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Abstract

Current parallel programming approaches, which typically use message-passing and shared-

memory threads, require the programmer to write considerable low-level work management

and distribution code to partition and distribute data, perform load distribution and bal-

ancing, pack and unpack data into messages, and so on. One solution to this low level of

programming is to use processor virtualization, wherein the programmer assumes a large

number of available virtual processors and creates a large number of work objects, combined

with an adaptive runtime system (ARTS) that intelligently maps work to processors and

performs dynamic load balancing to optimize performance. Charm++ and AMPI are imple-

mentations of this approach. Although Charm++ and AMPI enable the use of an ARTS, the

program specification is still low-level, requiring many details. Furthermore, the only mech-

anisms for information exchange are asynchronous method invocation and message passing,

although some applications are more easily expressed in a shared memory paradigm.

We explore the thesis that compiler support and optimizations, and a disciplined shared

memory abstraction can substantially improve programmer productivity while retaining most

of the performance benefits of processor virtualization and the ARTS.

The ideas proposed in this thesis are embodied in a new programming language, Jade,

based on Java, Charm++ and AMPI. The language design uses the Java memory model,

automating memory management and eliminating void pointers and pointer arithmetic. In

addition, by automating various routine tasks in Charm++, programmer productivity is

substantially improved. Jade introduces Multiphase Shared Arrays (MSA), which can be

shared in read-only, write-many, and accumulate modes. These simple modes scale well
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and are general enough to capture the majority of shared memory access patterns.

We present novel uses of known compilation techniques, as well as new compile-time

analyses suggested by the needs of ARTS. One optimization strip-mines MSA loops and

optimizes away a test that checks if a page is present in the local MSA cache, resulting in

single-cpu MSA performance matching that of a sequential program. Another optimization

generates guarded pack/unpack code that only packs live data. This significantly reduces the

time taken and disk size needed to checkpoint (or migrate objects within) large applications.

The Jade language and compiler system described in this thesis can serve as the framework

for further research into compiler-based multi-paradigm ARTS-supported parallel program-

ming built upon processor virtualization.
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Chapter 1

Introduction

A promising approach to parallel programming that the Parallel Programming Laboratory

(PPL) has been exploring for the past decade is to effect an “optimal” division of labor

between the application programmer and the programming system. Processor virtualiza-

tion(PV), which requires the programmer to decompose their application into a large num-

ber of interacting objects, is a foundational part of this approach. The adaptive runtime

system (ARTS) is responsible for mapping the objects to processors and managing them.

The “objects” may be true C++ objects, or they may be user-level threads running MPI[12].

In either case, the model requires strict encapsulation: each object is allowed to access only

its own variables and only accesses other objects’ data via well-defined interfaces such as re-

mote method invocation, message passing, or certain information sharing abstractions such

as readonly data.

This virtualization approach leads to several benefits. It provides powerful scalability,

efficient execution on both shared and distributed memory architectures and a simple pro-

grammer cost model for the various features of the language. Most importantly, it allows

the ARTS to do object migration and automatic dynamic measurement-based load balancing

[33, 17], automatic checkpointing, out-of-core execution, dynamically shrink or expand the

set of processors used by the job[38], etc.

This approach has been implemented in C++, in the form of the Charm++ system[39,

34, 36]. Charm++ has been very successful in parallelizing several applications effectively.

1



As an example, NAMD[37], a molecular dynamics application written in Charm++ is highly

scalable and runs on thousands of processors[57]. Recently, NAMD won the Gordon Bell

award at SC2002[58]. Another example is the FEM framework[11] written in Charm++

and AMPI, which is being used to develop very large applications at the Center for the

Simulation of Advanced Rockets.

We explore the thesis that programming productivity in processor virtualization lan-

guages can be significantly enhanced by extending the Charm++/AMPI model to allow

a restricted form of shared-address-space programming, and by using compiler supported

source-to-source translation. We design a new programming language, Jade, that over-

comes several limitations of current PV languages including Charm++ and AMPI. We add

a disciplined yet sufficiently general shared-address space (SAS) programming model called

multiphase shared arrays (MSA) to Jade. This rounds out the multi-paradigm capabilities of

virtualization technology. Jade is implemented using a full multi-pass compiler framework.

Although difficult to quantify, we believe that programming in Jade is considerably easier and

less prone to error than programming in current PV languages. We provide several example

programs in this thesis to serve as empirical evidence of this claim. We also compare code

sizes of equivalent Charm++ and Jade programs and discuss the kinds of errors eliminated

in Jade and the debugging assistance that Jade provides.

As discussed below, we build on the Jade compiler framework and implement a strip-

mining optimization that resolves an intrinsic performance issue with the MSA model, plac-

ing its performance on par with that of directly accessed local sequential arrays. We identify

several optimizations that are made possible by the Jade compiler system and implement

one of them: a mechanism to reduce the size and time taken to checkpoint objects by only

saving data that is still live.

We discuss the above points in more detail below.

The lack of basic compiler support in current PV languages such as Charm++ and

AMPI has necessitated placing several restrictions and requirements on the programmer.
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Programmers must maintain a special interface translator file for each program module,

in which Charm++ entities are listed. This is in addition to their source code files and

they must keep it synchronized with their class and method names and signatures. No type-

checking is performed; errors can result in strange behavior the cause of which is very difficult

to track down. Arcane notation and conventions must be followed to create and initialize

parallel objects (such as chares, ChareArrays and readonly variables). Tedious, repetitive

code needs to be written to pack and unpack object data so that objects can migrate. The

original Charm++ translator (prior to work done for this thesis) did not support parameter

marshalling. Message’s were the unit of communication in Charm++ and the programmer

needed to define a Message for each kind of communication, and manage the creation and

destruction of Message objects. Inconsistent behavior is found in the Charm++ language.1

The need for even a simple compiler has been felt repeatedly.

Taking our focus on improving programmer productivity further, we found that pointers

and the C++ style memory management of Charm++ often led to complex bugs; and void

pointers and pointer arithmetic in C++ give rise to the aliasing issue which complicates

compiler analysis in general. The Java2 memory model appears to solve these issues at the

cost of the overhead of garbage collection[15].

We initially studied implementing a Charm++ compiler based on C++ (without point-

ers). But an issue with implementing a compiler for Charm++ is the complexity of support-

ing the C++ language: pointers, operator-overloading, friends, general templates, multiple

inheritance, destructors, enums, namespaces, reference variables and parameters, exceptions,

preprocessing directives, etc. The resources of a research group are limited and we decided

that maintaining a full-fledged C++ compiler would not provide sufficient benefit to justify

the needed resources.

1For instance, allowing 1D but not 2D ChareArrays to be declared with their size in the constructor;
using Message’s for reduction callbacks instead of data types; etc.

2Java is a trademark of Sun Microsystems, Inc. All other trademarks are properties of their respective
owners.
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Therefore, we designed the Jade programming language. Jade is a simple language based

on Java and Charm++/C++. It is easier to compile and analyze than C++ or Java. It

has strongly-typed “pointers” in the form of references; the intent of this is to permit better

compiler analysis in the long term. The Jade design uses garbage collection for memory man-

agement, which enhances ease of programming. Jade also provides block multi-dimensional

sequential arrays (as opposed to Java’s array of arrays) and supports HPF-like array section

notation. Jade addresses all the basic usability issues mentioned above; these are described

in more detail in Chapter 2. Jade is implemented as a multi-pass compiler framework that

performs forward reference resolution, type-checking, one or more optimization passes, and

a code generation pass that generates Charm++ code. The compiler framework provides a

base for future enhancements as needed.

A strength of the virtualization-based Charm++ system is that it supports multiple

programming paradigms, such as the object-oriented message-driven style of the Charm++

language and the message-passing style of AMPI. However, Charm++ does not support a

general shared address space (SAS) model. In some cases SAS programs are hard to develop

and face difficulties due to a large number of race conditions, but in other cases they are

easier to develop, and we wanted to make this programming paradigm available in Jade to

improve productivity in PV programming systems.

General shared address space parallel programming models have faced difficulty scaling

to large numbers of processors. Distributed Shared Memory (DSM) is a much-studied[31, 1]

software-level shared memory solution that runs into the same problem. Optimized cache

coherence mechanisms based on the specific access pattern of a shared variable show signif-

icant performance benefits over general DSM coherence protocols[8, 9]. Charm++ supports

a very limited “shared memory” style in the form of information sharing abstractions such

as readonly, monotonic, and accumulator variables.3

3Monotonic and accumulator variables have fallen into disuse, and only readonly variables are being
actively used.
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We suggest that a disciplined form of shared-memory programming that takes specifically

shared variables further can round out and “complete” virtualization-based programming

without sacrificing performance. We describe Multiphase Shared Arrays (MSA), a system

that supports such specifically shared arrays that can be shared in read-only, write-many

(where each location is updated by at most one thread), accumulate (where multiple threads

may update a single location, but only via a well-defined commutative associative operation),

and owner-computes modes. These simple modes scale well and are general enough to

capture the majority of shared memory access patterns. MSA does not support a general

read-write access mode. MSA coexists with the message-passing paradigm (MPI) and

the message-driven paradigm(Charm++). We present the MSA model, its implementation

in Jade and as a library in Charm++, programming examples and performance results in

Chapter 3.

The compiler-based Jade approach also enables other optimizations that are difficult to

achieve in current PV languages. As described in Chapter 4, by keeping track of dead

variables, we use the compiler to generate guarded pack/unpack code that only packs up

live data. This significantly reduced the time taken and disk size needed to checkpoint (or

migrate objects within) the studied Jacobi application.

Another example of how compiler support can be utilized is provided by the follow-

ing MSA optimization. The default implementation of accessing MSA array elements in

read-only mode is slow because every read access requires a check to determine whether

the element is available locally. DSM systems use the virtual memory(VM) page fault mech-

anism to efficiently perform the same test, but a feature of MSA that we wish to retain is

its variable-sized pages that are not tied to the hardware VM page size. We used the Jade

compiler to strip-mine loops reading MSA arrays and optimize away the check. As a result,

we were able to obtain single-cpu MSA performance matching that of a sequential program.

We believe that the Jade language and compiler framework with the MSA abstraction

implements a “complete” and powerful processor virtualization-based parallel programming
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system while significantly improving ease of programming of such systems and opening the

door to compiler-based optimization of PV systems.
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Chapter 2

Jade

Jade is a Java-like language built to improve productivity in the programming of processor

virtualization-based (PV) applications. Jade incorporates design features and uses compiler

and runtime support to simplify programming and automate routine tasks required of the

programmer by existing PV languages. Jade rounds out and completes current-generation

PV languages by supporting a specifically shared memory programming paradigm in addition

to existing distributed memory PV models. Jade is implemented as a multi-pass compiler

framework that includes optimization passes described in Sections 3.3 and 4.1.

