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Abstract

Parallel discrete event simulation (PDES) of mod-
els with fine-grained computation remains a challeng-
ing problem. We explore the usage of POSE, our Par-
allel Object-oriented Simulation Environment, for ap-
plication performance prediction on large parallel ma-
chines such as BlueGene. This study involves the sim-
ulation of communication at the packet level through
a detailed network model. This presents an extremely
fine-grained simulation: events correspond to the trans-
mission and receipt of packets. Computation is minimal,
communication dominates, and strong dependencies be-
tween events result in a low degree of parallelism. There
is limited look-ahead capability since the outcome of
many events is determined by the application whose per-
formance the simulation is predicting. Thus conservative
synchronization approaches are challenging for this type
of problem. We present recent experiences and perfor-
mance results for our network simulator and illustrate
the utility of our simulator through prediction and vali-
dation studies for a molecular dynamics application.1

1. Introduction

PDES applications with fine-grained computa-
tion present a significant challenge. We present our
simulation environment, POSE, in which we have stud-
ied the major obstacles to effective parallelization
of discrete event models. We have focused our stud-
ies on models with fine computation granularity and a

1 This work was supported in part by the National Science Founda-
tion (NGS 0103645), the National Institutes of Health (PHS 5 P41
RR05969-04), the Defense Advanced Research Project Agency
(NBCH30390004) and the Department of Energy (B341494).

low degree of parallelism. POSE addresses these diffi-
culties with a flexible object model based on the concept
of virtualization, adaptive synchronization strate-
gies, communication optimizations and load balancing.
We discuss POSE in Section 2.

Simulating communication at the packet-level of a
real application on a detailed contention-based network
model for a large parallel computer is a good example of
a discrete event simulation that is difficult to parallelize.
This application presents us with all the challenges we
would like POSE to overcome. It is also an area of im-
mediate interest. New parallel computers with tremen-
dous computational power are being constructed with
surprising frequency. One example is the IBM Blue-
Gene/L which will have 128K processors and achieve
360 TeraFLOPS peak performance. Developing and/or
porting applications for/to such machines will present
new challenges in getting applications to scale to such
large machines. To make use of such machines effi-
ciently, it would help to know how target applications
might perform on them. If we can simulate how the ap-
plication would behave on the large machine, we might
be able to improve the design of the machine before it
is built. We could also predict and optimize the perfor-
mance of the application so that it is ready as soon as
the machine is available. Another motivation for this ap-
proach is that even for existing machines, execution time
for large applications is costly and often involves consid-
erable waiting periods. A simulator could be used to pre-
pare the application by enabling the programmer to per-
form debugging and optimization on the application be-
fore running on the target machine.

The BigSim[29, 30] project incorporates several lev-
els of simulation to accurately predict performance of
parallel applications on specific large parallel machines.
This paper focuses on simulation of detailed contention-
based network models for large parallel machines. It is
impossible to use sequential simulation for large appli-



cations due to the size of the data involved. As we shall
see, parallel simulation of networks with common net-
work traffic patterns is difficult, while simulating the
network with traffic generated by a real application is
even more challenging. The dependencies that exist be-
tween events are strong and can result in an availabil-
ity of work on only a portion of the network at a time,
in turn resulting in a low degree of parallelism. Further,
each individual message results in a long critical path of
events. In addition, since application computation is per-
formed in an earlier stage and recorded in log files, we
are only modeling packet transmissions in postmortem
simulation. Thus there is very little actual computation,
resulting in an extremely small grainsize. Finally, exe-
cution of a log-based simulation makes it difficult to use
look-ahead to determine the safety of an event. This lim-
its us to the use of optimistic synchronization. We dis-
cuss BigSim further in Section 3.

We present our recent experiences with network sim-
ulation and show performance results of our detailed
network simulator in Section 4. We illustrate the util-
ity of our simulator through validation and prediction
studies for a molecular dynamics application in Sec-
tion 5. Finally we discuss our future plans for POSE and
BigSim and present our conclusions in Section 6.

