
Architecture for supporting Hardware Collectives in Output-Queued
High-Radix Routers

Sameer Kumar, Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
{skumar2, kale}@cs.uiuc.edu

Craig Stunkel
IBM T.J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

stunkel@us.ibm.com

Abstract

Collective communication performance is critical for
many applications. In this paper, we present an architec-
ture to efficiently support collective operations (like multi-
casts and reductions) in the switches of parallel computer
interconnects. We present an output queuing switch archi-
tecture with cross-point buffering. Output queuing archi-
tectures have been less popular in the past as they require
more internal speedup and buffering. However, with cur-
rent technology it is straightforward to build output-queued
switches. We demonstrate in this paper that output-queued
architectures make multicasts and reductions fairly easy
to implement efficiently. We show the scalability of our
schemes to a large number of switch ports. We present
performance of multicasts and reductions on individual
switches and networks of switches. We assume a fat-tree
topology for the networks of switches. We also present sim-
ulation results based on synthetic workloads that emulate a
molecular dynamics application.

1 Introduction

Collective communication is a critical communication
operation involving all or a large number of processors in
the system. Traditional approaches to optimizing collec-
tive communication use processor-based optimization algo-
rithms. Processor-based optimization schemes send several
point-to-point messages. For example a broadcast can be
implemented as point-to-point messages sent along a bino-
mial tree rooted at the source. The root processor sends
messages to its children. As the children receive message

they send those messages to all their children. This scheme
haslog(P) phases of point-to-point messages.

Software collective optimization schemes have several
problems. For short messages, the broadcast completion
time is dominated by the CPU and the network interface
controller (NIC) overheads of sending the messages. Large
messages being sent by the several children may contend
for the same communication channels. Software contention
avoidance schemes may have to use barriers to keep mes-
sages synchronized [10]. Good collective performance also
requires that all intermediate processors immediately pro-
cess and forward the incoming message. Performance is
affected if one of the intermediate processors is running
an operating system daemon [4], which can delay the col-
lective operation. Moreover, with message driven execu-
tion [8] and asynchronous collectives [9] it is possible that
the remote processor is busy doing other work and cannot
process the message immediately delaying the broadcast
completion.

For the above reasons collective communication support
is necessary in the communication hardware. One of the
approaches studied in literature implements collectives in
the network interface. This can reduce the CPU overhead
of sending messages as the processors are less involved in
the collective operation. This scheme is also unaffected
by operating system daemon issues. Performance improve-
ment of network interface reductions has been presented by
Panda et. al. [15]. However, performance of collectives can
be limited by the slow NIC hardware. Such collectives ex-
change several point-to-point messages incurring high NIC
software overhead. Large messages from different NICs
may also contend with each other.

We believe that collective communication should be sup-

ported in the switching network. Both multicasts and
reductions should be supported in the network switches.
Some current clustering interconnects like Quadrics [20]
QsNet [16] and Mellanox [14] Infiniband [7] have multi-
cast support in their switches. But multicast performance
is restrictive as these switches have input-queued archi-
tectures [12]. For example, in Quadrics QsNet only con-
secutive ports can be multicast to. Input queuing archi-
tectures require complex centralized arbitration to achieve
high utilization, and are not a natural match for multi-
cast [19, 13, 12]. Many popular interconnects today also
do not have reduction support in their switches.

In this paper, a switch-based solution to optimize mul-
ticasts and reductions is presented. We propose an out-
put queuing architecture with crosspoint buffering. Our so-
lution derives from existing literature and further extends
it. In the past output queuing architectures have been less
popular because they require higher internal bandwidth and
more memory. But, with the current ASIC technology
it is possible to build crosspoint-buffered output-queued
switches. Our switch architecture will support efficient mul-
ticasts and reductions. With basic multicast and reduction
support in switches other collectives like barrier, all-reduce
and all-gather can be easily implemented in the network
hardware. For example, all-reduce can be implemented as a
reduce followed by a broadcast.

We evaluate our switch architecture with several point-
to-point and collective benchmarks. We show the through-
put and latency of collective operations on output-queued
routers. We simulate independent switches and networks
of switches. To support collectives in the network a span-
ning tree has to be built on the network topology, which is
topology specific. In this paper we assume a fat-tree topol-
ogy [11, 17]. Fat-trees are a popular network topology used
by several interconnects like Quadrics QsNet [16], Infini-
band [7], IBM SP networks. Fat-tree networks have high bi-
section bandwidth and can be scaled to thousands of nodes.
In this paper, we present schemes to build collective span-
ning trees on fat-tree networks and the performance of col-
lectives using these spanning trees.