Jade uses Java’s syntax and basic sequential semantics, and extends them with Charm++,

AMPI, and multiphase shared array (MSA) parallel constructs. Multiphase shared arrays

(MSA), described in Chapter 3, provide a virtualization-based shared address space (SAS)

programming model that complements the distributed models of Charm++ and AMPI.

Jade parallel objects can be of various kinds: message-driven Charm++ objects, message-

driven or message-passing user-level threads (including AMPI threads), or SAS MSA array

objects. This multi-paradigm programmability in Jade allows the programmer to express

each component of their application in the most natural programming paradigm, leading to

improved productivity.

Jade borrows its memory model from Java and does away with pointer arithmetic. Java’s

memory model and garbage collection make memory management easier. This design deci-

sion removes a major source of difficult bugs, thereby further improving programmer produc-
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tivity. Boehm[15] discusses in detail the advantages of using garbage collection, and refers

to studies that show that 30%-40% of development time for complex linked data structures

is devoted to storage management. The absence of void pointers and pointer arithmetic in

Jade enables better compiler analysis because the aliasing issue is removed.

Jade is closely based on Charm++ for its parallel entities and semantics while using a

compiler approach to improve the syntax significantly and automate routine tasks. The key

syntactic productivity-enhancing features implemented in Jade are:

• Parameter marshalling : Charm++ did not support parameter marshalling1, but used a

special entity called a Message as the unit of communication and information exchange.

The user needs to define a Message for each kind of communication, and manage the

creation and destruction of Message objects. Jade implements a proxy-wrapper mech-

anism for each parallel object, and automatically generates code to pack parameters

into a Message and unpack it on the receiving side. In addition to the primitive types,

parameters can be arrays or complex objects containing dynamically-allocated data, as

well as references/handles/proxies to parallel objects. Parameter passing in described

in detail in Section 2.2.1.

• Automated Migration: To support migration and load-balancing in Charm++, the

user needs to write pack-unpack methods for all classes that might be migrated. This

step has been considerably simplified with the pup framework in Charm++ now[32].

However, some users find writing the pup methods for each class cumbersome. With-

out this step, the advantages of automatic load-balancing will not be realized. Since

these methods can be auto-generated from a list of the data members of a class and

since Jade does not have to deal with the aliasing issues associated with pointers in

Charm++, this is done automatically for the user in Jade. Therefore, parallel objects

1Our approach has been to implement a feature directly in Charm++ as far as possible, in order to make
it available to Charm++ programmers. We then design the feature in the Jade language at a higher level,
and translate Jade to Charm++. Some of the features listed may therefore also be available in Charm++,
but only as a byproduct of the Jade implementation.
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in Jade are automatically capable of migration and can participate in load-balancing

and checkpointing with no further effort from the programmer.

Jade is implemented as a multi-pass compiler framework that performs forward reference

resolution, type-checking, one or more optimization passes, and a code generation pass. Jade

is translated to Charm++ code, which is then compiled to binary/object code and executed

on the target machine. The resulting translated code runs on all the platforms supported by

Charm++, such as Linux or Windows machines with Ethernet, Myrinet, Quadrics, or In-

finiband interconnects; IBM SP machines; Compaq AlphaServer machines; and any machine

that supports MPI.

We cover the parallel part of Jade in detail in Section 2.1 but defer the details of

multiphase shared arrays (MSA) to Chapter 3. We then describe the major productivity-

enhancing contributions of Jade in the next section, followed by the highlights of the Jade

features borrowed from Java. Java’s parameter passing semantics are the source of consid-

erable confusion, and so in Section 2.2.1 we clarify the assignment and parameter passing

semantics of Jade. Translator issues are mentioned in Section 2.4. In Section 2.5, we present

some example programs written in Jade, and compare them to their Charm++ equivalents

to show how productivity is enhanced in Jade. The performance of Jade programs is studied

in Section 2.6.

2.1 Jade Programming Abstractions

Programming in a multi-paradigm parallel language like Jade requires knowledge of several

concepts. We describe these concepts in this section. We cover the execution model based

on virtualization and the adaptive runtime system. We then describe the communication

model and message delivery. We present the parallel constructs of Jade and then discuss

how various programming models can be realized in Jade.
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2.1.1 Jade Virtualization-based Object Model

Since Jade is a multi-paradigm programming language, it contains several programming

models. The smooth interaction of entities from various paradigms is made possible in large

part by the unifying concept of processor virtualization. Since Jade is object-oriented, we

often use the terms “object” or “work object” to refer to parallel entities.

For the most part, the Jade programmer is insulated from the system hardware. The

programmer’s view, as in Charm++, is that of a collection of parallel objects executing on

a set of processors. In the Jade programming model, the programmer does not know or care

which object is on which processor or how many processors there are. Parallel objects can

migrate among processors and in general, the user cannot assume the location of an object.

An adaptive runtime system (ARTS) is a core part of the Jade system model. The ARTS

has a presence on each node and runs a “scheduler” on each processor of the node. The

scheduler’s job is to manage the messages intended for objects on the processor. The ARTS

also includes a load-balancing component that measures various system parameters and

application behavior and migrates parallel objects to balance the system and communication

load.

Each parallel object tightly encapsulates its data: no public data members are permit-

ted. Specific information sharing abstractions (Section 2.1.3) enable data sharing.

Each parallel object has a set of public methods that can be invoked on it. The methods

can take parameters which are passed by value. Methods may be threaded or non-threaded

(the default) and are described in more detail in Section 2.1.2. We often use the Charm++

term entry method to refer to the public methods of a parallel object as distinguished from

the public methods of a sequential class.

The system architecture assumed in Jade is that of a set of nodes connected by a network

interconnect. Each node has one or more processors and local memory which it can access.

In the case of SMP nodes containing multiple processors with a single local memory, the
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Jade system model treats each processor as an individual entity with its own local memory.

Remote memory is not directly accessible.

2.1.2 Jade Communication Model

Methods of a parallel object can be declared as threaded or non-threaded (the default). Each

threaded method is executed in its own user-level thread. Threads are not preemptible.

Threaded methods can call CthYield to allow other threads to run. Many Jade system calls

(such as recv) also implicitly yield.

Asynchronous Method Invocation (AMI)

Method invocations are asynchronous by default. Thus if object A invokes a method (whether

threaded or not) on object B, the call is asynchronous. i.e. control returns immediately to

the caller and the ARTS handles message delivery. The caller does not wait but continues

execution immediately.

AMI is just like sending a message; but the associated features of the message-passing

programming style popularized by MPI are not present, e.g. in Jade there is no corresponding

blocking receive for messages.

Note that AMI does not directly permit traditional blocking function calls (possibly with

return values). This must be achieved by splitting up the calling method into two methods,

the first of which contains the code up to and including the AMI call. The called function

must then send back a message to the second method to resume the computation, as shown

in the example below. How does the called function know who to call back? One of its

incoming parameters can contain the handle of the caller. Another option is to pass in a

CkCallback object (as described in the Charm++ manual).

1 chare A {
2 public void caller1() {
3 // do work
4 // now we need something from B
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5 B b = new B();
6 b.callee(this); // send B a handle to myself
7 }
8

9 public void caller2(int response) {
10 // continue
11 }
12 }
13

14 chare B {
15 private int reply;
16 public void callee(A a) {
17 a.caller2(reply);
18 }
19 }

Synchronous Method Invocation

Synchronous method invocation is specified at the method level; it is controlled by adding

the sync keyword to the called method. Invoking a sync method is synchronous, i.e. the

calling function blocks until the called method completes execution and returns. Therefore,

only threaded methods can call sync methods.

This behavior requires the programmer to look at the signature of the called function to

determine the behavior at the calling site. This restriction could be removed by having the

Jade compiler generate a sync and a non-sync version of each method. The calling site can

then indicate whether a sync call or a non-sync call is intended and the compiler can invoke

the appropriate method.

1 // caller
2 sync B.callee(); // blocks
3 B.callee(); // does not block

Message Delivery and Concurrency Within Objects

A parallel object lives (executes) on only one processor. When an object A invokes a method

on a parallel object B, the ARTS determines the location of B and ensures the message is

delivered to it. Messages are not guaranteed to be delivered in any particular order. Messages
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are enqueued in the message queue of the processor on which an object resides. The scheduler

picks the first message off the queue and invokes the appropriate method on the target object.

Execution continues until the method yields or terminates.

An implication of this is that only one of the non-threaded methods of an object executes

at any given time. Therefore, if a class contains only non-threaded methods, no locking is

required when accessing the class data. Another implication of this is that a threaded

method of an object can interleave execution with other threaded or non-threaded methods

of the same object, but two methods of an object cannot execute simultaneously (on different

processors). Locking may be required if one threaded method and another method modify

the same class data.

2.1.3 Jade Parallel Constructs

Jade/Charm++ parallel constructs include parallel classes called Chares and parallel arrays

of objects called ChareArrays. In their basic form, these entities are message driven, which

means they do not maintain their own thread of control. A scheduler that runs on each

processor grants an object control by invoking one of its methods; the object executes the

method and returns control to the scheduler. In the message-driven paradigm, when a

method of a chare or ChareArray is invoked, it continues to completion before any other

method of the same parallel object is permitted to run.

Another Charm++ construct that Jade supports is user-level threads – an object’s meth-

ods may be marked as threaded, which means they execute in a user-level thread that can

block.

Finally, Jade supports specifically shared MSA arrays, which provide a restricted form of

shared-memory programming.

13



 1 /** Simple parallel hello program using ChareArrays.
 2  main sends a message to hi[0], which sends it on to the
 3    next element, and so on.*/
 4 package Hello;
 5 
 6 public synchronized class TheMain extends Chare {
 7     public int main(String []args){
 8         ChareArray hi1 = new Hello[5];
 9         hi1[0].sayHello(21);
10     }
11 
12     public void memberMethod(int parameter) {...}
13 }
14 
15 public synchronized class Hello extends ChareArray1D {
16     public Hello(){}
17 
18     public void sayHello(int number) {
19         if (thisIndex < 4)
20             thisProxy[thisIndex+1].sayHello(number+1);
21         else
22             CkExit();
23     }
24 }

Figure 2.1: Example Jade program: ChareArray Hello.

Program Startup and Termination

Figure 2.1 shows an example Jade program. Line 4 declares the Hello package which contains

the subsequent entities. If no package is declared, the entities belong to a default null package.

Jade execution model : Execution of a Jade program begins by instantiating one copy of

every chare that has a main (see line 7 of Figure 2.1), and then invoking the main function

of the chare on processor 0. This is different from the standard Java behavior, in which

main is static and only one main is invoked, without instantiating the class containing it.

Typically, the main functions create parallel objects and invoke methods on them to get the

work started. The reason we instantiate the class containing main is because most programs

need an object to send back results to, print them out, etc. Usually one main is sufficient

for a program, but multiple main’s are supported for Jade module initialization. Note that

ChareArrays (described below) cannot have main functions.