1.1. Related work

As an optimistically-synchronized PDES envi-
ronment, POSE is based on the Time Warp[10, 7]
mechanism. POSE uses a variety of adaptive[6] proto-
cols. One of the throttling mechanisms used by POSE

is the time barrier described in MTW[22]. Breath-
ing Time Warp[24] followed a similar approach. POSE

adapts the size of the time window (similar to [5]) ac-
cording to simulation behavior. A new throttling mech-
anism used by POSE uses an adaptable tolerance which
caps the quantity of speculative events that can be exe-
cuted based on the concept of useful work[17]. This ap-
proach is particularly effective at dealing with bursts
of events at the same timestamp. POSE uses a vari-
ant of speculative execution[16] which was originally
developed to make conservative protocols more ag-
gressive. POSE uses speculation to increase aggres-
siveness to compensate for the throttling mechanisms
used and to complement the virtualization-based ob-
ject model. The approach is lighter-weight but riskier
than Breathing Time Buckets[23] and Breathing Time
Warp because it allows speculative events to gener-
ate future events normally.

SMART [18] is a sequential simulator for simulating
diverse traffic patterns for some common network archi-
tectures. The sequential simulator would limit the scal-

ability of the network and traffic. Another serial simula-
tion of IBM SP systems was [26]. A conservative par-
allel simulation of IBM SP2 network was shown in [3].
MINSimulate [25] focuses on multistage interconnec-
tion, limiting it to a subset of current network topolo-
gies. [2] and [13] focus their efforts on K-ary N-cube
interconnection networks.

Program simulation is used to study the performance
of complex applications when analytical performance
prediction is impractical. It is well known that simula-
tions of such large systems tend to be slow. The direct-
execution [21, 1, 20] approach uses available hardware
resources to directly execute application code to simu-
late architectural features of interest. Á la carte[4] is a
Los Alamos computer architecture toolkit for extreme-
scale architecture simulation which uses a conservative
synchronization engine, the Dartmouth Scalable Simu-
lation Framework (DaSSF)[14]. They have also targeted
their simulations to thousands of processors. LAPSE[8]
is another system which simulated message-passing pro-
grams. However, most existing simulators are designed
for MPI applications. They do not readily apply to the
broader class of parallel languages such as message-
driven paradigms like CHARM++. In message-driven
parallel applications, computation is invoked when a
message arrives. Computation order depends on mes-
sage arrival order. In direct execution, messages are not
delivered in the simulating environment in the same or-
der as they would be on the target machine. This behav-
ior of parallel execution complicates simulation further.

2. POSE

POSE is a general-purpose optimistically-
synchronized PDES environment designed for sim-
ulation models with fine computation granularity
and a low degree of parallelism. POSE[27] is im-
plemented in CHARM++[12], a C++-based parallel
programming system that supports the virtualiza-
tion programming model. Virtualization involves the
decomposition of a problem into � entities that will ex-
ecute on � processors[11]. � is independent of � ,
though ideally � >> � . The application programmer’s
view of the program is of these entities and their in-
teractions; the underlying run-time system keeps track
of the mapping of entities to processors and han-
dles any remapping that might be necessary at run-time.

In CHARM++, these entities are known as chares.
Chares are C++ objects with special entry meth-
ods that are invoked asynchronously from other chares.
Since many chares are mapped to a single proces-
sor, CHARM++ uses message-driven execution to
determine which chare gets control on a proces-
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Figure 1: Components of a poser

sor. A dynamic scheduler runs on each processor
and has a list of messages (entry method invoca-
tions) to select from. The messages are sorted ac-
cording to a queuing strategy (FIFO by default). The
user can attach priorities to messages. The sched-
uler takes the next message from its queue and invokes
the corresponding entry method on the appropri-
ate object. One advantage of this approach is that
no chare can hold a processor idle while it is wait-
ing for a message. Since � > � , there may be other
chares on the same processor that can run in the in-
terim. Thus, using virtualization allows us to maxi-
mize the degree of parallelism. The logical processors
(LPs) from PDES (called posers in POSE) are imple-
mented with CHARM++’s chares. We use timestamps
on messages as priorities and the CHARM++ sched-
uler serves as a presorting event queue.

2.1. The POSE object model

Posers represent sequential entities in the simulation
model. They are similar to LPs, but should encapsulate
much smaller portions of state. POSE requires that paral-
lelism in the model be represented by posers in the sim-
ulation handling events in parallel, but the responsibil-
ity for decomposing a simulation model into the small-
est components possible (maximizing � , the number of
posers) lies with the programmer. This approach differs
from timelines[15] in DaSSF and similar approaches in
that it encourages the maximum amount of decomposi-
tion without regard for how objects might relate. As we
shall see, this choice does not result in significant draw-
backs.