We also present the network throughput and latency
when several collectives happen simultaneously. Applica-
tions like NAMD [18] (a scalable molecular dynamics ap-
plication) and CPAIMD [24] (a quantum chemistry appli-
cation) need multiple such simultaneous collectives. The
advantages of hardware collectives is shown through a syn-
thetic benchmark that emulates the collectives in NAMD.

2 Router Architecture

Several input and output queuing architectures have been
proposed for high performance interconnect switches. In-
put queuing (IQ) schemes allow simpler data flow but re-

quire centralized arbitration to achieve high utilization. IQ
routers also suffer from head of line blocking which re-
stricts their throughput. Using multiple virtual channels
and smart buffer management improves the performance
of input-queued routers [22, 23, 5].Virtual output queu-
ing [13] (VOQ) can fully utilize the switch. Here each in-
put queue has reserved buffer space for every output queue.
Virtual output queuing also has a centralized arbiter and re-
quiresO(K2) buffer space, where K is the number of ports.

We believe that switch design should have efficient sup-
port for multicasts and combines. Input queuing (IQ) and
virtual output queuing (VOQ) do not handle multicasts ef-
ficiently as they have centralized arbitration [19, 12]. VOQ
can achieve full utilization for multicast if every input port
has(2K − 1) queues in aKXK switch, one for every pos-
sible subset of output ports. As this requires a tremendous
amount of memory, IQ multicast scheduling algorithms use
heuristics. Performance can sometimes be severely affected
if there is contention for outputs by different multicasts [12].

Two schemes have been proposed to handle multicasts
in IQ routers [12, 19, 13], (i) No fanout splitting, and (ii)
fanout splitting. Herefanoutrefers to the number of mul-
ticast destination ports. Inno-fanout-splitting, a multicast
packet is only sent out if all destination ports are available
in that arbitration cycle. The crossbar is used only once,
but no-fanout-splitting may require several arbitration cy-
cles to send the packet out and free the input buffer for
that packet. No-fanout-splitting is good for multicasts with
small fanouts.

In the fanout-splittingscheme a multicast packet is sent
to all output ports that are available in that arbitration cycle.
In this scheme the multicast packet uses the crossbar band-
width for several cycles. The maximum achievable utiliza-
tion for multicast is presented in [12], which is far from full
utilization for many traffic patterns. IQ multicast schemes
can also have deadlocks in a network of switches.

In this paper, we show the effectiveness of output queu-
ing for hardware collectives. Packets in output queuing are
buffered on the output ports of a switch before being sent
out. Output queuing has distributed arbitration where each
output decides which packet to send independent of other
outputs. This architecture is less commonly used as it re-
quires more internal speedup to let input ports talk to several
output ports simultaneously. With current ASIC technology
it is possible to build output queuing switches. Figure 1(a)
shows an output-queued router with buffers at the outputs.

Popular output queuing routers in the past have used
shared buffers between output ports [22]. Such shared
buffer schemes have limited scalability with respect to link
bandwidth and number of ports. We use crosspoint buffer-
ing in our router architecture to make the router support
high bandwidth links efficiently. Cross-point buffering
guarantees that there is a reserved buffer for each pair of

2

���
���
���
���

���������
��� ������
���
���

���
���
������

.

..

Input 0

Input 1

Input K−1 ..
.

Output 0

Output 1

Output K−1

..

..

..

K X K
Crossbar

(a) Switch Design

Input 0

Input 1

Input K−1

Output 0 Output 1 Output K−1

(b) Crosspoint Buffers

Figure 1. Crosspoint Buffering flow control

input and output ports. A graphic description of cross-point
buffering is shown by Figure 1(b). Each input port has
some reserved memory on every output port. Hence the
total buffering required isO(P 2). Packets arriving on in-
put ports are immediately sent to the crosspoint determined
by the destination output queue. Our output queuing router
with cross point buffering is similar to the SAFC scheme
presented in [23]. But [23] only presents the point-to-point
performance on one switch. We are mainly concerned with
multicast and reduction performance one one switch and
networks of switches.