Unlike traditional sequential languages, (but similar to threaded languages) main can
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terminate without causing the program to end. Thus, on line 9 of Figure 2.1, main does not

block waiting for the call to sayHello() to return. The next statement is executed, and in

this case since there is none, main terminates. Therefore, in Jade the end of computation is

signaled by calling CkExit(), as shown in line 22 of the example program. CkExit gracefully

terminates the program on all processors, ensuring that all messages have been delivered,

flushing buffers, shutting down processes, etc.

Chares

A chare (line 6) is the basic parallel construct in Jade. It is essentially a migratable message-

driven object. Its methods may be non-threaded or threaded, as described in Section 2.1.2.

They can also be declared as sync which causes the calling method to block until the sync

method returns.

In Jade, a chare is declared by specifying the synchronized attribute for the class, and by

extending from the chare class, which implements the Serializable interface. In Java, the

synchronized keyword applied to a method ensures that multiple threads sharing an object

will access the method in mutually-exclusive fashion. The synchronized keyword cannot

be applied to a class in Java; but in Jade, we use this notation to highlight the exclusive

nature of execution of chare methods, as explained below. Thus:

1 public synchronized class MyChare extends Chare {
2 public int main(String []args) {...}
3 MyChare(){...}
4 public void memberMethod(int aParam) {...}
5 private AClass memberVar;
6 }

When a method of the chare is invoked, it executes to completion without interruption.

This implies that only one method of a chare can execute at a time, i.e. in the Java sense

it is as if all methods are synchronized. Of course, a chare’s methods may be threaded,

which means that the synchronized behavior no longer holds.
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Jade does not assume a shared memory model. A chare can have member variables, which

can be primitive types, instances of sequential classes, or references to other parallel objects.

However, its member variables are not permitted to be public. This is because a chare is a

parallel object and an accessing method from another object cannot assume that the chare

lives on the same processor. We considered permitting public members and automatically

translating accesses into blocking method invocations, but decided against it because of the

hidden cost of the access, the forced blocking and race conditions.

Member functions (which, of course, can include access methods) can be public, since

they are a mechanism for information exchange. All public methods of a chare are invoked

by asynchronous method invocation, and we use the term entry method to refer to the

public methods of a chare as distinguished from the public methods of a sequential class.

The return type of methods need not be void, but when invoked asynchronously, the return

value is discarded.

ChareArrays

Jade supports 1D, 2D and 3D arrays of parallel objects as its primary parallel construct.

Support for user-defined index types is part of the language, but is not yet implemented.

The arrays can be sparse and created lazily, i.e. each element of an array is only created

when first accessed, or all at once, as in the example program. Each element of the array

is essentially a chare. The elements of the array are mapped by the system to the available

processors.

A parallel array is declared by making the class synchronized and extending Chare-

Array1D, 2D or 3D. Line 15 of Figure 2.1 shows the declaration of a 1D ChareArray. Line 8

shows the instantiation of a ChareArray containing five elements. (The language supports

ChareArray constructors with arguments, as described in the language manual.) The next

line invokes the sayHello method of the first element (index value 0) of the ChareArray. The

int thisIndex member of ChareArray1D (line 19) returns the index of the current element,
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and the CProxy thisProxy member returns a proxy to the array itself. Broadcasting a

method invocation to all elements of an array is accomplished by leaving out the index, e.g.

A.sayHello().

Threads

In Jade, threads of execution exist within an object – an object’s methods may be marked

as threaded, which means they execute in a user-level thread that can block. A non-

preemptible, user-level thread is automatically created when a threaded method is invoked.

The thread can call yield to block in the middle of the method. The thread ends once the

function ends.

Migrating a thread would require migrating the parallel object containing it along with

all other threads in the parallel object, since an object resides on only one processor. This

general form of thread migration is currently not supported in Charm++ or Jade. Thread

migration of special TCharm objects has been implemented in Charm++ and Jade. Any

parallel object that inherits from the TCharm class and has only one thread of execution can

be migrated.

readonly Variables

Jade also supports Charm++ readonly variables. These information sharing abstractions

can be initialized in a main function, and are then broadcast to all processors. They cannot

be modified once main ends.

In Charm++, readonly’s are defined globally. But in Jade, following the Java convention,

they must be defined within a class. Internally, the Jade compiler makes readonly’s global

after mangling names to ensure uniqueness.
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MSA Arrays

The new MSA array entity provides a disciplined form of shared-memory programming to

virtualization-based applications. From the user viewpoint, an MSA is a shared array of

data elements. However, the array cannot be accessed in general read-write mode. It may

be accessed in four currently supported modes: read-only, write-many, accumulate, and

owner-computes. During a given phase of execution of the program, the array must be

accessed in a single mode by all the parallel entities using it. Phases are separated by a sync

call. MSA arrays are described in more detail in Chapter 3.

2.1.4 Realizing Various Programming Models in Jade

We have explained the general virtualized object programming model, the communication

model and the parallel entities available in Jade. Now we describe how the pure message-

driven object-oriented model, the thread-based object-oriented programming model, the

message-passing model and the specifically shared memory model are realized in Jade.

Message-driven Programming Model

The pure message driven programming model does not use any threaded methods. Infor-

mation exchange is by the use of asynchronous remote method invocation on non-blocking

methods. Since blocking is not permitted in any object, there is no context-switching over-

head: no stack or registers need to be saved and restored when switching execution from one

object to another. Object migration is very quick and simple, only the class data needs to

be packed and sent across processors. No stack transfer issues arise. Since only one method

of a parallel object can execute at a time, no locking of class data is needed.

Latency tolerance is excellent, since programmers must break code down into units sep-

arated by communication dependencies, i.e. the natural chain of dependencies is expressed.

Programming in this model is different from the traditional blocking-function-call model
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of most programming languages. Programmers accustomed to blocking-call models find a

substantial change of mindset is needed to successfully write message-driven programs.

Jade Threaded Programming Model

In traditional multi-threaded programming, a process creates threads of execution and man-

ages them. Typically, one process is created per processor. Kernel level threads allow threads

to block for I/O, etc., without blocking the process. For user-level threads, the programmer

must use yield to manage latency.

In Jade, user-level threads are associated with methods of a parallel object, as described

above. They come into existence when the method is invoked, and terminate when it com-

pletes. Threads are created in Jade by invoking threaded methods. In the Jade virtualization

model a large number of work objects are created, usually there are several times as many

objects as processors present, each of which may have several threads which are created in

an on-demand fashion. When one thread calls yield (most Jade system calls call yield),

another thread is scheduled for execution, thereby providing latency tolerance.

Message-passing Programming Model

In the traditional message-passing (MP) programming model, the program is a set of com-

municating processes. There is one process per processor. Messages are sent and received

synchronously: i.e. both caller and callee block when they reach the send/receive, the mes-

sage is exchanged and execution then continues. Non-blocking sends and receives are also

provided. Within an MP process user-level threads can be used for parallelism.

AMPI [12] realizes the MP model using Charm++ and its runtime system. AMPI makes

use of user-level threads and associates a single thread with each object to implement the

MPI programming model. An MPI process transparently becomes a threaded method in a

Charm++ object.

In Jade we support full MPI by translating to AMPI. Objects that inherit from the
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TCharm class become AMPI “processes”. AMPI system calls to send messages, obtain the

processor rank, etc. are also available in Jade.

Specifically Shared Memory Model

The access modes of the MSA abstraction in Jade (see Section 2.1.3) are general enough to

capture the majority of shared memory access patterns although MSA does not support a

general read-write access mode. MSA coexists with the programming paradigms described

above. Thus a set of chares and/or threads and/or AMPI “processes” can share an MSA

array.

A Note on Multi-paradigm Programming

The described programming models can all co-exist in the same or different modules of a

Jade program. Thus one class may be MD, another threaded, a third AMPI, a fourth can be

an MSA array, and they can all call methods of each other within the restrictions mentioned.

The models may also be mixed, e.g. a thread may use asynchronous method invocation and

AMPI methods.

2.2 Compiler-supported Productivity Enhancements

Jade brings a compiler-based approach to runtime-based processor virtualization (PV) tech-

nology. This significantly enhances the ease of programming when compared to existing

PV languages. Several researchers have argued for the unique productivity enhancements of

combined compiler and runtime support[27, 3]. In this section, we describe some of the key

productivity-enhancing features added by Jade. 2

2Our approach has been to implement a feature directly in Charm++ as far as possible, in order to make
it available to Charm++ programmers. We then design the feature in the Jade language at a higher level
and translate Jade to Charm++. Some of the features listed may therefore also be available in Charm++.
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2.2.1 Proxies, Parameter Marshalling, Parameter Passing

Proxies and Parameter Marshalling

The core Charm++ system defines a special data type called a Message and works only

with Message’s in communication. Thus, for example, entry method’s can accept only one

parameter which must be a Message. Reductions took a Message, not integers or floats. The

user needed to define a Message for each kind of communication, register pack and unpack

methods that would pack and unpack the data to the struct, and manage the creation and

destruction of Message objects.

In addition to its payload data, a Message also carries a tag identifying the object and

method it is directed at. This raw interface was what Charm++ programmers had to work

with. Method invocation required calling a CkSend function that would actually tag the

message and perform the invocation. Method invocation actually looked something like

MPI Send.

To simplify Charm++, we designed a proxy mechanism for parallel objects.3 The proxy

is a compiler generated wrapper class for each parallel class. The actual parallel object

resides on an arbitrary processor. “Creating” a parallel object actually instantiates a proxy

object, which fires off a request to the ARTS to actually create the parallel object. The

ARTS returns a “handle”, which is a globally unique ID, for the parallel object. This handle

is stored in a member variable of the proxy object.

The proxy mechanism offers several advantages. Given the signature of an entry method,

the Charm++ translator generates a method in the proxy class that does parameter mar-

shalling for most cases: packing and unpacking of primitive data types, simple self-contained

objects (without dynamic data), and arrays of the above. The translator defines a new mes-

sage type, and in the proxy method packs the data by simple byte copy, and performs the

3The modern Charm++ translator is a rewritten and enhanced translator that incorporates and extends
the proxy and parameter marshalling design of the translator that I implemented. The modern Charm++
translator was mostly implemented by Orion Lawlor and Milind Bhandarkar with enhancements by other
members of the PPL lab.
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message send to the actual parallel object.

Thus, Message mostly disappears from user code. Method invocations look like method

invocations.

Parallel objects in Jade are actually local proxies that point to the actual parallel object.

Thus

1 chare A {}
2 class B {
3 public void f() {
4 A a; // creates a local proxy to a
5 a = new A(); // creates the real
6 // parallel object in lazy fashion.
7 }
8 }

Proxies can be sent as parameters. They are passed by-value, which means the parallel

object they contain is passed by reference-by-value (see discussion below).

A Discussion of Parameter Passing

The terms to describe assignment and parameter passing (i.e. the semantics in terms of

l-values and r-values) in C++ and Java are often not clearly understood. We therefore first

specify the meaning of the terms we use and then describe the kinds of data types in Jade

and the semantics of assignment and parameter passing.