Figure 1 illustrates the structure of a poser. Each
poser has an object virtual time (OVT). This is the vir-
tual time that has passed since the start of the simulation
relative to the object. Posers have event methods which
are CHARM++ entry methods receiving timestamped
messages. The poser encapsulates the state specified
by the programmer and contains a local event queue.
Incoming events are redirected from the CHARM++
scheduler into the appropriate poser’s local event queue.

Degree of Virtualization: #Teams(Posers) x #Workers
(total of 65536 workers)

2048x32 4096x16 8192x8 16384x4 32768x2 65536x1

E
xe

cu
tio

n 
T

im
e

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300 > 720,000 events

> 1.3 million events

> 2 million events

> 2.6 million events

> 3.3 million events

Figure 2: Effects of virtualization

Events are processed according to an instance of a syn-
chronization strategy associated with the poser.

In addressing the problem of fine-granularity, this ap-
proach seems counterintuitive to approaches that cluster
entities together. However, decomposing a model into
posers has many benefits. The poser event queue lim-
its the scope of simulation activity to the poser itself;
since different entities may have dramatically different
behaviors, this limits the effects of those behaviors to a
smaller scope. When checkpointing is performed peri-
odically according to the number of events received by
a poser, this structure enables less frequent checkpoint-
ing on smaller states, reducing overhead and memory
usage. Rollbacks are less likely to occur when the scope
affected by incoming events is smaller. When they do
occur, they cause shorter rollbacks. Decomposing state
into smaller objects makes LP migration simpler. Fi-
nally, this structure paves the way for adaptive synchro-
nization strategies that can fine-tune each LP’s behavior.

The drawbacks of a high degree of virtualization
are the management of information for a much larger
quantity of simulation entities, coupled with the cost of
switching from one such entity to another for each event.

Thus, we need to examine the tradeoffs. We ran a
set of experiments varying the degree of virtualization
of a fixed-size problem using a basic optimistic strat-
egy with no throttling mechanisms. We wanted to see
how virtualization could improve performance by re-
ducing the overheads previously mentioned, but we also
wanted to measure the increased overheads at the high-
est degree of virtualization. These experiments were ex-
ecuted on Cool2 with a synthetic benchmark that al-
lows parallel workers to be grouped together into team
posers (i.e. each team corresponds to a logical process).
Each worker has a single event type. When it receives
an event, it performs some busy work and generates an
event for another worker. The event communication pat-
tern organizes the workers in rings such that 50% of the

2 Cool is a Linux cluster of 8 quad Xeon SMPs with fast Ethernet.



Table 1: Overhead cost breakdown
Teams � Workers per Team

4096 � 16 8192 � 8 16384 � 4 32768 � 2 65536 � 1

FE 38.18 36.19 31.15 31.64 32.33
GVT 61.22 11.26 1.09 1.11 1.27
Sync 1.35 2.37 1.08 1.24 1.42
CP 3.96 3.45 0.98 0.78 0.55
FC 15.40 12.70 1.78 1.89 2.00
RB 0.00 0.00 0.00 0.00 0.00
Com 14.57 14.00 13.98 14.42 15.62
Other 16.28 7.90 6.10 10.90 19.20
Total 149.61 87.87 56.16 61.98 72.39

workers communicate locally and the rest remotely. We
simulated a total of 65,536 workers in each experiment
grouped together in different sized teams. We started
with a low degree of virtualization, 2048 teams of 32
workers each, and ended with maximum virtualization,
65,536 teams of 1 worker each. We ran these experi-
ments on 16 processors on 4 nodes of Cool with several
different program sizes (in terms of number of events
handled). The results are shown in Figure 2.

We found that the benefits of higher degrees of vir-
tualization strongly outweighed the added costs. Fur-
ther, as the problem size increased, higher degrees of
virtualization consistently outperformed lower degrees
of virtualization. It should be noted that we designed
our benchmark to make rollbacks very unlikely, so what
we see in Figure 2 is purely the cost of optimistic syn-
chronization running optimally. Less optimal simula-
tions with rollbacks would be more likely to incur higher
costs for lower degrees of virtualization. Missing points
for a curve indicate that those degrees of virtualization
ran out of either memory or time allotted for the run.