We use virtual cut through routing and credit based flow
control [2] between switches. Each switch keeps track of
the buffer space available in the next switch. Packets are
only sent out if buffer space is guaranteed on every port of
the next switch. With crosspoint buffering this implies that
all crosspoints for the current input port should have buffer
space available for this packet. The flow control is imple-
mented through a credit counter. This counter is initially
set to the maximum buffer space at each crosspoint and as
packets are sent out it is decremented. When ever the next
switch dispatches a packet it sends back the credits to re-

ceive more packets.
We show in the next few sections that multicasts and

reductions are efficient and easy to implement in such an
output-queued architecture. We first show the feasibility of
such an architecture.

Feasibility of the Output Queuing architecture:Suppose
we plan to build an Infiniband 4X switch with a bandwidth
of 10Gbps per port. We would also like to support 20m ca-
bles or 200ns of round trip time (RTT) . Hence, we would
need atleast 250 bytes of memory at each crosspoint. It is
usually good to have two or four RTTs for good switch per-
formance. For an 8 port switch the total memory require-
ment is about 64KB which is easily available in modern
ASICs. For a 32 port switch we need 512KB to 1MB of
buffer space. With current ASIC technology this should still
be possible.

Multicast: Our credit based flow control scheme ensures
that when a packet is sent out buffer space is available on
all cross-points corresponding to this input port. So for ev-
ery multicast buffer space will be available on every output
port. On arrival, the multicast packet is immediately sent
to all the ports determined by the destination address. The
multicast packet only uses the crossbar once. Flow-control
credits for this multicast packet are only sent back after all
multicast packets have been sent out. Hence this scheme
can achieve full throughput and also avoid deadlock issues
of input queuing schemes.

Reduction: Our design also supports theCombineoper-
ation which can be used to support reductions and barriers
in hardware. We extend the barrier combine unit presented
in [21] to perform reductions. The combine unit receives
packets from the crossbar output and performs reductions.
Every reduction has access to local state. For example, in
the global sum operation the local state can store the current
partial sum. For a global array sum, the local state could be
an array of floating point numbers. This local state is up-
dated by the combine unit whenever a reduction packet ar-
rives. After all reduction packets have been processed, the
combine unit sends a reduction packet back into the cross-
bar to be sent to the parent switch in the spanning tree.

The combine unit connects from the output port through
a feedback to an input port in the switch, as demonstrated in
Figure 2(a). The combine unit behaves like any other output
port in the switch. Reduction packets arriving on input ports
of the switch are buffered at the output port connected to
the combine unit before being processed. The architecture
of the combine unit is shown in Figure 2(b).

It can take a few cycles to receive reduction packets,
as the entire packet is needed to detect errors. (We do
not explicitly simulate errors but we do model the delays.)
The header of the packet is stored in the control register.
The combine logic uses the address in the packet header to
lookup the routing table for the local state of the current re-

3

K+1 X.
..

....

Input 0 Output 0

Output 1Input 1

Input K−1

Combine Unit

Output K−1

K+1
Crossbar

(a) Switch Design with Combine Unit

Logic
Barrier

Control Reg

State Reg

From Crossbar Output

To Crossbar Input

MUX Control

Routing
Table

State
Combine

(b) Combine unit Architecture

Figure 2. Combine unit in the Output-Queued
Router

duction. In the following cycles the logic unit computes and
updates the local state based on the data from the packet.

For short reductions and barriers it may be possible
to pipeline packet arrival and computation to process one
packet every cycle [21]. But for larger reductions involving
several data points, the combine unit may stall on each com-
bine operation. For switches with a large number of ports a
single combine unit may become a point of contention. As
ASIC speeds are much slower than custom designed CPU
speeds, this may hamper the overall efficiency of the global
reduction operation.

Figure 3(a) shows the switch architecture with ’r’ com-
bine units. The combine units are organized as a tree with
r − 1 leaves and one parent (Figure 3(b)). The leaves pro-
cess the reduction packets from a subset of ports and pass
their partial result to the root of the tree. Such a hierarchical
design scales to more number of ports as several combines

.

..
....

Input 0 Output 0

Output 1Input 1

Input K−1
Output K−1

Crossbar

.