C only has pass-by-value. References are implemented by taking the address of a variable

and passing the address by value. Hence:

1 #include <stdio.h>
2

3 void
4 swap(int *i, int *j)
5 {
6 int tmp = i;
7 *i = *j;
8 *j = tmp;
9 }

10

11 main()
12 {
13 int p = 1;
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14 int q = 2;
15 swap(&p, &q);
16 printf(‘‘%d %d\n’’, p, q); // prints "2 1"
17 }

C++ added pass by reference. The l-value of the formal parameter (i) is set to the l-value

of the actual parameter (p). Changing i actually changes the r-value that p refers to.

1 #include <stdio.h>
2

3 void
4 swap(int &i, int &j)
5 {
6 int tmp = i;
7 i = j;
8 j = tmp;
9 }

10

11 main()
12 {
13 int p = 1;
14 int q = 2;
15 swap(p, q);
16 printf(‘‘%d %d\n’’, p, q); // prints "2 1"
17 }

In Java, the claim is often made that primitive types are passed by value and objects by

reference. But this is incorrect. All Java parameters are passed by value[63].

The confusion arises because object variables in Java are actually reference variables; i.e.

“Object o” in Java means that “o” contains a reference to the actual object, it is not the

object. Thus, in Java:

1 Object a = new Object(); // a refers to a new object on the heap
2 Object b; // creates a reference to b, but does not allocate b, b is null
3 b = a; // b and a refer to the same object.
4 Object c = b.clone(); // c refers to a different object

Whereas in C++:

1 Object *a = new Object(); // a is allocated on heap
2 Object b; // constructor called, b is a new object on stack
3 b = *a; // copy constructor called.
4 // b and a refer to different objects.
5 Object &c = b; // c refers to same object as b
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In Java, when “Object o” is passed as a parameter, the reference is copied by value. The

so-called pass by reference in Java is actually pass the reference by value. Thus, a working

“swap” function cannot be implemented in Java. The following program prints “1 2”.

1 class testpassbyref {
2 public static void swap(Integer i, Integer j)
3 {
4 Integer tmp = i;
5 i = j;
6 j = tmp;
7 }
8

9 public static void main(String[] args) {
10 Integer p = new Integer(1);
11 Integer q = new Integer(2);
12 swap(p,q);
13 System.out.println(p + ‘‘ ‘‘ + q); // prints "1 2"
14 }
15 }

In C++ terms, it is as if we are passing in the addresses by value, and modifying the

variable containing the address. Thus:

1 void
2 swap(int *i_ptr, int *j_ptr)
3 {
4 int *tmp = i_ptr;
5 i_ptr = j_ptr;
6 j_ptr = tmp;
7 }

Modifying i ptr and j ptr does not modify the rvalues of the actual parameters. We use

the term pass-reference-by-value to describe the Java object parameter passing mechanism.

Now that the terminology is clarified, we discuss the actual semantics of Jade.

Jade Data Types and Semantics

Data types are categorized into three kinds in Jade. Primitive types include the standard

built-in types: integer, float, double and so on. But unlike Java, the sizes of the primitive

types are machine-specific. The second kind of data is sequential object data which are
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1 // Jade
2 class A {
3 public void f(Object o){...};
4 };
5

6 class B {...}
7

8 class C {
9 public void g() {

10 A a; // creates a reference to a, but does not allocate it.
11 a = new A(); // allocates a on the heap
12 A a2;
13 a2 = a; // a and a2 refer to the same object
14

15 B b = new B();
16 a.f(b); // b is passed by reference to sequential class A
17 }
18 }

Figure 2.2: Illustrative Jade code for sequential object parameter passing.

basically all classes other than the parallel classes. The third kind of data is the parallel

objects such as chares, ChareArrays, readonly variables and MSA’s.

Primitive objects are assigned and passed by value, just as in Java and C++.

Non-primitive sequential objects are assigned-by-reference, passed by reference-value to

sequential objects, and passed by value to parallel objects. Thus, sequential behavior of

sequential objects is the same as in Java. It is just that when they are passed to a possibly

remote parallel object, it does not make sense to pass them by reference, since the reference

might not be valid on a different processor. The intention is most likely to send over a copy

of the data.

As an illustrative example, consider the code in Figure 2.2. On line 16 b is passed

by reference when invoking the sequential object a which resides on the same processor.

But when a sequential object is passed to a parallel object (which may reside on another

processor), it is passed-by-value. So if A were a chare in the above example, a copy of b

would be sent to it.

Finally, parallel objects are assigned-by-reference and passed-by-reference-value. Thus,
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if B were a parallel object, it is actually a local proxy to the real parallel object and the

proxy would be copied over. Of course, since the proxy contains the handle of the real

parallel object, the copied proxy still refers to the same real parallel object, hence providing

reference-value semantics.

In summary, primitive types are passed by value, parallel objects are passed by reference-

value, and sequential objects are passed by reference-value to other sequential objects and

by value to parallel objects.

2.2.2 Encapsulation and Automated Pack/Unpack Mechanism

Since a Jade parallel object cannot have public data members and since parameters are

passed by value between parallel objects, we can conclude that the address space of a parallel

object is private to it and cannot be directly accessed by any other parallel object. This

tight encapsulation of data facilitates migration of objects.

Packing/unpacking of various language entities occurs in two situations: when the entity

is passed as a parameter to a remote object, and when the entity or object containing the

entity is migrated between processors. Both cases are handled by the same underlying PUP

mechanism of Charm++.

Invoking a method of a parallel object can be either local or remote method invocation,

depending on the location of the called chare (i.e. on which processor of the parallel system

it is running).

Packing of sequential entities : Sequential object parameters are passed between parallel

objects by copying them over in a message: this involves packing and unpacking of sequential

objects. In Charm++, C++ struct-like byte copy works to pack and unpack (pup) most

simple objects, but cannot handle C++ arrays, or objects containing dynamically-allocated

data. In such cases, the programmer must define pack and unpack methods and register

them with the Charm++ runtime system or must pack data into messages manually. 4

4After the development of proxies described in a previous section, an object oriented pack/unpack method
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Feature Status Details
primitive types implemented Object is copied over.
sequential classes partial Object is copied over. Support for circular references is

not yet implemented.
sequential data ar-
rays

implemented Object is copied over.

references implemented The data referenced is copied over.
parallel ob-
jects: chare’s,
ChareArray’s,
MSA’s

implemented A handle is copied over for the parameter case, the object
is moved for migration.

functions (function
pointers)

excluded See discussion in main text.

threads partial Single thread per chare is migrated. Multiple threads are
pending Charm++ support.

Table 2.1: Migration support in Jade.

Packing of parallel entities : Chares, ChareArrays and MSA’s can also be sent as pa-

rameters; however they are not copied. Instead, their handles/proxies are actually passed

over. So one might think that parallel objects do not need pack/unpack support; and that

only their proxies/handles would need to support pup. However, parallel objects can be

migrated by the ARTS to perform load-balancing, fault-tolerance, or checkpointing. As a

result, parallel objects must support PUP. In Charm++, in order for a parallel object to be

migratable, the programmer must define a pup method.

In Jade, pack/unpack methods are auto-generated for every object (sequential or par-

allel) by the Jade compiler. Thus objects can be packed into messages for the purposes

of parameter-passing, migration, checkpointing, etc. without any effort from the program-

mer. The automatic management of data movement in Jade simplifies programming in

virtualization-based systems and removes a source of arcane bugs. Table 2.1 summarizes the

pack/unpack support in Jade for various language entities.

Jade’s compiler approach also opens up opportunities for optimization. In Chapter 4 we

was developed[32] that simplified user-written pack/unpack even more.
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describe how as an enhancement in Jade, only live data is packed when migrating objects.

Limitations of Automated PUP.

Multiply-referenced data structures : The assignment-by-reference semantics of Jade allow

multiple variables to refer to the same data object. In fact, circular data structures can be

encountered too. Although these cases are uncommon, while packing data such references

must be identified and encoded, and restored during the unpack phase. This feature has not

been implemented in the current version of Jade.

Function pointers : Both Jade and Java do not allow pointers. However, Java is able to

pass function pointers by creating an interface that contains the generic function and then

creating an anonymous inner class which implements the desired function, and passing the

anonymous class as a parameter. Jade does not support inner classes at this time and so

this workaround does not work. However, Jade supports the Charm++ CkCallback class,

which encodes a call to a method in a parallel object, thereby allowing “function pointers”

for parallel entities. However, at this time, Jade has no mechanism to support encoding of

calls to methods of sequential objects.

2.2.3 Multi-dimensional Data Arrays and Array Sections

At the outset, let us clarify that there are several kinds of “arrays” in Jade. ChareArrays are

arrays of parallel objects. MSA’s (Chapter 3) are a specifically shared parallel data array.

And, of course, we have sequential data arrays which come in several flavors.

Java provides one dimensional data arrays. Higher dimensionality arrays are realized

by creating arrays of arrays. These arrays are not efficient for numerical computations as

discussed in detail in Artigas et al.[6, 48].

A quick way to implement multi-dimensional data arrays is to build on C++ STL vectors,

but performance of our Jade Jacobi program using these arrays was significantly slower

than the corresponding Charm++ program. We translated multi-dimensional Jade data

arrays to C++ array-of-arrays with significant performance improvements. Seeking further
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improvement, we then implemented block allocated 2D arrays instead of the Java-style array-

of-arrays. Performance improved further due to the single-step address calculation and

lookup.

However, some issues still remained from the Jade language design viewpoint. C++

arrays do not know their own size or dimensionality, which is required to pack/unpack them.

Out-of-bounds indexing cannot be checked at runtime (in debug mode). And we wished to

add the convenient HPF-like section notation to the Jade language, to reduce the necessity

for the user need to copy data into temporary arrays for the purposes of parameter passing.

Therefore we implemented a templated Jade sequential array library, JArray, and translate

all array creation and access into calls to JArray methods. Through careful coding, the

performance results we obtained were substantially similar to C++ arrays, as shown in

Section 2.6.

Thus Jade supports Java-like arrays that know their size and can perform index checking.

Jade also supports HPF-like start:end:increment array section notation. These features

enhance productivity while maintaining performance comparable to sequential C++ arrays.

2.2.4 Reductions

Reductions in Charm++ have a difficult API. They take a pointer to the data to be reduced.

The data each participant contributes can be an array, and so the number of elements must

be given as a parameter. The type of the data and the reduction operation are specified

using enums. A call-back method must be given; at the end of the reduction, it is called with

a Message parameter containing the result.

In Jade we simplify reductions significantly. Jade knows the data type, only the operation

must be specified. The call-back must still be given, but it can expect a parameter of the

same data type containing the result.

