

3. Check if the two vertices are already connected, in which case pick another vertex at

random.

4. Continue step 3, as long as there are no vertices remaining which satisfy the condition

or we find a legitimate vertex.

5. In case we find a legitimate vertex B, then add an edge between A and B.

6. In case there is no legitimate vertex, we open some other edge X −Y in the graph and

then connect A−X and B − Y . This enables us to avoid cycles of length 2 between 2

vertices in the graph.

The steps in construction of an 8 node LDR graph are illustrated in Figure 4.3

Note that a random number is used for the LDR graph generation. With a different

choice of seed, we generate different LDR graphs with same number of nodes and connectivity

and calculate the diameter and average internode distance for each LDR graph. The LDR

graph with smallest average internode distance among a certain number of these generated

graphs is chosen.

Once the graph is generated, the shortest paths between each pair of vertices in the

graph are calculated. We use Dijkstra’s shortest path algorithm[3] to calculate the shortest

paths. This shortest path information is stored in files which can then be used as input in

the BigNetSim framework.

22



(a) (b) (c)

(d) (e) (f)

Figure 4.3. (a) Initial Spanning Tree; (b) Same Spanning Tree - A different layout; (c) Adding an edge; (d) &
(e) Adding more edges one at a time; (f) Complete 8 node LDR graph

4.4 Implementation of LDR graph topology

To implement a topology in BigNetSim, we need to implement functions which find out the

neighbors of a particular switch and functions which specify the next switch and channel

given the current switch and port number. We have applied LDR graph as a topology

for direct networks. In case of an LDR graph, when the graph is generated, we store the

neighbors as well as the shortest path information in files. These files are read into memory

in the initialization phase. This available neighbor data can be used to find the next switch

and next channel for a particular port on the current switch.

23



4.5 Routing Algorithm for LDR graphs

For a topology to provide good and effective communication performance, we need to imple-

ment an efficient routing algorithm on it. In our motivation, we showed that LDR graphs

achieve lower diameter and lower average internode distance than a hypercube. However,

to lower the message latency, the routing scheme should minimize contention as network

contention can significantly delay the packets.

To properly compare a hypercube and an LDR graph we need a good understanding

of routing in a hypercube. We briefly discuss the hamming distance routing for hypercube

implemented in BigNetSim.

Hamming Distance Routing: Hypercube is a symmetric topology. If we look at an

example 8-node hypercube shown in Figure 4.2(a), we can notice the following property:

the binary representation of every neighbor of a node differs by 1 bit from the binary rep-

resentation of the node. Hamming distance refers to the number of bits that differ between

the binary representations of two numbers. Hamming distance between the node and its

neighbor is 1. Hamming distance between two nodes k hops away from each other is k.

Moreover, a neighbor is connected at a port number which corresponds to the bit position at

which it differs from the node. For example, a neighbor which differs in the least significant

bit, i.e. bit position 0, is connected at port 0. Hamming distance routing algorithm for the

hypercube is based on this property. The algorithm is as follows:

1. If the current switch is the last switch in the path, return the port number of the port

connected to the node.

2. If not, find the exclusive OR (XOR) of current node and the destination. This will tell

us which bit positions the current node and the destination differ in.

3. In order from least significant bit onwards, find the first bit position in the XOR which
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is ‘1’. This corresponds to a neighbor which is on the path from the current node to

the destination.

4. The bit position is the same as the port number of the port on which this particular

neighbor is connected, so we return this port number.

Hypercube is a symmetric topology and this hamming distance routing leads to

fairly uniform link utilization. Development of an equally effective routing algorithm for the

asymmetric LDR graph is a challenging task.

Shortest path routing We have used the shortest paths idea as the basis for our routing

algorithm. In an ideal scenario, with no contention, latency will be minimum if the packets

are routed along the shortest paths from source to destination. We initially implemented a

basic shortest path routing scheme and then optimized it to handle contention effectively.

Our basic LDR routing algorithm is as follows:

1. If the current switch is the last switch in the path, return the port number of the port

connected to the node.

2. If not, use the shortest path information to find out the next switch on the shortest

path from the current switch to the destination.

3. Find the port number of the port connected to this next switch and return this port

number.