..
Combine Unit r−1

Combine Unit 0

K+r X K+r

(a) Switch withr combine units

Combine Unit 0 Combine Unit 1

Combine Unit 4

Combine Unit 2 Combine Unit 3

Input 0−K/4−1 K/4−K/2−1 K/2−3k/4−1 3K/4−K−1

(b) Combine units organized in a tree (r = 5)

Figure 3. Combine units in the Output-
Queued Router

at the leaves can happen simultaneously.

2.1 Building a collective spanning tree

Spanning trees are essential to support collectives in the
network hardware. These spanning trees can be directed
trees where packets only travel in one direction on each
hop. A broadcast with one source needs such a tree. If
the network time to do a broadcast does not depend on the
root of the spanning tree, we can also build undirected span-
ning trees for broadcasts. Here any leaf of the tree can do
a broadcast with the same overhead. It is possible to build
such a tree in a fat-tree network. The time to do a broadcast
would beO(log(P)) independent of which leaf has sent the
broadcast message. Our switch design has support for undi-
rected spanning trees. Such undirected trees save routing
table memory as any leaf can send messages. With directed
trees [21] each sender would require a separate tree.

The routing table has a bit vector of destination ports for

4

each collective address, as opposed to a parent and a list of
children. For a multicast operation packets are sent to all
ports set except the port on which the packet arrived on.

We implement combines as follows: suppose a routing
table destination bit-vector has k outputs set, then the com-
bine manager would process k-1 reduction packets and send
the current partial result to the remaining port on which it
did not receive a packet.

Both multicasts and combines use the same routing ta-
ble entries. The tag in the packet determines whether the
operation is a multicast, barrier, reduction etc.

2.2 Fat-tree Networks

���
���
���

���
���
���

Level2

Level1

Level0

Figure 4. Fat-tree with 16 nodes

In this section, we describe our design to build collective
spanning trees on network topologies. We take fat-trees as
an example of an interconnect topology. Fat-trees are gen-
eralizations of k-ary n-trees [17]. Figure 4 shows a 4-ary
2-tree network. Routing in a k-ary n-tree has two phases, (i)
the upward phase where a packet is sent to any of the low-
est common ancestors of the source and the destination, (ii)
the downward phase where the packet is routed from this
ancestor to the destination through a fixed path.

This scheme can be extended to support collectives as
follows: a multicast packet is sent to one of the lowest com-
mon ancestors of all the nodes from where it is routed to
all the destinations in the tree. The advantage of using one
common ancestor for all the nodes is that the spanning tree
can be used by any leaf to do a multicast.

Collective tree algorithms for the Quadrics QsNet are
presented in [3]. Here several trees are built to support
hardware multicast on a discontinuous set of nodes. This is
because the Quadrics network can only multicast to a con-
tiguous set of nodes. Our switch architecture places no such
constraints. We propose schemes to build several spanning
trees to support multiple simultaneous multicasts and reduc-
tions.

Figure 4 illustrates a simple collective tree building al-
gorithm. In the figure, the portK − 1 is used to go up to
the lowest common ancestor of all the nodes. Routes from
this ancestor to all the destinations constitute the spanning

tree. This simple scheme would lead to a load-imbalance
among the top level switches when several multicast trees
need to be built. An more effective tree building algorithm
is presented below :

buildTree(id, destlist, swlist, tlist, up)
id : the switch id of the current switch
destlist : list of processor destinations
swlist : list of previous switches
tlist : list of treeInfos, where each
treeInfo contains the list of output ports
at that switch
up : boolean flag that shows direction

begin
swlist.insert(id);
//Need to go further up
if(!inHighestLevel(id, destlist) && up) {

parent = leastLoadedParent(id);
buildTree(parent,destlist,swlist,

tlist, true)
}

//Going down in the fat-tree
for count : 0 -> numPorts/2 - 1

if(child[count] routesto destlist) {
tlist[my_pos].insert(count);
buildTree(child[count],destlist,

swlist,tlist, false);
}

end

HereleastLoadedParent()gets the least loaded parent for
the current switch. The load of the switch is determined by
the number of multicast trees passing through that switch.
This algorithm minimizes contention on the upward path of
the packet. It also load-balances the routing memory re-
quired for each collective operation by choosing switches
with fewer collective trees passing through them.

3 Network simulation

We simulated switches with the above architecture using
POSE [25] which is a parallel event driven simulation lan-
guage. We simulated 8 port and 32 port routers in a fat-tree
topology with adaptive routing. Table 1 shows the param-
eters of our simulation. These parameters are derived from
Infiniband 4X interconnects.