Internally, the Jade compiler defines a new call-back method which takes a Message

parameter, extracts the data and calls the user’s call-back with the data as a parameter.
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2.3 Translating Java features into C++

In contrast to Java’s run-time compilation, the Jade source code is translated to Charm++

source code, which is then compiled to binary/object code and executed on the target ma-

chine. This retains the performance benefits of C++ while providing the user with a clean

programming model and enhancing productivity. The resulting Charm++ code scales well

to large number of processors, as shown in Section 2.6. Java’s standard libraries are not

supported. We next discuss packages, static initialization and garbage collection in Jade.

2.3.1 package

Java’s packages provide a unit of modularity. package members have greater visibility and

access to data members of other classes within the same package. Java enforces a rigid

runtime relationship between package names and directory structure. Thus, class A.B.C

must be in file A/B/C.java and in package A.B.

Jade is compiled and symbols are resolved at link time. There is no need for a runtime

relationship between package names and directories. No directory structure is enforced.

A Jade package corresponds to a module. All Jade files must be specified to be in some

package. Jade source files (A.jade) can contain multiple classes: A, B, C. Package hierarchy

is not supported. Thus, the fully qualified name of a Jade class is just P.C.

If file A.jade is part of package P, the Jade compiler translates its code into files P.h,

P.ci and P.C.

package P2 can use package P by using an import statement. import P; is translated

to #include P.h and an extern declaration is added to the P2.ci file. This makes all

classes and readonly variables in package P available to P2.

Java packages and package-private classes are supported by generating preprocessor

conditionals:

1 P.h
2 #ifdef IN_PACKAGE_P
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3 // package private class
4 #endif
5

6 P.C
7 #define IN_PACKAGE_P
8 #include ‘‘P.h’’

Coexistence of Jade and Charm ++

Jade code can use entities written in Charm ++ by declaring them as extern or using

#include on their .h file. Similarly, Charm++ code can access Jade entities by including

the package header file.

2.3.2 Static Data and Initialization of Class Members

Java allows anonymous static code in classes, and also allows initialization of class data

members at the point of declaration in the class. Thus,

1 class A {
2 static {
3 // code here
4 ALPHA
5 }
6

7 Object o = new Object();
8 }

In Java, anonymous static code is executed as class load time. As there is no class load

in Jade because it is a compiled language, the semantics of anonymous static initialization

code are changed to be called once per instance. This is useful for code that should be called

from all constructors.

Initialization of non-static class data at declaration is not supported in Charm++/C++.

The solution we designed generates an _init() method in every class and inserts a guarded

call to it in every constructor. The guard is needed because in Java and Jade, one constructor

of an object can call other constructors of the same object, but _init() must be called only

once. The above code becomes:
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1 class A
2 {
3 bool _called_init;
4 _init() {
5 ALPHA
6 o = new Object();
7 }
8 }

An interesting point to note is that \_called\_init cannot be implemented as a static

variable within the init method. When the object migrates, internal static variables are

not packed and so their value is lost. This will cause _init() to be called again when the

object is instantiated on the remote processor. Such internal static variables cannot even be

packed because they are not accessible outside their containing block.

2.3.3 Garbage Collection

Garbage collection(GC) can be implemented in Jade using both the tracing (mark-sweep)

and reference count approaches[68]. As described in Section 2.2.1, there is a clear separation

in Jade between sequential data and parallel entities. Section 2.2.2 describes how no parallel

object in Jade can contain a reference to any object within another parallel object. Each

parallel object is a tightly encapsulated, self-contained entity. GC can therefore be performed

at two levels: within a single parallel object to determine which sequential data is live, and

across the program to determine which parallel objects are live.

The quickest approach to handle sequential data within a parallel object appears to

be to support the Boehm-Demers-Weiser(BDW) conservative garbage collector[16]. BDW

supports multi-threaded C++ code, which is required for multi-threaded Jade objects, with

some restrictions.

Garbage collection of parallel objects requires a multi-processor parallel approach to

analyze whether all proxies to the object are dead. Reference counting appears to be a more

suitable mechanism for this analysis, especially since it can be easily added to the compiler
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generated proxies. ChareArrays will need to be collected as a whole, because the proxy to

any element of the ChareArray can be obtained from a proxy to the base object.

Our preliminary implementation of GC in Jade successfully limits the garbage collected

heap size for sequential objects, but resulted in a segmentation fault for parallel objects.

delete is supported in the interim.

An issue with garbage collection in general is that it depends on ensuring that references

to unwanted data are removed from the program, but often programmers do not remove

these references, e.g. from class variables. Therefore, GC could benefit from liveness analysis,

which would help to identify dead data, even if a reference to it remains in the program.

Chapter 4 discusses some issues with liveness analysis in Jade.

2.3.4 Comparison with Java

Given the large amount of research into translation of (sequential) Java to C, we decided to

focus our efforts on the parallel features rather than on implementing all Java features.

Differences :

• Java supports dynamic loading of classes based on the CLASSPATH. However, our com-

pilation product is a single executable and dynamic loading is not supported. It is

possible to implement this capability in C++, and if applications require it, this fea-

ture can be added to Jade.

• Multiple classes can be defined in one Jade source file, unlike Java which has a very

tight tying of classes to the naming structure to simplify dynamic class loading.

• Jade treats main differently from Java as described in Section 2.1.3.

• Java bytecode is portable across heterogeneous systems, while Jade code is compiled to

a particular architecture. Java primitive types are standard across all platforms, but

Jade types depend on the machine and C++ compiler used.
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• Java threads have been replaced by Charm++ threaded methods.

Restrictions : Java names can be Unicode, whereas we support only ASCII. We do not

currently support the standard Java runtime and libraries, nor do we support exceptions.

Detailed List of Differences

Table 2.2 shows the level of support in Jade for various features of Java. Some Java

language features are supported exactly as in Java, others have a modified meaning, and

some features are unsupported. Features in the latter class are usually not supported because

we decided not to support them for lack of the resources to implement and maintain them;

cases where we deliberately excluded a feature for some reason are identified as such. We

use the keywords “supported”, “partial”(ly supported), “modified”, “unimplemented” and

“excluded” to refer to the various kinds of features.

2.4 Translation Issues

The Jade compiler is implemented using the ANTLR parsing system which supports Java

as an implementation language. For our grammar, we started out with a public domain

ANTLR Java grammar[47].

A benefit of ANTLR over the de facto standard yacc, is that it can optionally generate

an abstract syntax tree (AST) automatically. This feature was useful to get a quick start.

However, looking back now, we feel that construction of a specialized AST as opposed to

the generic AST generated by ANTLR is preferred for several reasons: the tree can be made

smaller than the default construction, specialized nodes can hold specialized information,

etc. Although ANTLR has features that permit the construction of specialized AST’s and

nodes, using them makes moot the benefit of automatic generation of AST’s. The deciding

benefit that determined our choice of ANTLR over yacc was that it supports Java as an

implementation language. At the time we started implementation of Jade, options such as

byacc that work with Java were not available.
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Java Feature Jade Status Details
package modified See Section 2.3.1
import supported becomes #include
class, extends, imple-
ments

supported uses multiple inheritance

nested class unimplemented
interface supported abstract class
nested interface unimplemented
primitive types:
boolean, byte, char

modified converted to 1-byte char, no unicode support

short, int, float, long,
double

supported architecture dependent

objects supported
arrays supported Converted to templated array that is PUP ca-

pable. See Section 2.2.3.
references supported See Section 2.2.1
templates partial Not all cases are handled, just enough for basic

MSA’s
identifier (a.b.c) modified Only 3-level names (package.class.name) are

supported
identifier star (a.*) unimplemented
modifiers5: abstract,
native, strictfp, tran-
sient, volatile

unimplemented

public, private, pro-
tected

supported for data fields, methods, constructors, class,
and interface

static final partial implemented for data fields (constants)
synchronized modified added to class (for chare’s, etc.), removed from

methods
parameters modified See Section 2.2.1
“final” parameter unimplemented
try, throw, catch unimplemented
inner “static {}”
class initializer, in-
ner “{}” instance
initializer

supported See Section 2.3.2

constructor calls con-
structor, i.e. this()
or super()

unimplemented

initializers supported basic types, arrays
labels supported

Table 2.2: Comparison of Java features with Jade
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Java Feature Jade Status Details
control statements:
if, for, while, do,
break, continue,
return, switch

supported

threads, run method,
synchronized state-
ments

excluded replaced by Charm++ threaded methods

string handling unimplemented
true, false supported using #define’s
null unimplemented null objects have not been implemented
type.class excluded java.lang is unsupported
- new threaded, blocking and readonly keywords

Table 2.3: Comparison of Java features with Jade (continued)

However, ANTLR and related parser generators such as JavaCC and Sable CC, are very

different from yacc. Antia and Breugel[5] provide an excellent overview of the issues and

comparison of the different approaches to tree generation in ANTLR, JavaCC, SableCC and

Zephyr ADSL.

The steps and byproducts involved in compiling a Jade source file are shown in Figure 2.3.

The Jade source file (.jade) is translated into three files: the Charm++ interface file (.ci),

a .h header file and a .C C++ source file

The .ci file is then fed to the Charm++ translator. It contains information about the

parallel constructs in the program. The Charm++ translator generates .decl.h and .def.h

files, which are #include’d in the .h and .C files respectively.

All the above generated files apart from the .ci file are then compiled with a C++

compiler and linked with the Charm++ and the Jade libraries to generate a single executable

a.out file.
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C++ compiler .o

.decl.h

.def.h

charmc
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.ci

.C
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a.out

Jadecharm
libs

linker

libs

.jade

Figure 2.3: Compilation of a Jade source file.

Jade Charm++

JadeMatmul.jade 103 CharmMatmul.C 167
CharmMatmul.h 41
CharmMatmul.ci 20

Total 103 Total 228

Table 2.4: Number of lines of code for Jade and Charm++ matrix multiplication programs.

2.5 Productivity Results

Productivity improvements are hard to measure quantitatively. Number of lines of code

(LOC) needed to implement the same algorithm are a rough measure that can be applied in

certain cases. We provide LOC measurements for some Jade and Charm++ programs. We

also point out how Jade programs are simpler to write and maintain. And we discuss various

errors that Jade eliminates from Charm++ programs, and how Jade assists debugging. More

Jade examples can be found in Section 3.2 of the MSA chapter.

2.5.1 Matrix Multiplication

Appendix A.1 shows a matrix multiplication program written in Jade. Table 2.4 shows

the number of non-blank non-comment lines of code needed to implement the same matrix

multiplication program in Jade and in Charm++. The Jade code is 55% smaller than the

Charm++ version, and is contained in one file rather than three.
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Jade Charm++

Jacobi.jade 162 Jacobi.C 179
Jacobi.h 37
Jacobi.ci 19

Total 162 Total 235

Table 2.5: Number of lines of code for Jade and Charm++ Jacobi programs.

2.5.2 Jacobi

Appendix A.2 shows a Jacobi program written in Jade. Table 2.5 shows the number of non-

blank non-comment lines of code needed to implement the same Jacobi program in Jade and

in Charm++. The Jade code is 31% smaller than the Charm++ version, and is contained

in one file rather than three.