We show a breakdown of the performance in Ta-
ble 1. This table shows the costs in � (averaged per
processor) for various overhead types for the >2 mil-
lion event problem size, varying the degree of virtual-
ization. FE is forward execution, CP is checkpointing,
FC is fossil collection and RB is rollback and cancella-
tion. The optimal performance for this set of runs occurs
with 16,384 teams of 4 workers each. Activities which
are highly dependent on the quantity of objects in the
simulation (GVT, synchronization, fossil collection) are
slightly elevated as the degree of virtualization increases
from there. The most significant type of overhead af-
fected by higher degrees of virtualization is the “Other”
category which includes the cost of creating, distribut-
ing and managing the objects in the CHARM++ run-
time system. Checkpointing costs decrease consistently
as degree of virtualization increases. The most signifi-
cant performance differences are attributable to higher
memory usage for lower degrees of virtualization. As

memory becomes scarce, the types of overhead that fre-
quently deallocate and, to a lesser extent, allocate mem-
ory are most affected. These include GVT, fossil col-
lection and forward execution. A small amount of roll-
back occurs at the lowest degree of virtualization. It is
not enough to result in significant rollback overhead, but
there is some event re-execution cost included in the for-
ward execution times.

What Figure 2 does not show is that a higher degree
of virtualization allows us to run a program on more pro-
cessors than we could with lower degrees of virtualiza-
tion, further increasing the chances of obtaining a bet-
ter speedup. Thus, this “fine granularity of entities” does
not incur significant additional cost and has further ben-
efits that we are not yet taking advantage of. For exam-
ple, having more fine-grained entities is a great benefit
when we use load balancing in our simulations. As we
shall see in the next section, high degrees of virtualiza-
tion will enable fine-tuned adaptive synchronization.

2.2. Adaptive synchronization

In POSE, an object gets control of a processor when it
either receives an event or cancellation message via the
scheduler, or when a new GVT estimate has been calcu-
lated. In the first case, the object’s synchronization strat-
egy is invoked. In the second case, we perform fossil
collection before invoking the strategy. Our basic opti-
mistic strategy handles cancellation messages first and
then checks for any stragglers that may have arrived and
rolls back to the earliest. Finally, it is ready to perform
forward execution steps.

This is where the opportunity to perform speculative
computation arises. In traditional optimistic approaches,
an event arrives, is sorted into the event list and the earli-
est event is executed. The event is the earliest on the pro-
cessor, but may not be the earliest in the simulation, so
its execution is speculative. In our approach, we have a
speculative window that governs how far into the future
beyond the GVT estimate an object may proceed. Spec-
ulative windows are similar to the time windows[22]
used to throttle optimism in other systems. They dif-
fer in how events within the window are processed. In
POSE, all events on a poser with timestamp within the
speculative window are executed as a multi-event. The
later events are probably not the earliest in the simu-
lation and it is likely that they are not even the earli-
est on that processor. The strategy speculates that those
events are the earliest that the poser will receive. This
approach is more aggressive than traditional approaches
because our version of speculative execution does not
“hold back” events that are spawned, to be sent later
when we are sure it is “safe”. Rather they are executed



in the standard way; spawned events are actually sent
to other, possibly remote, posers. Multi-events are dis-
cussed in detail in [28].

Using multi-events, we reduce scheduling and con-
text switching overhead and benefit from a warmed
cache, eliminating some of the drawbacks associated
with the high degree of virtualization. This form of spec-
ulation may increase rollback overhead. However, since
the speculative window itself is the throttling mecha-
nism, and since rollback costs are reduced by being
highly localized due to the high degree of virtualization,
we have many ways to keep rollback cost under con-
trol. We now combine the concepts of poser virtualiza-
tion and speculation with adaptive synchronization.

In POSE, each entity is created with its own instance
of an adaptive strategy which adapts the speculation on
the object to the object’s past behavior, current state and
likely future behavior (given what future events and can-
cellations are queued on the object).