We first present the throughput and packet latency of
point-to-point communication using the well known com-
munication patternstranspose, bit reversal, complement
and uniform. We simulated a 256 node fat-tree network
with 8 port and 32 port output queuing switches. We also
varied the amount of buffer space at each crosspoint in the
switch.

5

Parameter Value
Bandwidth 10 Gbps
Packet Size 256 bytes

Channel Delay 20 ns
Switch Delay 90ns
Switch Ports 32
ASIC Speed 250 Mhz

NIC Send Overhead 1300 ns
NIC Recv. Overhead 1300ns

Table 1. Simulation Parameters

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
til

iz
at

io
n

Offered Load

complement
transpose

reversal
uniform

Figure 5. Throughput on a 256 node network
with 8 port switches and 2 packet buffers

Figures 5, 6, 7 and 8 show the throughput and response
times with 8 port switches. Figures 9, 10, 11 and 12 show
the performance of 32 port switches.

Performance is best with 32 ports and 4 packets for
each crosspoint. With 32 port switches the fat-tree has 32
switches organized in two levels. Since complement is con-
tention free [17, 6] its throughput is100% at full load. Uni-
form, Transpose and Reversal also have good throughput of
about93%. This high throughput is due to output queuing,
adaptive routing [1] in fat-trees and the fact that there are
only two levels or 3 points of contention in the entire net-
work. Response times are also good for Complement and
Uniform and only blow up for Transpose and Reversal for
load factors greater than 0.9.

A performance evaluation of 8 port input-queued routers
and a 256 node fat-tree networks is presented in [17]. Our
output queuing routers perform better for all permutations
with close to full throughput.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

(u
s)

Offered Load

complement
transpose

reversal
uniform

Figure 6. Latency on a 256 node network with
8 port switches and 2 packet buffers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
til

iz
at

io
n

Offered Load

complement
transpose

reversal
uniform

Figure 7. Throughput on a 256 node network
with 8 port switches and 4 packet buffers

3.1 Multicast Performance

The performance of multicast on an 8 port switch is pre-
sented in Figure 13. Here each port sends to a packet to
random destinations and with an average fanout of 4. Pack-
ets are generated on each port with a Poisson distribution
with a mean inversely proportional to the load factor.

As the mean fanout of the multicast is four, performance
saturates at a load factor close to 0.25. With only two nodes
sending data the performance of multicast saturates at a load
factor of 0.8, as shown in Figure 14. These results are better
than the performance of virtual output-queued routers, pre-
sented in [19], where for un-correlated traffic with fanout of
4 the performance for a 2X8 switch is 0.65 and for an 8X8
switch it is 0.22.

Figure 15 shows the multicast latency for a 256 node fat-

6

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

(u
s)

Offered Load

complement
transpose

reversal
uniform

Figure 8. Latency on a 256 node network with
8 port switches and 4 packet buffers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
til

iz
at

io
n

Offered Load

complement
transpose

reversal
uniform

Figure 9. Throughput on a 256 node network
with 32 port switches and 2 packet buffers

tree network. Here each node sends a multicast packet to a
random set of destinations with an average fanout of 8. It
can be seen that the latency is stable for load-factors under
0.125, showing the effectiveness of our scheme on a net-
work of switches.

3.2 Reduction Performance

The simulated performance of a reduction is shown in
Figure 16 for a fat-tree network with 256 nodes. With only
one reduction a network with 8 port switches performs bet-
ter than a network with 32 port switches for message sizes
greater than 64 bytes. The 32 port performance degrades
with increasing message size because of the stalls in the re-
duction pipeline for large packets (Section 2).

Multiple combine units enhance the performance of 32

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

(u
s)

Offered Load

complement
transpose

reversal
uniform

Figure 10. Latency on a 256 node network with
32 port switches and 2 packet buffers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
til

iz
at

io
n

Offered Load

complement
transpose

reversal
uniform

Figure 11. Throughput on a 256 node network
with 32 port switches and 4 packet buffers

port switches. Reduction completion time with 32 port
switches and 5 combine units is shown in Figure 16. (Re-
ductions on fat-tree networks use only one port in the up-
ward path and a maximum of K/2 ports. Hence the effec-
tive number combine units is actually 3.) Notice this per-
formance is good even with large reductions.