This is a simple algorithm which does not have any adaptivity. We compared its

performance with a hypercube using hamming distance algorithm. We further optimized the

algorithms to adapt better to network contention. We discuss the performance of the fixed

routing and the incremental performance improvements with adaptive routing in the next

section.
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4.6 Performance

In this section we compare the communication performance of LDR graphs and equivalent

hypercubes for different routing schemes as we incorporate adaptivity in routing based on

feedback about what we learn. The basic routing algorithm is the shortest path based

routing for LDR graph and Hamming distance routing for hypercube. A uniform random

traffic pattern using a Poisson traffic generation frequency is used to generate packets in the

network. This pattern was selected as it would closely resemble the behavior of an arbitrary

collection of applications running on a supercomputer. The random selection of destinations

result in a repeatable but random asymmetric load on the network. Each run involves each

node in the simulated network generating 1000 packets.

Table 4.2 lists the network parameters we have used for our runs. These are derived

from the interconnection network in the BlueGene/L machine [13].

Parameter Value
Bandwidth 1.4 Gbps
Packet Size 256 bytes

Channel Delay 100 ns
Switch Delay 90ns
ASIC Speed 250 MHz

NIC Send Overhead 500 ns
NIC Recv. Overhead 500 ns

Table 4.2. Simulation Parameters

To evaluate performance, we plot the average message response time, i.e. the

message latency as a function of increasing network load. The network load is modeled by

a load factor.

Load Factor: The load factor refers to the ratio of the mean arrival rate of packets and

the arrival rate that saturates a link. In the simulation, load factor is used to determine the

mean of the arrival time distribution of packets. The mean is calculated as follows:
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Mean = ((PacketSize)/(ChannelBandwidth))/(LoadFactor) (4.2)

Ideally, if the entire bisection bandwidth is used, the network should hit congestion

at a load factor of 1. However, since the destinations are chosen randomly, the entire bisection

bandwidth is often not used up and in some cases we might see the network hitting contention

at values of load factor greater than 1.

4.6.1 Performance with Fixed Routing

Figure 4.4. Message Response Time on a 64 node direct network with fixed routing

Figure 4.4 shows the plot of average message response time, i.e. average message

latency against load factor for a 64 node direct network.

Here we see that the LDR graph has a slightly lower average message latency than
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the hypercube until a load factor of 0.6. This initial gain is a reflection of the lower average

internode distance for a 64 node LDR graph as compared to the corresponding hypercube,

noted in Table 4.1. However, as the load increases, the fixed shortest path LDR routing

performs poorly. Since there is no adaptivity, the network hits contention at a much lower

load as compared to the hypercube.

4.6.2 Performance with Oblivious Routing

We saw that in the fixed routing algorithm, all the packets going from the same current

switch to the same destination would take the same route. An idea to improve on this would

be to choose a different route at random instead of picking the same route every time. This

would lead to more uniform distribution along all links connected to the switch. Therefore,

we make a slight modification to the routing algorithms.

Instead of selecting the first port that could lead the current switch towards the

destination, we find a set of output ports from the current switch, any of which could lead

the current switch towards the destination. One of these output ports is chosen at random

as the output port. Since this choice does not consider buffer size, link utilization, or any

other network parameter, it is oblivious to the network condition. Hence, this routing is

known as oblivious routing.

Oblivious Shortest Path LDR Routing :

1. If the current switch is the last switch in the path, return the port number of the port

connected to the node.

2. If not, find the length of the shortest path from the current switch to the destination.

3. For all paths of the same shortest path lengths, find the corresponding next switch and

the port on which that next switch is connected.
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4. From these set of potential ports, choose a port at random and return it as the output

port

Oblivious Hamming Distance Routing :

1. If the current switch is the last switch in the path, return the port number of the port

connected to the node.

2. If not, find the exclusive OR (XOR) of the current node and the destination. This will

tell us which bit positions the current node and the destination differ in.

3. Each of these bit positions correspond to a potential output port.

4. From this set of potential ports, choose a port at random and return it as the output

port

Figure 4.5 shows the plot of average message response time, i.e. average message

latency against the load factor for a 64 node direct network when oblivious routing is used.