POSE allows for any strategy to be used for posers
of a particular type, and many strategies have been writ-
ten. Our ultimate goal however has been to develop a
single default strategy flexible enough to adapt to a vari-
ety of situations. For this paper, we describe the behav-
ior of this default strategy called Adept.

Adept applies three throttling mechanisms to the ag-
gressive speculation behavior. First, the speculative win-
dow size can be adapted. This controls how far into the
future a poser can progress. Initially, the window size is
infinite. When a rollback occurs, the window is reduced
to the interval between the GVT estimate and the time
at which the straggler arrived. Assuming no other strag-
glers arrive, the window is rapidly expanded to infinity
again after the poser has control only a few times.

The second throttling mechanism limits the quantity
of events comprising a multi-event. A speculative toler-
ance is a percentage of total events executed that did not
prove useful. If a poser is under the tolerance, it may ex-
ecute however many events it can that would keep it un-
der the tolerance, assuming none of the events turned out
to be useful. A non-zero minimum guarantees progress.

The third throttling mechanism takes a snapshot of
the memory footprint of an object, and if it exceeds a
maximum, does not allow the object to process more
events until fossil collection has been performed. Again,
if the object has work that would restrict GVT advance-
ment, it is executed to guarantee progress.

The last two throttling mechanisms are adapted to
each poser. However, the criteria used to determine when
to throttle is collected at processor level, so there is ad-
ditional flexibility in how objects can behave. For exam-
ple, if some objects are using very little memory, others
which need more can be allowed to use it.
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Figure 3: Adept vs. Optimistic

2.3. POSE performance

Early experiments with a simple synthetic benchmark
indicated that Adept performed nearly identically to Op-
timistic under ideal (infrequent rollback, small problem
size) conditions. Adept suffered a small performance
hit for synchronization but ultimately performed with
similar speedup to Optimistic on fewer processors, and
slightly better on more processors. However, under less
ideal conditions with more likelihood of rollback, high
memory usage and high message density for example,
Adept is far superior at adapting to the problem. We
show a Turing3 run of Adept vs. Optimistic in Figure
3 on a Multiple Rings benchmark. This program imple-
ments a set of overlapping rings of events, one started by
each worker object. In this run, there are 10240 objects
and an event density of 20 events per virtual time unit.
The program terminates when all objects have each re-
ceived 2000 events. Thus the total number of events han-
dled is 20,480,000. The average grainsize of the events
is 5 microseconds on Turing. Since the sequential run of
this benchmark ran out of memory, we used the 2 pro-
cessor time for Adept as our base sequential time to il-
lustrate the speedup. Optimistic was unable to complete
runs due to insufficient memory until the 16 processor
experiment. Adept was able to complete a run on 2 pro-
cessors and achieve excellent speedup up to 64 procs.
The superlinearity of the curves is due to the decrease in
the impact of insufficient memory as the number of pro-
cessors increases. At 64 processors the program com-
pleted in 5 seconds and could not speedup beyond that.

As our default strategy for POSE, Adept exhibits
excellent scalability. Figure 4 shows how POSE using
Adept scales with problem size using the Multiple Rings
benchmark. In one experiment, we double the number
of events handled per object. Doubling processors then

3 Turing is a cluster of 640 dual 2GHz G5 processors 4 GB RAM
Apple Xserves connected by Myrinet.
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results in a decrease in the time taken to execute the
double-size simulation. This is largely due to the in-
crease in the size of the multi-events. More events can
be handled in less time since there is less synchroniza-
tion overhead and improved cache performance. Dou-
bling problem size by doubling the number of objects
has quite a different result and clearly illustrates the cost
of increasing the degree of virtualization. The time grad-
ually increases as processors and objects double. This is
largely due to the startup time taken to construct the ad-
ditional objects on the additional processors, but also in-
cludes extra overhead for object management. Since the
number of events per objects remains constant, the size
of multi-events cannot increase.

3. Network simulation

The BigSim project aims at developing techniques
and methods to facilitate the development of efficient
scalable applications on very large parallel machines.
BigSim is based on simulation and performance predic-
tion techniques including network simulation.

Our work in this project has focused on two distinct
user groups. For the scientific community we have pro-
duced a simulation environment[31, 30] for performance
prediction of scientific applications running on large ma-
chines. For designers of HPC systems we have created
a detailed simulation environment for the performance
prediction of future high speed large scale interconnects.