2.5.3 Jade Error Reduction and Debugging Assistance

The entire class of pointer-related memory management bugs is eliminated in Jade. Jade

programmers do not encounter segfaults due to dereferencing invalid pointers.

Errors due to packing and unpacking data, especially for arrays and dynamically allocated

data, are completely eliminated. Programmers do not need to follow complex packing rules:

for instance, the description of pup in the Charm++ manual[53] occupies 8 pages plus a few

more for system programmers. No pup methods or pup constructors need to be written in

Jade.

Arrays in Jade are automatically packed for parameter passing and migration. Users do

not need to pass in the size of the array as a parameter. Array section notation simplifies

the specification of parts of arrays. When compiled in debug mode, the Jade compiler

generates code that checks array indices for out-of-bounds conditions at runtime, which

assists debugging tremendously in certain cases.

Users do not need to remember complex rules for passing parameters; for example, in

Charm++, if a large object is passed as a parameter, the .ci file lists the parameter as
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pass-by-value, but the .h and .C files should list it as pass-by-reference (i.e. prefixing the

parameter with an &) for efficiency. This way, the data does not need to be copied over from

the Message into the stack. Jade automates this. Beginner Charm++ programmers often

make this mistake, which can lead to substantial performance degradation that is hard to

identify.

The Jade language’s single-file class definitions eliminate errors due to mismatched dec-

larations in the .ci, .h and .C files. For example, in Charm++, failing to declare a variable

as readonly in the .ci file will allow the code to compile and execute, but the readonly data

will not be propagated to all processors. Such errors can be hard to catch.

Notation in Jade is consistent. In Charm++, a 1D ChareArray is indexed using array

notation (a1d[i]), but a 2D ChareArray is indexed using a function call a2d(i,j). In Jade

all arrays (sequential, ChareArrays and MSA arrays) use array index notation.

The Jade type-checking pass catches errors such as declaring chare data members as

public, which also catches attempts to directly access data members of other parallel objects.

Jade detects attempts to modify readonly variables outside of main; these modifications will

not be propagated across the system and can lead to subtle bugs.

At runtime, the MSA accesses are checked to ensure that all processes access the data

in the same mode. Checks are also implemented to ensure that two worker objects do not

write to the same element of the MSA array.

As further anecdotal evidence of productivity, I have written several Jade and Charm++

programs and now, even when I develop Charm++ programs, the ease of coding in Jade

leads me to first write in Jade and use the translated code, bad indentation and all, as the

basis for the equivalent Charm++ program.
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Language Execution Time (s) Description
C++ 12.186000 Sequential C++
Charm++ 12.725498 Charm++ program using sequential C++ arrays
Jade 12.664641 Jade program using JArray’s

Table 2.6: Jade and Charm++ matrix multiplication execution times on 2.4 GHz Pentium4
Linux workstation for problem size 2000*5000*300.

2.6 Performance Results

The objective of Jade is to retain the performance advantages of Charm++ while enhanc-

ing programming productivity. We demonstrate that Jade matches the performance of

Charm++.

The computers used for our performance runs include a local Pentium4 cluster, the

Lemieux cluster at the Pittsburgh Supercomputing Center, and the Tungsten cluster at

the National Center for Supercomputing Applications. Our local cluster is a collection

of single-cpu 2.4 GHz Pentium4 workstations running Linux and connected by 100 Mbps

Ethernet. Each node of Lemieux contains four 1-GHz Compaq Alpha CPU’s running Tru64

Unix; the nodes are connected by a high-speed Quadrix Elan interconnect. Each node of

Tungsten contains two 32 bit Xeon 3.06 GHz processors with 3 GB memory; the nodes are

interconnected by Myrinet.

2.6.1 Matrix Multiplication

We implemented a (non-MSA) matrix multiplication example in Jade, Charm++ and (se-

quential) C++. The outermost loop of the matrix multiplication was shared among the

parallel objects. We created exactly as many worker objects as processors.

Table 2.6 shows the resulting execution time on a single-cpu 2.4 GHz Pentium4 work-

station running Linux. The execution times of Charm++ and Jade are very close, and only

very slightly slower than sequential C++.

We also studied performance on Lemieux. The results of our initial run are showed in
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Processors/Worker Threads
Language 1/1
Sequential C++ 49.500000
Charm++ 18.770541
Jade 48.829196

Table 2.7: Initial sequential matrix multiplication execution times on Lemieux for problem
size 2000*5000*300.

Table 2.7. Examining the single-cpu results, we see that Charm++ significantly outperforms

both Jade and sequential C++. The Jade matmul was taking 49 seconds, while the Charm++

one ran in 19 seconds. This behavior did not match the performance behavior on our local

cluster (shown in Table 2.6).

We inserted timing calls to examine what was happening and determined that the matrix

multiplication loop itself was significantly slower. Upon further analysis, we determined that

the performance issue seen on Lemieux was that the cxx compiler was not optimizing the

inner loop. The Jade-generated loop uses JArray’s instead of C++ arrays, and the generated

code looks like this:

1 for(i = i0;(i < iN);(i++))
2 for(k = k0;(k < kN);(k++))
3 for(j = j0;(j < jN);(j++))
4 C(i, j) += (A(i,k) * B(k, j));

Instead of using array notation (e.g. C[i][j]), Jade code makes a function call (C(i,j))

for array access. The compilers on our local cluster were able to optimize the above code,

and so Jade performed as well as Charm++ on them. But the Lemieux cxx compiler did

not optimize the Jade code. When we changed the code in the inner loop to

1 C(i,j) += A(i,k) * (&B(k,0))[j];

the cxx compiler “got” it, and the Jade code ran slightly faster than the Charm++ code, as

shown in Table 2.8. Results up to 4 processors are are shown in Table 2.9.

The speedup on a larger number of processors for a larger matrix multiplication (20483)

is shown in Figure 2.4. These unoptimized results are shown merely to demonstrate that the
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Processors/Worker Threads
1/1

Charm++ 18.425529
Jade 16.616964

Table 2.8: Improved sequential matrix multiplication execution times on Lemieux for prob-
lem size 2000*5000*300.

Processors/Worker Threads
1/1 2/2 4/4

Charm++ 18.274148 9.953931 6.135394
Jade 16.055530 9.060960 4.738658

Table 2.9: Parallel matrix multiplication execution times on Lemieux for problem size
2000*5000*300.

scaling performance of Jade is essentially the same as Charm++. No significant additional

overhead is introduced in sequential or parallel constructs, messaging, arrays, etc. Optimized

matrix multiplication studies are deferred to Section 3.5 of the MSA chapter.

2.6.2 Jacobi

We implemented a Jacobi 2D decomposition example in Jade. Fig. 2.5 shows the speedup

on Lemieux. On 100 processors, the speedup is about 80.

2.7 Related Work

Although Jade is based on java for syntax, it is not primarily intended as a parallel java

project. Jade does not run all Java programs. It does it support Java libraries, the Java

thread model, and so on, as discussed in Section 2.3.4.

Rather, Jade should be viewed as an enhancement to Charm++ and AMPI, and takes

processor virtualization technology from the level of a library into the programming language

level. The benefits that Jade provide are (a) improved programmer productivity through

simplification of syntax, language design, and debugging support (b) current and potential
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Figure 2.4: Scaling performance of Jade and Charm++ matrix multiplication.
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Figure 2.5: Scaling performance of Jacobi 2D written in Jade on Lemieux.

43



compiler optimizations.

As such, some of the key distinctions between Jade and any parallel java project are also

Charm++ features: 1. processor virtualization i.e. creation of objects and threads that are

not tied to the number of physical processors, automatic measurement-based load-balancing

by an adaptive RTS through migration of objects. 2. multiple programming paradigms

in the same program. 3. message-driven programming using super-lightweight chares with

non-blocking methods that do not need to lock chare data and do not maintain stacks that

need to be migrated.

Jade must still be compared with parallel java projects, since it looks like java and

potential users may justly consider it an alternative to parallel java projects.

java’s bytecode was designed for portability, but several java projects use it almost like a

compiler intermediate format, analyzing and manipulating java byte-code instead of trans-

lating java source code. Bytecode is like getting compiler intermediate format (IF) for free

one one end and getting an optimizing JIT compiler and runtime for free on the other end.

2.7.1 Parallel Java through RMI Enhancements

The Java language itself has built-in features to support parallelism: typically, Java threads

are used for shared memory applications and either Java RMI or the standard socket interface

is used for distributed applications. Standard Java RMI is slow, interpreted, requires explicit

name binding, and provides no optimization for local objects[49].

The JavaParty[56] project takes an approach to parallel Java that is based on improving

Java RMI. The execution time of a Java RMI call is analyzed and divided into time for low-

level communication, serialization of parameters, and RMI overhead. Each of these issues is

addressed by them with the ParaStation, UKA-Serialization[55], and KaRMI[49] projects,

respectively. JavaParty code is interpreted, whereas Jade is compiled.

The Manta[7] project also works by improving Java RMI. It uses a compiler approach to

generate specialized serializers, implements its own runtime and protocol to speed up RMI,
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and can use a fast low-level communication layer (Panda/LFC) to improve speed. Manta sup-

ports runtime generation of marshalling code, distributed garbage collection, and compiler

optimizations such as execution of non-blocking remote methods without a thread context

switch. Manta interoperates with standard JVM and supports the Sun RMI protocol[43, 44].

Although JavaParty and Manta are minimally invasive to java programs, communication

doth not a parallel language make. The level of programming remains that of MPI, using

processes and threads for parallelism, and RMI for data exchange. There are no higher-

level parallel entities such as global communication and synchronization, parallel arrays,

shared data, etc. And of course, the key distinctions listed above apply, namely processor

virtualization and automatic load-balancing, multiparadigm programming, and message-

driven programming.

A previous version of parallel Java was implemented at the Parallel Programming Lab[35].

In that version, parallel constructs such as chares were added to Java. A JVM was executed

on each processor of a parallel machine, and messages were injected into them using JNI and

Java Reflection, i.e. the Java code was interpreted on a JVM. Parallel arrays, migration of

objects, and global communication and synchronization were not supported.

2.7.2 Java Automatic Partitioning Tools

J-Orchestra[66], Addistant and Pangaea transparently allow Java objects to execute re-

motely instead of on the same processor. No changes to the original Java program are

required. Methods invoked on remote objects are forwarded to them and the results sent

back. Access to remote shared data is similarly handled. J-Orchestra supports object mi-

gration. Automatic load-balancing and migration are not provided, e.g. in J-Orchestra, the

user must choose the placement of objects at the start of the program.

Coign[29] is designed for Microsoft’s platforms and provides automatic partitioning of

fine-grained COM objects. Coign works with binary COM code, first profiling the code

to build a graph of the inter-component communication and then dividing up the code
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for subsequent runs to minimize the communication. Coign has the significant limitation

that all components that share the same data through pointers will be placed on the same

processor. (Since everything in Java is accessed through references (implemented as pointers)

the applicability of Coign technology to parallelization of Java is also very limited.)