We now see that LDR graphs perform better than hypercube over the entire range

of network load. Adding some randomness to the routing improves the link utilization. This

is advantageous to the LDR graphs because the shortest path tends to be biased towards

particular links when fixed routing is used. However, in case of a hypercube, the fixed routing

has a fairly uniform link utilization. In fact, random choosing might instead lead some links

to be utilized more and the performance can even be worse than fixed routing.

We need an adaptive routing algorithm wherein the network conditions are con-

sidered while choosing the route. This is discussed in the next section.

4.6.3 Performance with Adaptive Routing

We need to use the buffer size at each of the ports as a parameter to decide which output

port to route the packet on. This adaptive routing strategy is based on the minimal P-cube
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Figure 4.5. Message Response Time on a 64 node direct network with oblivious routing

routing presented in [4]. Minimal P-cube routing has been developed for hypercubes and we

have adapted it for the LDR graphs as well.

The algorithms are similar to the corresponding oblivious routing algorithms but

there is an improvement over the corresponding oblivious routing algorithms in the last step.

The first 3 steps are the same until we find the set of potential ports. The step 4 differs and

it is as follows:

4. From this set of potential ports, find the port which has the maximum available

buffer size and return it as the output port.

For input buffered switches, we can additionally use the contention model in the

switch to choose an output port that has minimum port contention along with maximum

available buffer size. Port contention refers to the number of packets trying to go to a port.

Consider a simple example that illustrates how the 3 different routing algorithms
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work:

Figure 4.6. Routing on an LDR graph

A packet is currently at switch 2 and its destination is 5. There are two potential

routes it can take 2 − 7 − 5 or 2 − 6 − 5. In fixed routing, always the route 2 − 7 − 5 will

be chosen (assuming that is the shortest path stored in the file). In oblivious routing we

would pick one of 7 or 6 randomly. In adaptive, we look at the buffer sizes at the output

ports of switch 2, which are connected to 6 and 7. Pick the route through a switch whose

corresponding buffer has lower entries, i.e. maximum available buffer space.

Figure 4.7 shows the plot of average message response time, i.e. average message

latency, against load factor for a 64 node direct network when adaptive routing is used. We

see that with adaptive routing, both LDR graph and hypercube perform better; in addition

network hits saturation for a higher load.

For lower load, the performance is almost the same, and the LDR graph shows

some improvement in the section of higher load when the network has high congestion. In

practice, most networks will use adaptive routing, as it gives best performance. Even with

adaptive routing, we see that the LDR graphs offer some improvement in performance. On

larger networks, we expect the performance gains to be more.
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Figure 4.7. Message Response Time on a 64 node direct network with adaptive routing

From Figures 4.8 (a) and (b), we see that there is significant improvement in

performance when a 2K node network is simulated with the same network parameters. With

adaptive routing, LDR graphs have an average message response time that is almost 25-30%

lower than the corresponding hypercube. Thus, our experiments show that LDR graph is

indeed a better alternative to the hypercube.
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Figure 4.8. Message Response Time on a 2048 node network with (a) input buffered switches (top figure) and
(b) output buffered switches (bottom figure)
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Chapter 5

Hybrid Networks

Interconnection networks can be connected according to different topologies and we have

discussed hypercube and fat-tree, the two popular topologies so far. Each has its distinct

advantages, such as good bisection bandwidth, ease of routing and scalability in the case of

a fat-tree and symmetry and simplicity of routing in case of a hypercube.

It is interesting to see if we can combine the advantages of two topologies by

building a hybrid topology that has nodes connected using more than one topology. We call

a network connected with such a hybrid topology a hybrid interconnection network.

In SGI Origin 2000 [11], a hierarchical fat hypercube topology is used. It is an

interesting variation of the basic hypercube, which involves bristled node connections (two

or more nodes connected to a switch) and plurality of n-dimensional hypercubes. Our idea

is different, in that we have a number of fixed size hypercubes connecting the nodes and

fat-trees connecting one switch from each hypercube. This is discussed in detail in the

next section. We can also replace hypercube by any other topology and generate another

hybrid. We replace hypercube by an LDR graph and see how this new topology effects the

performance.
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Figure 5.1. 32-node hybrid topology with 8-node hypercubes

5.1 Designing a hybrid of a hypercube and a fat-tree

We build the hybrid topology as follows.