3.1. Application performance prediction

The core of the application performance prediction
system is the BigSim emulator [29, 31]. Using the vir-
tualization of CHARM++ [11], the BigSim emulator
presents the execution environment of a petaflops class
machine. CHARM++ or AMPI[9] applications are com-
piled to run on the emulator just as though it were any
other architecture. They can then be run on an existing
parallel computer and their performance captured in an
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Figure 5: BigNetSim conceptual model

event trace log file. The trace log can then be used for
performance analysis. The network simulation included
within BigSim is a simple latency based network model.

When more precise network behaviors must be stud-
ied, the trace can be loaded into the POSE-based BigNet-
Sim which corrects the recorded timestamps based on
network contention, adaptive routing, hybrid networks,
etc. as determined by the particular model chosen.

3.2. Network performance prediction

BigNetSim facilitates informed decision making for
the design of high speed interconnects. As such it pro-
vides a configurable runtime environment where net-
work parameters, such as buffer size, number of virtual
channels, packet size, adaptive vs fixed routing, etc. can
be set at run time. Furthermore, the design is modular to
support easy extensions by the addition of new topolo-
gies, routing algorithms and architectures (see Figure
5). BigNetSim currently includes support for Torus, 3D-
Mesh, Fat-Tree and Hypercube topologies.

In Figure 5, the traffic generator, NIC, Switch and
Channel are modeled as posers. They rely exclusively
on event messages to communicate with other simula-
tion objects. Messages created on a node are passed to
the NIC, which packetizes the message and sends the
packets to a Channel. The Channel forwards a packet
to a Switch. The Switch has an Arbiter, which uses
the configured routing logic, to select the output Chan-
nel to route the packet. Switch models Virtual Channels
and flow control based on feedback from downstream
Switches and VC selection strategies. Channels in the
path to the destination node receive the packets and pass
them up through Switches. Finally the last channel in
the path passes it to the NIC, which reassembles pack-
ets to form a message and sends it to the node. Sev-
eral network parameters such as packet-size, channel-
bandwidth, channel-delay, switch-buffer-size and a host
of NIC delay parameters can be set in a network config-
uration file, which the simulation reads at runtime.

BigNetSim’s modular nature and the detail of model
entities should enable accurate modeling of current and
future interconnection networks with minimal additional
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code. Higher resolution modeling of NIC behavior is
planned. No modeling is done of message handling pro-
cesses, such as message protocol stack manipulations.

When evaluating a network, it is essential to be able
to study network performance based on expected traffic
loads. The user may choose to load the network by ex-
ecuting an application trace or create standard network
load patterns using the TrafficGen interface. TrafficGen
sends messages from a source node to a destination node
chosen according to a predefined pattern (

�
-shift, ring,

bit transpose, bit reversal, bit complement and uniform
distribution). These patterns are based on communica-
tion patterns in specific applications. Messages are gen-
erated by a deterministic or Poisson distribution.

As shown in Section 4, POSE’s support for virtual-
ization enables BigNetSim to perform and scale well
despite the seemingly heavyweight object implementa-
tion.

4. Performance

We have evaluated the performance of our network
simulator by simulating a uniform distribution of ran-
dom traffic using our TrafficGen module on a simu-
lated 3D Torus network ranging in size from 4x4x4 to
64x32x32. This pattern was chosen because it would
more closely resemble the behavior of an arbitrary col-
lection of applications running on a supercomputer than
the other standard patterns. The randomly chosen des-
tinations result in a repeatable but random asymmetric
load on the network. The network parameters were se-
lected to simulate the direct torus network of the Blue-
Gene/L machine. All runs were made on Turing.

Figure 6 shows the number of POSE-committed
events per second on average. From a network sim-
ulation perspective, a single packet-hop in a network
translates to 6 or 7 events on an average. The sys-
tem scales well up to 64 processors, with larger
networks exhibiting the best scaling beyond 64 pro-
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cessors. At the peak we achieve 1 million committed
events (150,000 packet-hops) per second on 128 proces-
sors for the 8192-node network. We observe that with
increasing number of posers per processor, the num-
ber of events/ � decreases. Another observation is that
the number of events/ � seems to scale well with increas-
ing number of processors regardless of the problem size
or the number of posers.