The design intention of these automatic partitioning tools is for coarse-grained objects

which do not share much data to be placed on different processors. They are not really

applicable to fine or medium grained parallel applications with significant communication

and/or load irregularity.

There is no support for higher level parallel language features, since the intention is to

be Java-compatible.

2.7.3 Java DSM

The Java/DSM project [70] implements a JVM on top of the TreadMarks distributed memory

system. The goal is to run multithreaded Java programs on multiple heterogenous processors

using Java and DSM to solve the problems of running on heterogenous systems. Java provides

the same programming model on heterogenous systems, and the addition of DSM removes

the need for using inefficient and complicated Java RMI for remote communication and hides

the disributed nature of the system from the programmer. The significant scaling issues of

DSM are addressed in Section 3.4.

2.7.4 Titanium

Titanium[69] is a language-level parallel Java. The titanium compiler translates Java into C.

Titanium adds a parallel SPMD programming style with a global address space and multi-

dimensional Titanium arrays to Java and is especially suited to grid-structured computations.

Each processor on a distributed memory machine maintains its data in a local demesne, and

variables can be declared to limit access to only the local demesne of data, or to have unre-
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stricted global access. The Titanium memory model follows the release consistency model

and is similar to DSM; processors participating in a synchronization operation propagate

their changes to each other. Several compiler analyses are performed, including identifying

references to objects on the local processor. Although Titanium is not based on processor-

virtualization technology, we believe this analysis can be applied to Jade also. Barriers and

data exchange operations are used for global synchronization. Titanium does not provide the

rich functionality of virtualization-based languages such as multiple programming models,

automatic load-balancing, checkpointing, out-of-core execution, fault-tolerance, etc.

Our approach differs from Titanium in that we introduce a different parallel programming

style, the message-driven style, into Java. Jade also supports a shared memory paradigm,

described in Section 3.4 of this thesis. We support multi-paradigm programming and pro-

cessor virtualization (with object migration and automatic load-balancing). The titanium

compiler appears to be further along than ours, and provides several analyses that we could

possibly benefit from using.

2.7.5 Proxy object mechanism

SunRPC[65] defined a mechanism for client-server Remote Procedure Calls that required

the generation of client and server stub code in the C programming language. The CORBA

specification[52] describes an Interface Definition Language and the usage of object-oriented

proxies to implement remote method invocation.

2.8 Summary

Jade uses a compiler approach to simplify processor virtualization based (PV) parallel pro-

gramming. Several syntactic and usage issues with current PV languages were identified

and are solved in Jade without introducing performance overhead. These include param-

eter marshalling, automated packing and unpacking of data, improved sequential arrays,
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type-checking of parallel types, and single-file class definitions. Features that enhance the

productivity of parallel programming, both preventative (such as the absence of pointers)

and reactive (such as array index checking in debug mode), were incorporated into the lan-

guage. A multi-pass compiler framework that can also serve as the basis for further research

was implemented. We presented a compiler-supported strip-mining optimization that im-

proves MSA performance to the point of matching sequential array access. Example Jade

programs and performance results were also presented.

The next chapter describes in more detail how Jade rounds out the multi-paradigm ca-

pabilities of PV systems by incorporating a disciplined shared address space programming

model into the language.
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Chapter 3

MSA: Multiphase Specifically Shared
Arrays

Our experience with a number of parallel applications over the years indicates that there

are distinct programming situations where SAS is an easier programming model whereas

there are equally distinct situations where it is not. For instance, when there are data races,

the shared memory paradigm, which allows for a much larger number of distinguishable

interleavings of executions of multiple threads, tends to be a difficult paradigm. In contrast,

a computation such as matrix multiply, where the data in input matrices is only read and

data in the output matrix is only written, is relatively easier to express in SAS.

However, a general SAS model has not been implemented using processor virtualiza-

tion because of performance issues. Shared address space (SAS) parallel programming

models have faced difficulty scaling to large number of processors. The pure-hardware

shared-memory solution using cache coherence, and the virtual memory page-management

hardware-assisted relaxed consistency Distributed Shared Memory (DSM) realizations of

shared memory both face significant scalability issues. The idea of distinguishing between

access patterns of shared variables was studied in Munin[8] and also in Chare Kernel[24, 62]

(the precursor to Charm[39, 36]) and is used in TreadMarks/NOW[40]. Optimized cache co-

herence mechanisms based on the specific access pattern of a shared variable show significant

performance benefits over general DSM coherence protocols[18].
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We suggest that the problems with SAS are due to trying to do everything (i.e. all

kinds of information exchange between processes) with SAS. It may be more productive to

incorporate SAS as a part of a programming model that allows private data for each thread,

and mechanisms for synchronization and data-exchange such as message-passing or method-

invocations. This frees us to support only those SAS access modes that can be efficiently

and scalably supported on distributed memory machines including clusters, without being

encumbered by having to support a “complete” shared-memory programming model.

Which access modes can be efficiently supported? read-only accesses, write-many ac-

cesses (where each location is updated by at most one thread), accumulate accesses (where

multiple threads may update a single location, but only via a well-defined commutative asso-

ciative operation), and an owner-computes mode seem to be the obvious candidates. These

modes are general enough to capture the majority of shared memory access patterns. For

all other operations not covered, one is free to use message passing or asynchronous message

invocation, for example.

Another observation stemming from our application studies is that the access pattern

for the same data changes distinctly between computation phases. For example, a matrix

multiply operation (C = AxB) may calculate a C matrix in Phase I of the computation (where

A and B matrices are accessed in read-only manner, and C is written-only or accumulated),

whereas in the phase II, C matrix may be used in a read-only manner while A and B may

be updated. These phases may then iterate.

These two observations, specifically shared data and access in phases, guided the design of

multi-phase specifically shared arrays(MSA). For each MSA array, The programmer specifies

one of the above access modes and can change it between phases. The phases are separated

by synchronizations such as a barrier (as in release consistency[40]).

The restricted set of operations simplifies the consistency protocol and associated mem-

ory traffic. Only read-only mode requires remote data to be fetched. Write-many and

accumulate modes initialize and update local copies of a page, data is exchanged at the end
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of the phase. No invalidations or updates are needed during the course of any phase, but only

at the end of the phase. As a result, MSA scales extremely well to a large number of proces-

sors, as demonstrated in Section 3.5. MSA does not support a general read-write access

mode. MSA coexists with the message-passing paradigm (MPI/AMPI) and the processor

virtualization-based message-driven paradigm(Charm++).

One of the original motivations for this work was computations performed at initializa-

tion, where efficiency is less important, and coding productivity is the dominant consider-

ation. However, it quickly became clear that the method is useful more broadly beyond

initialization. Of course, such broad use requires more serious consideration of efficiency

issues. With strip-mining and prefetch calls (see Section 3.1), we provide efficiency compa-

rable to that of local array accesses. One of the costs of DSM systems is the long latency on

“misses”[8, 9]. Processor virtualization techniques that we have been exploring in Charm++

and Adaptive MPI (AMPI)[28] allow many user-level (lightweight) threads per processor,

which help tolerate such latencies, as seen in Section 3.5.

A distinctive feature of MSA arrays is that the unit of coherence (or “page” size) can be

specified by the programmer, i.e. it is not tied to the hardware virtual memory page size as

in DSM, or the processor cache line size as in hardware shared memory. Thus, an MSA array

can specify a page size of one data element, while another may specify a page size as large

as the row of a matrix or the entire data array. The user-defined page size granularity can

lead to significant performance improvements over fixed page sizes, as shown in Section 3.5.

Furthermore, MSA supports variable sized data elements. So, for example, MSA’s can

support a hash table, where each element of the array is a linked list. Page updates transfer

the entire element using a user-specified pack/unpack method. Generalized accumulate

methods are supported in MSA, permitting set union, list appending, etc. The generalized

notion of accumulate accesses (see Section 3.1.4) is relatively new, although compiler research

(e.g. Polaris[14]) has often focused on identifying commutative-associative operations.

The MSA abstraction is implemented as a library in Charm++ and AMPI, and as a
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language-level abstraction in Jade. In Jade, compiler support enables us to automatically

perform optimizations which have to be done manually by MSA users (such as strip-mining).

Jade compiler support also features notational conveniences, allowing MSA arrays to be

accessed using array (“[]”) notation instead of get, set, and accumulate API calls.

In the rest of this chapter, we present the MSA model, its implementation, programming

examples and performance results.1

3.1 MSA Design

As mentioned above, the MSA abstraction is implemented as a C++ library in Charm++

and AMPI, and as a language-level abstraction in Jade. The notation used in the exposition

below uses the Jade language. Places where Charm++ behavior differs are mentioned in

notes. Appendix B shows Charm++ notation.

Conceptually, an MSA is an array of data elements that can be globally accessed in an

MIMD program in one of several dynamically chosen global access modes and in units of

a user-defined page size. The modes are not expected to be fixed for the lifetime of an

array, but for a phase of execution of the program. MSA’s are implemented as a templated,

object-oriented Jade class. Currently 1D and 2D MSA arrays are supported.

3.1.1 MSA Variable-sized Elements

The elements of an MSA can be one of the standard built-in types such as ints or floats,

or a user-defined class with certain operations defined on it. The number of elements in the

MSA is specified in the constructor when the MSA is created. 2

1I wish to acknowledge the work of Rahul Joshi on implementing an initial version of MSA, and Orion
Lawlor for improving the MSA API and performance.

2Currently, an MSA cannot be resized once created, but this is not a fundamental restriction, because
the programmer can allocate a larger-than-needed array. Since MSA pages, described in the Section 3.1.2,
are created lazily, allocating an MSA that is larger than needed does not actually instantiate the unused
pages. The technical issue with permitting resizing for 2D MSA arrays is that MSA pages would need to be
remapped over the data.
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In Charm++ (but not in Jade), for complicated element types (such as linked lists), a

pup() method must be defined by the user for the element type: this is used to pack and

unpack the element when pages are shipped around. (More details of the PUP framework

can be found in [32].) PUP methods for standard types are predefined. The pup framework

enables MSA elements to be a linked list or other variable sized data structure. Jade auto-

generates PUP methods as described in Section 2.2.2, and so automatically supports variable-

sized data types.

3.1.2 MSA User-specified Pages and Data Layout

Internally, the MSA array is split up into “pages” of a user-defined size. The page size

is specified as a template parameter at the time the MSA is created. It is expressed as a

number of elements and can range from a single element to the total number of elements

in the array. For 2D MSA arrays, the data layout can also be specified at creation time.

Currently, row-major and column-major data layouts are supported, and we plan to support

block partitioned layout.

The array of “pages” is implemented as a ChareArray (Section 2.1.3) object. ChareArrays

are managed by the Jade runtime system; they are capable of processor migration and can

participate in system-wide load-balancing based on communication patterns, computational

load, etc., can be automatically checkpointed and restarted on a different number of proces-

sors, and can be swapped out to disk for out-of-core execution when needed.