1. Initially we define the size of the hypercube. This could be any power of 2 so that the

direct network topology would correspond to a 2-ary N-cube.

2. Divide the nodes in sets, each of the size as defined for the hypercube.

3. Connect all these nodes in a direct network form so that we have multiple hyper-

cube networks. If T is the total number of nodes and D is the number of nodes per

hypercube, we would have P = T/D hypercube networks.

4. Now we add the fat-tree in this as follows.

(a) Consider the first switch in each hypercube network. We have P switches. Now

we build a fat-tree using these P switches as the nodes. This gives us a fat-tree

which connects all the hypercubes together.
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(b) Similarly, we build fat-trees for the second switch in each hypercube, and so on.

(c) Consequently we have D such fat-trees connecting the hypercubes.

For example, for a 32 node network with each hypercube of 8 nodes, we have 4

such hypercubes, and then 8 different fat-trees connecting the hypercubes. The network

would look like Figure 5.1

5.2 Designing a hybrid of a LDR graph and a fat-tree

Another topology we have implemented involves a hybrid of an LDR graph and a fat-tree.

This is similar to the hybrid of hypercube and fat-tree. The only difference is that in this

case, we replace the hypercube with an LDR graph of size D. The rest of the connections

are similar.

5.3 Routing on an hybrid

The routing on a hybrid is straightforward because it is a combination of two separate

topologies and the routing algorithm for each topology can be used here. Therefore, in the

case of a hypercube and fat-tree hybrid we use Hamming Distance routing for the hypercube

and the Up Down routing algorithm for the fat-tree. The packet is routed to the farthest

node to which it can go, on that particular hypercube. It is then sent across the indirect

network to the other hypercube and then forwarded to the destination node.

Similarly, routing can be done with the hybrid of a fat-tree and an LDR graph.

The framework allows us to reuse the code used for individual topologies and corresponding

routing algorithms in the hybrid implementation. With adaptive routing, a hybrid allows

selection from multiple routes at two levels, at the direct network level as well as the indirect

network level.
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5.4 Performance

We present performance results of experiments on a hybrid network of fat-tree and hypercube

and compare them with a hybrid of a fat-tree and an LDR graph.

We carried out the runs with the same network parameters as used in Chapter 4

for comparing a direct network of a hypercube and a LDR graph.

Figure 5.2. Message Response Time on a 1024 node hybrid network

We simulate a hybrid network of 1024 nodes having a 64-node direct network

components. Each node in each direct network component, is further connected by a fat-

tree and we have 1024/64, i.e. 16 such fat-trees. The results are plotted as shown in Figure

5.2. Here each node in the simulated network sends 50 packets with a uniform random traffic

pattern.

From the plot, we can see that for a hybrid of fat-tree and an LDR graph, the

37



message latency is initially higher, but improves as the network load increases. At high

network load, the message latency is lower than that for a fat-tree-hypercube hybrid.

Figure 5.3. Message Response Time on a 4096 node hybrid network

Figure 5.3 shows the results of simulation on a 4096-node hybrid network with

256-node direct network components. Here also, we see that the message latency is slightly

higher at low network loads but there is a greater improvement in performance at high

network load. Thus, the gains in performance are higher for larger network sizes. Using

LDR graph as the direct network component instead of the hypercube, the message latency

is lower by about 4% for high network loads.

If we build a network with the same number of nodes and increase the size of the

direct network component, we should see a greater improvement in performance. Figure 5.4

shows the results of simulation on a 4096-node hybrid network with 1024-node direct network
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Figure 5.4. Message Response Time on a 4096 node hybrid network with a larger direct network component

components. Here we see that for the fat-tree-LDR graph hybrid, the message latency is

lower than that for a fat-tree-hypercube hybrid by about 8% for high network loads. Thus,

the LDR graphs give better performance when used as part of a direct component of a hybrid

network.
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Chapter 6

Collectives

Collective operations like broadcasts, multicasts and reductions are important communica-

tion operations which may involve some or all of the processors in a system. In [10] , different

techniques for optimizing collective communication are discussed. Software collective opti-

mization, which involves sending point-to-point messages along a tree, can be affected by

delays at intermediate processors. Collective communication support in NICs is helpful but

is limited by slow NIC hardware. A switch-based solution for optimizing collective commu-

nication is also presented in [10]. Support for collectives in the network requires the building

of topology-specific spanning trees on the network.