Figure 7 shows the execution time of BigNetSim for
various network sizes. In this plot, the amount of work
per poser is constant, but the number of posers/processor
doubles with doubling network size. Hence, the time
doubles too. BigNetSim shows good scalability upto a
point beyond which it saturates. This can be explained
by the tradeoff between virtualization and the costs as-
sociated with increasing the number of processors as ex-
pected from our discussion in Section 2. The point of
saturation is around 16 processors for smaller problem
sizes (simulation of a 4x4x4 network) and it increases
with the problem size. Thus, BigNetSim scales better
with increasing problem size. If we were to look at self-
speedup (speedup relative to 1 processor parallel sim-
ulation), we observe linear speedup (evident from Fig-
ure 7).

Figure 8 shows a plot of speedup relative to sequen-
tial simulation time. The distinction between sequen-
tial and parallel simulation should be well understood.
Sequential simulation orders events and executes them
without communication or synchronization overhead.



Parallel simulation has to execute events based on op-
timized predictions, which could cause out of order ex-
ecution and hence rollbacks. Therefore, parallel simula-
tion on one processor is nearly 10 to 12 time slower than
sequential simulation, but it has the promise that with
good scaling on a large number of processors it can per-
form much better than sequential simulation. Further-
more, parallel simulation is essential for problems which
are too large for a single machine. So, we look for a
small break-even point and good scaling above that. Our
simulation demonstrates both these features. The aver-
age breakeven point is 8 or 16 processors and it scales
well beyond that. A promising way to decrease the dis-
crepancy between sequential and parallel execution on
one processor is by further decomposing the posers into
a greater quantity of smaller objects, thus, increasing the
degree of virtualization. This is expected to improve per-
formance as shown in the virtualization benchmark of
Section 2.3.

In the three figures, there are certain missing points.
These are for large number of posers on a small num-
ber of processors which causes it to run out of mem-
ory. This strenghtens the need for a parallel simulation.
For a network size above 8192 nodes, a single processor
run (whether sequential or parallel) runs out of mem-
ory. In the speedup plot we have estimated values for
these missing points based on available sequential data
for smaller network sizes.

5. Performance prediction and validation

We have evaluated BigNetSim for real applications
on very large numbers of processors. One such appli-
cation is the simulation of biomolecules using Molecu-
lar Dynamics. It is one of the important applications for
BlueGene/L and other large parallel machines. The ap-
plication we chose is NAMD [19], which is the current
state-of-art high performance molecular dynamics code
designed for large biomolecular systems. It is one of the
recipients of 2002 Gordon Bell Award for the achieve-
ment of scaling parallel simulation to 3000 processors.

5.1. NAMD validation

We have compared the actual execution time
of NAMD with our simulation of it using BigSim
on LeMieux4. Our validation approach is as fol-
lows. We first run NAMD on a number of real pro-
cessors and record the actual run time. Then we run
NAMD on BigSim emulator with a much smaller num-

4 LeMieux is 750 Quad Alphaserver ES45 node machine at Pitts-
burgh Supercomputing Center (PSC)

ber of processors simulating the same number of proces-
sors used in the original run. This emulation generates
log files that we then simulate with BigNetSim run-
ning the simple latency-based network model. We
record the run time predicted by the simulator and com-
pare with the original run time.

As a NAMD benchmark system we used Apo-
Lipoprotein A1 with 92K atoms. The simulation runs
for a total of 15 timesteps. A multiple time-stepping
scheme with PME (Particle Mesh Ewald) involv-
ing a 3D FFT every four steps is performed. The result
is shown in Table 2. The first row shows the actual ex-
ecution time per timestep of NAMD on 128 to 2250
processors on LeMieux. The second row shows the pre-
dicted execution time per timestep using BigNetSim
on a Linux cluster with network parameters based on
Quadrics network specifications. It shows that the sim-
ulated execution time is reasonably close to the actual
execution time. The predicted run time is not as ac-
curate when number of real processors grows larger.
One possible reason is that we might not have mod-
eled the cache performance and the memory footprint
effects in enough detail.