4 Synthetic MD benchmark

In this section, we present the advantages of having
hardware collective support in the network. We present
the performance of a synthetic benchmark that emulates
our molecular dynamics application NAMD. Processors in
NAMD multicast coordinates to a small subset of proces-
sors which compute forces on those atoms and return results
back to the source processor. In the synthetic benchmark,

7

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

(u
s)

Offered Load

complement
transpose

reversal
uniform

Figure 12. Latency on a 256 node network with
32 port switches and 4 packet buffers

P/16 processors multicast data to random destinations with
an average fanout of16. In the benchmark on 256 nodes,
16 nodes send multicast messages with an average fanout of
16. Here fanout represents the number of destination nodes
of a multicast.

Figures 17 and 18 show the performance of this syn-
thetic benchmark with hardware multicast and multicast
with point-to-point messages on 256 nodes. The figures
clearly show the advantage of hardware multicast. As the
network with 8 ports has more levels and hence more points
of contention, hardware multicast has more performance
gains. On parallel systems with thousands of nodes even
with 32 port switches there will be several levels and more
contention for switch outputs. We believe that performance
gains of hardware collectives on such large systems are in-
dicated in the 8 port plots.

5 Summary and Future Work

In this paper, we present the advantages of output queu-
ing for supporting hardware collectives in parallel system
interconnects. We showed that an output-queued router
with crosspoint buffering achieves better performance with
multicast than some of the related work presented in liter-
ature. Multicast is quite easy to implement in our router
and it avoids deadlocks and other problems faced by input
queued routers.

We show that output queuing also has impressive per-
formance with permutations on fat-tree networks. We are
able to achieve almost full network throughput for common
permutations with 32 port switches and 4 packet buffers.
Large radix crossbars enable us to build fat-tree networks
with fewer levels which minimizes contention. Thus we

 0

 2

 4

 6

 8

 10

 0 0.05 0.1 0.15 0.2 0.25 0.3

la
te

nc
y

(u
s)

Offered Load

uniform 8x8, avg. fanout=4

Figure 13. Response time for multicast traffic
on an 8X8 switch with an average fanout of 4

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

la
te

nc
y

(u
s)

Offered Load

uniform 2x8, avg. fanout=4

Figure 14. Response time for multicast traffic
on a 2X8 switch with an average fanout of 4

show the need to build large radix routers.
We also present schemes to support reductions in

switches. We extend a barrier scheme presented in literature
to support reductions. We show that the scheme with only
one barrier unit does not scale for large packet reductions.
We then present a hierarchical scheme that scales to high
radix routers and large reductions. A performance compar-
ison of the two schemes is also presented in the paper.

In this paper, we present an algorithm to build span-
ning trees on fat-tree networks. This greedy algorithm uses
heuristics that aim at minimizing contention on the upward
path of packets and also the routing memory required for
the collectives. We also present the performance of several
simultaneous multicasts. Such simultaneous collectives are
used by NAMD.

We plan to study output queuing switch with input flow-

8

 0

 2

 4

 6

 8

 10

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

la
te

nc
y

(u
s)

Offered Load

uniform, avg. fanout=8

Figure 15. Multicast response time on a 256
node fat-tree network with an average fanout
of 8

 0

 2

 4

 6

 8

 10

 12

 14

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

la
te

nc
y

(u
s)

Reduction Size (bytes)

32 Ports, r=1
8 Ports,r=1

32 Ports,r=3

Figure 16. Reduction Time on 256 nodes

control buffers. For Infiniband 4X, buffer space at cross-
points may not be a serious issue. However with higher
bandwidth networks the RTT would become several packets
requiring input flow-control buffers. Having such an input
buffer will reduce total buffer space but may increase the
hardware logic.

References

[1] Y. Aydogan, C. B. Stunkel, C. Aykanat, and B. Abali.
Adaptive source routing in multistage interconnection net-
works. InProceedings of the International Parallel Process-
ing Symposium, pages 258–267, 1996.

[2] Blackwell, T. Chang, K. Kung, H.T., and L. D. Credit-based
flow control for ATM networks. InProc. of the First Annual
Conference on Telecommunications R&D in Massachusetts,
1994.