Algorithms for building these collective spanning trees on fat-tree networks have

been developed by Sameer Kumar and others as described in [10]. We have developed

algorithms for building these spanning trees on other topologies such as Hypercube and

LDR graph. Based on the algorithms for two different topologies, algorithms have also been

developed for hybrid topologies. We now describe the algorithms in detail.

6.1 On Hypercube

Hypercube topology has been explained in Section 3.3.1. Hypercube has some interesting

properties; for example, two adjacent nodes are different in only a single bit in the bit repre-
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sentation of the node numbers. In fact, this property is the basis of the Hamming Distance

based routing used in a hypercube. We use the symmetric properties of the hypercube in the

building of the spanning tree. In case of the multicast operation, we need to build the tree

only on a set of nodes instead of on the entire network. For a broadcast operation, the tree

has to be built over the entire network. In our approach, we have developed an algorithm

to build a spanning tree over an entire hypercube. Multicast essentially is a broadcast over

the hypercube enclosing the nodes in the multicast group. This brought forth the problem

of determining the smallest hypercube enclosing the nodes in the multicast group; we came

up with the following technique of implementing this.

Consider the bit representation of the nodes in the multicast group. By the def-

inition of a hypercube, the number of nodes in the enclosing hypercube would be equal to

2k where k is the total number of bits in which the nodes in the multicast group differ. For

example, if 3 (0011), 5 (0101) and 7 (0111) are the nodes in the multicast group, then we

see that they differ in 2 bits in totality and so the enclosing hypercube will have 22, i.e. 4

nodes. Also, the hypercube can be completely defined by (0XX1), i.e. retain the common

bits and try out all combinations of the different bits (X=0 or 1). So in this example, the

enclosing hypercube would contain 1, 3, 5, 7. This technique can be efficiently implemented

using bit operations like bitwise XOR and bitwise OR.

Subsequently, we build the tree and implement routing on this enclosing hypercube

as we would do it on the entire hypercube in the case of a broadcast. This effectively allows

us to support multicast on the hypercube. The tree building algorithm is as follows.

1. We iterate over the switches in this list which is identified as the enclosing hypercube.

2. For each switch i, we identify its children and mark this switch as the parent for each

of its children.

3. A switch is chosen as a child if it is directly connected to the switch i, and it does not
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have a parent already.

4. For the root switch of the tree, its parent is the corresponding node.

The TreeInfo data structure stores the information of this tree which is built by

storing the parent and children for each switch in the switch list. Additionally, for all switches

except the root switch, the corresponding node is also added as a child.

The next step is to determine the route from the root node to each of the switches

in the tree; we use the hamming distance technique to determine this route. This is source

routing because once the tree is built, we have a fixed route along the edges in the tree.

To abstract out these two common functions, building the tree and determining

the route, for different topologies, we build a collective routing interface.

class CollectiveRoutingInterface {

public:

//Build a multicast tree for collectives,

//return list of switches in sw_list

virtual void buildTree(CkVec<int> &sw_list, CkVec<TreeInfo> &pmap,

vector<int> &group, int gsize)=0;

//Find the source route to a switch from node

virtual void routeFromNodeToSwitch(int src_node, int sw_id,

unsigned char* route, int &numhops)=0;

virtual ~CollectiveRoutingInterface() {}

};

The subnet managers for individual topologies can be derived from this interface.
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6.2 On LDR Graphs

LDR graph topology has been explained in Chapter 4. The graph is described by a list

of neighbours and the shortest paths between pairs of nodes in the graphs. We use this

information to build the collective spanning tree on the LDR graph. The tree building

algorithm is as follows:

1. We start with the root of the multicast group. For every switch i in the multicast

group, we traverse the shortest path from the root to the switch i.