Table 2: Actual vs. predicted time (in ms) per
timestep for NAMD

PEs 128 256 512 1024 2250
Actual time 71.5 40.3 23.9 17.6 12.8

Predicted time 75.8 43.6 25.1 20.8 16.13

5.2. Parallel performance

To evaluate the parallel performance of the simulator
itself, we ran the BigSim emulator on 64 real processors
with the NAMD program on 2048 simulated nodes con-
figured in a 3D Torus topology with Bluegene/L char-
acteristics. The emulation traces were then used with
BigNetSim on a varying number of processors.

We show simulation execution time for BigNetSim
with NAMD from 2 to 128 processors in Figure 9 and
a corresponding speedup plot relative to one proces-
sor parallel time in Figure 10. It shows that BigNetSim
scales linearly to 8 processors and sub-linearly to 26 on
32 processors. The simulator continues to scale to 63 on
128 processors.

The results in Figure 10 show that BigNetSim has
decent parallel performance even when applied to per-
formance prediction of a real world application. This is
much more challenging than a synthetic benchmark due
to complex dependencies among events resulting in rela-
tively limited parallelism in the simulation. Performance
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Figure 9: BigNetSim execution time with NAMD

is further complicated by the addition of several objects
for each simulated node to handle trace input and per-
form message delivery confirmation.

This particular simulation achieved breakeven with
the sequential simulator at 128 processors. BigNetSim
was able to achieve a much earlier breakeven (16 pro-
cessors, see Figure 8) for the 2048 node network when
using TrafficGen. The reduced parallelism of the appli-
cation trace revealed some implementation problems in
BigNetSim which had been masked by the greater par-
allelism of artificial network loads. On closer inspection
of the execution statistics provided by POSE, we found
that BigNetSim execution time was dominated by roll-
back and GVT overhead. Closer analysis of the BigNet-
Sim implementation indicates that the Switch object is
too large and should be decomposed into smaller ob-
jects. Smaller objects take advantage of POSE perfor-
mance characteristics as described in Section 2.

Simulation of detailed contention-based network
models for predicting parallel performance is still quite
challenging, but we have also achieved decent speedups
relative to one-processor parallel time in [30]. An ad-
ditional challenge is that the Apo-Lipoprotein A1
benchmark itself does not scale well beyond 3000 pro-
cessors. This meant we could not get a credible result
for the large network sizes (i.e. 8192) where BigNet-
Sim achieves its best performance. The 2048 node run
resulted in a small problem size of 3.5 million events, re-
solved by the sequential version of BigNetSim in a few
minutes on a single processor.

6. Conclusions and future research

We have seen that simulation of interconnection net-
works for very large parallel computers presents a sig-
nificant challenge, particularly when we wish to simu-
late their behavior for performance prediction of real ap-
plications. This problem presents two of the major draw-
backs that make PDES challenging: fine granularity of
computation and low degree of parallelism.

POSE has made it possible to study this and other
problems by improving the chances of being able to
scale such problems to greater numbers of processors. It
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Figure 10: BigNetSim speedup with NAMD

incorporates a new object model based on virtualization
and adaptive speculative strategies that can tune simula-
tion behavior to a variety of applications. For our Traffic-
Gen detailed network simulations, BigNetSim achieves
excellent problem-size scaling, particularly for larger
problem instances on greater numbers of processors.
BigNetSim also exhibits excellent self-scaling (relative
to single processor parallel runs). It is also capable of
achieving break-even points relative to sequential time
at 8 processors.

In the future, we plan to explore and expand the POSE

load balancing framework as that seems key to improv-
ing the performance of this particularly challenging ap-
plication. We also plan to enhance the adaptive capa-
bilities of our synchronization strategies. BigNetSim’s
oversized Switch object will be broken up into smaller
objects to lower the breakeven point and increase over-
all performance. Furthermore, higher fidelity modeling,
specifically NIC performance constraints, will be stud-
ied. Performance prediction for other applications (such
as Finite Element Simulations, larger NAMD bench-
marks and Car Parinello Ab Initio Molecular Dynam-
ics) will be undertaken. We anticipate that imminent ac-
cess to actual Bluegene/L machines will allow us to im-
prove the overall fidelity of the BigSim Project.
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Proceedings of the 16th International Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC
03), College Station, Texas, October 2003.

[10] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M.
Diloreto. Time warp operating system. In Proceedings
of the eleventh ACM Symposium on Operating systems
principles, pages 77–93. ACM Press, 1987.
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