 0

 500

 1000

 1500

 2000

 0 1000 2000 3000 4000 5000 6000 7000 8000

la
te

nc
y

(u
s)

Message Size (bytes)

32 port, hardware multicast
32 port, pt-to-pt

Figure 17. Comparison of hardware multicast
and pt-to-pt messages for several small si-
multaneous multicasts of average fanout 16

[3] S. Coll, J. Duato, F. Petrini, and F. J. Mora. Scalable
hardware-based multicast trees. InSupercomputing 2003,
Phoenix, AZ, November 2003.

[4] S. P. Darren J. Kerbyson, Fabrizio Petrini. The Case of the
Missing Supercomputer Performance: Achieving Optimal
Performance on the 8,192 Processors of ASCI Q. InSuper-
computing 2003, November 2003.

[5] M. Galles. The sgi spider chip. InProceedings of Hot Inter-
connects IV, pages 141–146, 1996.

[6] S. Heller. Congestion-free routing on the cm-5 data router.
LNCS, 853:176–184, 1994.

[7] Infiniband Trade Association. Infiniband Architecture Spec-
ification, Release 1.0, October 2000.

[8] L. V. Kale and S. Krishnan. Charm++: Parallel Program-
ming with Message-Driven Objects. In G. V. Wilson and
P. Lu, editors,Parallel Programming using C++, pages
175–213. MIT Press, 1996.

[9] L. V. Kale, S. Kumar, and K. Vardarajan. A Framework for
Collective Personalized Communication. InProceedings of
IPDPS’03, Nice, France, April 2003.

[10] S. Kumar and L. V. Kale. Scaling collective multicast on fat-
tree networks. Technical Report 03-11, Parallel Program-
ming Laboratory, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, 2003.

[11] C. Leiserson. Fat-trees: Universal networks for hardware
efficient supercomputing.IEEE Transactions on Computers,
35(10):892–901, 1985.

[12] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and
F. Neri. On the throughput of input-queued cell-based
switches with multicast traffic. InProceedings of IEEE In-
focom, 2001.

[13] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and
M. Horowitz. Tiny Tera: A packet switch core.IEEE Micro,
17(1):26–33, /1997.

[14] Mellanox Ltd. http://www.mellanox.com.
[15] A. Moody, J. Fernandez, F. Petrini, and D. K. Panda. Scal-

able nic-based reduction on large-scale clusters. InSuper-
computing 2003, Phoenix, AZ, November 2003.

9

 0

 500

 1000

 1500

 2000

 0 1000 2000 3000 4000 5000 6000 7000 8000

la
te

nc
y

(u
s)

Message Size (bytes)

8 port, hardware multicast
8 port, pt-to-pt

Figure 18. Comparison of hardware multicast
and pt-to-pt messages for several small si-
multaneous multicasts of average fanout 16

[16] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie. Perfor-
mance Evaluation of the Quadrics Interconnection Network.
Cluster Computing, 6(2):125–142, April 2003.

[17] F. Petrini and M. Vanneschi. K-ary N-trees: High perfor-
mance networks for massively parallel architectures. Tech-
nical Report TR-95-18, 15, 1995.

[18] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. NAMD:
Biomolecular simulation on thousands of processors. In
Proceedings of SC 2002, Baltimore, MD, September 2002.

[19] B. Prabhakar, N. McKeown, and R. Ahuja. Multicast
scheduling for input-queued switches.IEEE Journal of Se-
lected Areas in Communications, 15(5):855–866, 1997.

[20] Quadrics Ltd. http://www.quadrics.com.
[21] R. Sivaram, C. Stunkel, and D. Panda. A reliable hardware

barrier synchronization scheme. InProceedings of IPPS
1997, pages 274–280.

[22] R. Sivaram, C. B. Stunkel, and D. K. Panda. HIPIQS:
A high-performance switch architecture using input queu-
ing. IEEE Transactions on Parallel and Distributed Systems,
13(3):275–289, 2002.

[23] Y. Tamir and G. L. Frazier. High performance multiqueue
buffers for vlsi communication switches. InProceedings
of 15th International Symposium on Computer Architecture
(ISCA), pages 343–354, 1988.

[24] R. Vadali, L. V. Kale, G. Martyna, and M. Tuckerman. Scal-
able parallelization of ab initio molecular dynamics. Tech-
nical report, UIUC, Dept. of Computer Science, 2003.

[25] T. Wilmarth and L. V. Kaĺe. Pose: Getting over grainsize
in parallel discrete event simulation. In2004 International
Conference on Parallel Processing, page (to appear), August
2004.

10