2. For every switch j which is traversed in this shortest path from the root, we mark its

predecessor as its parent.

3. If a switch on the path was not already in the multicast group, it is added to the list.

4. For the root switch of the tree its parent is the corresponding node.

In the next step, to determine the source route from the root node to all the

switches in the tree, we use the LDR graph routing which has been explained in Section 4.5

6.3 On Hybrid Networks

A hybrid network, as described in Chapter 5 consists of two topologies which are intercon-

nected in a specific manner. To build a spanning tree on the hybrid network, we reuse the

spanning tree building algorithms for the individual topologies.

1. We divide the nodes into bins. Each bin corresponds to a different direct network

component.

2. For every node in the multicast group, we find the direct network component in which

it is present and its position relative to that network component.
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3. We mark this node, as well as nodes at the same relative position in all direct network

components.

4. Once we are done with all nodes in the multicast group, we build trees on individual

direct network components (hypercube or LDR graph) using the marked nodes on each

component as the multicast group on that component.

5. We use the tree building algorithm for a fat-tree to build a spanning tree over a fat-tree

that connects corresponding nodes in these direct network components.

Once the tree is built, we have to determine the source route from the root node to

all the switches in the tree. For this purpose we make use of the Hybrid Routing algorithm

which has been discussed in Section 5.3

6.4 Performance

We compared latency of a 10-packet broadcast on a direct network of a hypercube and an

LDR graph. The network parameters are the same as listed in Table 4.2. The experiments

were carried out on 64 node and 2048 node networks. The results are plotted as shown in

Figure 6.1 and Figure 6.2.

We see that the LDR graph has lower message latency for the entire range of

network load. The improvement in performance is greater for larger size networks. We use

fixed routing and the gains are primarily due to the lesser number of links that packets have

to travel. So we see that the difference in message latency is almost the same over the range

of network load.

We also compared the broadcast performance on a 256 node hybrid network having

a 16 node direct network component; the results are shown in Figure 6.3. There is a very

small improvement in performance using LDR graphs. This is because the direct network
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Figure 6.1. Message Response Time for broadcast on a 64 node direct network

component has just 16 nodes and there is small difference in the links to be travelled on the

16 node hypercube and the LDR graph. We still see some small gain, which is good, and

larger networks would give greater performance improvement.

LDR graphs, thus, lead to better collective communication performance.
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Figure 6.2. Message Response Time for broadcast on a 2048 node direct network
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Figure 6.3. Message Response Time for broadcast on a 256 node hybrid network
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Chapter 7

Conclusion and Future Work

This thesis describes the design, implementation and performance of an interconnection net-

work topology based on low diameter regular graphs. We have compared this new topology

with a hypercube having same number of nodes and same connectivity. Our simulations

have shown that use of LDR graphs in 2048 node direct networks can lower the message

latency by 25% as compared with the hypercube. In a 4096 node hybrid network, using

LDR graph as the direct network component achieves a latency of about 8% lower than

the corresponding hybrid network having hypercube as its direct network component. LDR

graphs also achieve better collective communication performance.

Therefore, we see that lower diameter and lower average internode distance in the

topology, along with an efficient routing algorithm, translates to a better communication

performance on the network. Our experiments were done on a detailed contention-based

network model. LDR graphs have proved to be an efficient and scalable network topology.

Their performance makes a case for their use in the large-scale interconnection networks in

the new and upcoming parallel machines.

There is a scope for improving the performance of LDR graphs further. It would be

useful to incorporate a feedback during the generation of the graphs. We currently generate

random graphs and pick the ones with the lowest diameter out of a few attempts. We could

use feedback about link utilization to improve the graph structure from the communication
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perspective. For different random graphs, we could calculate a link utilization metric based

on the number of times a link is used as part of shortest paths, and choose a graph that

optimizes the metric.

The file interface for storing graph data limits the scalability. Replacing the entire

path information by just the next node information allowed us to reduce file sizes and scale

to up to 16K nodes. To scale to larger networks and run long parallel simulations, we could

distribute the information so that each processor stores only parts of the graph instead of

entire graph information.

With the generic nature of the BigNetSim framework, we could try different topolo-

gies which would optimize communication performance further.
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