3.1.3 Page Replication in the Local Cache

The MSA runtime system on each processor fetches and replicates remote pages into local

memory on demand, or instantiates blank local copies of remote pages when needed, based

on the mode (described below) of the MSA. The amount of local memory so used (the local

cache) on each processor can be constrained by the user for each MSA. When the local cache
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fills up, pages are flushed out using a user-defined page replacement policy. Standard page

replacement algorithms such as least-recently used(LRU), FIFO, etc. can be implemented.

MSA implements an extremely efficient “not recently used” default policy that keeps track

of a few most recently used pages in a circular list: any page not listed there can be flushed

out.

3.1.4 MSA Modes and Operations

The MSA is globally accessed in one of several access modes, which can be changed dy-

namically over the life of the program. The mode of an MSA is set implicitly by the first

operation (read, write, or accumulate) on it after a sync or enroll. Each phase of execution

in a particular mode is terminated by running a sync operation on the array.

The modes supported are read-only, write-many and accumulate, and have been cho-

sen for simplicity and efficient implementation, as described below. The modes avoid all race

conditions, thereby eliminating the need for any coherence-related communication during the

mode.

In the read-only mode, the elements of the array are read-only by the worker threads.

read-only is efficiently implemented by replicating pages of the array on each processor on

demand. Reading a page that is not available locally causes the accessing thread to block

until the page is available. read-only mode is the only mode in which the accessing thread

can block, write-many and accumulate modes never block. User-level or compiler-inserted

prefetch calls can be used to improve read-only performance. Since the page is read-only,

no invalidates or updates need to be propagated. This makes read-only mode very efficient.

In the write-many mode, several threads are permitted to write to the elements of an

MSA, but to different elements, i.e. at most one thread is permitted to write to a particular

element. write-many is efficiently implemented by instantiating a blank local copy of an

accessed page on any processor that needs the page. No page data and no page invalidates

or updates need to be communicated during the phase. At the end of the phase, the changed
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data in the local cache are forwarded to the above-mentioned ChareArray page object, where

they are merged.

In the accumulate mode, multiple threads can perform an accumulate operation on any

given element. accumulate is implemented by accumulating the data into a local copy of

the page on each processor, (instantiated with the identity element on first access), and

combining these local values with the home page at the end of the phase. Once again, no

page data or coherence traffic is transmitted during the phase.

In most cases, data in an array is accumulated using only one operation, i.e. addition,

or multiplication; and so the accumulate operation to be used is specified at creation of

the MSA. MSA provides templated Null, Add, Product, Max and Min accumulators. The

accumulate operation can be changed at any time by invoking a method of the MSA: a sync

is needed after the change so that the change can propagate to all processors. Accumulation

using the common sum, product and max operations is provided for built-in types. For

the general case, setting the accumulate operation involves passing in a class that contains

accumulate() and getIdentity() methods. This allows the accumulate operation to be

user-specified. In combination with the pup framework, this allows accumulate to handle

complex operations such as set union, appending to a hash table in which each element is a

linked list, and so on.

The user is responsible for correctness and coherence; e.g., if an array is in write-many

mode, it is the user’s responsibility to ensure that two processors do not write to the same

location. The system assists by detecting errors at run-time.

Because of processor virtualization, the number of worker threads accessing an MSA

object can be different from the number of processors the program is running on. The sync

operation needs to know this number in order to determine when all threads have reported

their changes. Furthermore, each MSA array maintains only one cache for page replication

per processor so that pages are not replicated unnecessarily even if multiple threads accessing

the same MSA array are present on the processor. (This feature is made feasible because the
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nature of the various MSA modes avoids race conditions.) The distribution of the worker

threads across the processors of the system needs to be known, in order to ensure that the

data changed in a processor’s cache is only sent after all local worker threads call their sync

operation. This is achieved by requiring the worker threads accessing an MSA to participate

in an enroll operation at startup so that the system can determine the number of worker

threads on each processor.

In certain cases, it is desirable for the processor owning a page to perform some function

on the elements of the page. Such an owner-computes facility is supported in MSA. The API

for MSA requires the user to define a class that inherits from the MSA_Page_Array class, and

pass this class to the MSA constructor. Thereafter, functions in this class can be called very

simply by using ChareArray broadcast, which causes the function to execute on each page

in the MSA_Page_Array.

3.1.5 MSA Optimizations

For the write-many and accumulate modes, the MSA runtime on each processor keeps track

of which elements of the page are written. This can be done by initializing the page with an

unused value when the page is created in the local cache; thereafter, any changed value can

be easily identified. This works out well for elements such as floats or doubles since we

can use NaN as a marker value, but MSA also provides a default alternate mechanism that

keeps track of changed elements in a local bit-vector.

DSM uses page fault hardware to detect access to a page that needs to be fetched from a

remote processor. This is a relatively efficient mechanism, but forces the page size to match

the virtual memory page size, and does not permit a type-aware system that can support

variable-sized data elements on the page. These features significantly affect efficiency and

programming ease as discussed in Sections 3.5 and 3.2.3, and we wished to support them

in MSA. Therefore, in MSA, when accessing data in read-only mode, the MSA system

checks whether data is available in the local cache on every access. Since this is expensive,
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1 for i=subse c t i on o f s i z e N/P // Rows o f A matrix
2 for j =1. .N // Columns o f B matrix
3 for k=1. .N
4 r e s u l t += A[ i ] [ k ] ∗ B[ k ] [ j ]
5 C[ i ] [ j ] = r e s u l t

Figure 3.1: Matrix Multiplication pseudocode: 1-level decomposition.

using compiler support in Jade we strip-mine for loops and use local (non-checked) accesses

within a page. write-many and accumulate modes also benefit from such non-checked

accesses, since it reduces one lookup when converting an index into an address. As shown

in Section 3.5, strip-mined MSA performance matches the performance of sequential array

access. Both prefetch and direct local access methods for strip-mining are provided in the

library API for Charm++ programs.

3.2 Example Programs

In this section, we present several example programs to display the productivity benefits

of the MSA abstraction and illustrate how the basic MSA modes suffice to provide shared

address space programming for realistic applications.

3.2.1 Matrix Multiplication

The pseudocode for a matrix-matrix multiplication using a straightforward row-wise decom-

position is shown in Figure 3.1 (assuming N ∗N matrices and P processors). The i dimension

is divided among the worker threads. Thus in this case, each thread will request a subset of

the rows of A and C, and the entire B matrix.

Relevant sections of the corresponding MSA program are shown in Fig. 3.2. 2D MSA

arrays are used in this example. We use row-major data layout for the A and C matrices,

and column-major for the B matrix. The page size for each MSA is specified when defining
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the MSA (lines 1–2). For our matrix problem size of 2000*5000*300, we set it to 5000 in

order to fetch an entire row of A or C, or column of B. The page size is a crucial parameter

for performance. (We could set B’s page size to the total number of elements in B, and that

would fetch the entire B matrix into local memory upon the first access to it. However, such

a large data transfer would cause a delay at startup while B is fetched on every processor;

we choose a smaller size so that the transfers can be overlapped with computation by other

worker threads.) The per processor cache size is specified when instantiating the MSA

(lines 5–7). We set the cache size to hold at least the working set of data, unless that is too

large to fit in the available memory.

For the algorithm shown in Figure 3.1, if all matrices are N ∗ N matrices, the required

number of elements required by each of P processors works out to N2 + 2N2/P , i.e. O(N2).

The computation requires an add and a multiply operation inside three nested loops, which

works out to 2N3/P operations per processor. The computation/communication rato is

O(N/P ).

We can improve this ratio by decomposing the inner loops of the matrix multiplication.

Consider the pseudocode shown in Figure 3.3 for a block decomposition matrix product.

The i and j loops are shared ampng the virtual processors. Here too, exactly one thread

is responsible for each element of C and the write-many mode can be used for C. The

number of elements required by each processor is 2N2/
√

P , since each thread needs N/
√

P

rows of A and N/
√

P columns of B. The computation/communication ratio improves over

the previous case to O(N/
√

P )

Finally, consider the case where we decompose in the k-dimension as well, shown in

Figure 3.4. Here, C[i][j] is written to by many threads and the MSA accumulate mode

is useful. An Add accumulator class can be specified as the default when creating the C

MSA. The number of elements required by each processor reduces from the previous case to

2N2/P 2/3. And the computation/communication ratio improves further over the previous

cases, to O(N/P 1/3).
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1 typedef MSA2D<double , MSA NullA<double> , 5000 ,MSA ROW MAJOR> MSA2DRowMjr ;
2 typedef MSA2D<double , MSA SumA<double> , 5000 ,MSA COL MAJOR> MSA2DColMjr ;
3
4 // One thread / process c r ea t e s and broadcas t s the MSA’ s
5 MSA2DRowMjr arr1 (ROWS1, COLS1 , NUMWORKERS, cacheS ize1 ) ; // row major
6 MSA2DColMjr arr2 (ROWS2, COLS2 , NUMWORKERS, cacheS ize2 ) ; // column major
7 MSA2DRowMjr prod (ROWS1, COLS2 , NUMWORKERS, cacheS ize3 ) ; // product matrix
8
9 // broadcas t the above array hand les to the worker th reads .

10 . . .
11
12 // Each thread does the f o l l ow i n g code
13 arr1 . e n r o l l ( numWorkers ) ; // b a r r i e r
14 arr2 . e n r o l l ( numWorkers ) ; // b a r r i e r
15 prod . e n r o l l ( numWorkers ) ; // b a r r i e r
16
17 while ( i t e r a t e )
18 {
19 for (unsigned int c = 0 ; c < COLS2 ; c++) {
20 // Each thread computes a sub s e t o f rows o f product matrix
21 for (unsigned int r = rowStart ; r <= rowEnd ; r++) {
22 double r e s u l t = 0 . 0 ;
23 for (unsigned int k = 0 ; k < c o l s 1 ; k++)
24 r e s u l t += arr1 [ r ] [ k ] ∗ arr2 [ k ] [ c ] ;
25
26 prod [ r ] [ c ] = r e s u l t ;
27 }
28 }
29
30 prod . sync ( ) ;
31 // use product matrix here
32 }

Figure 3.2: Jade MSA matrix multiplication code: 1-level decomposition.

1 for i = subse c t i on o f s i z e N/ sq r t (P) // Rows o f A matrix
2 for j = subse c t i on o f s i z e N/ sq r t (P) // Columns o f B matrix
3 for k=1. .N
4 r e s u l t += A[ i ] [ k ] ∗ B[ k ] [ j ]
5 C[ i ] [ j ] = r e s u l t

Figure 3.3: Matrix multiplication pseudocode: 2-level decomposition.
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1 for i=subse c t i on o f s i z e N/ cuberoot {P} // Rows o f A matrix
2 for j=subse c t i on o f s i z e N/ cuberoot {P} // Columns o f B matrix
3 for k=subse c t i on o f s i z e N/ cuberoot {P}
4 C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ]

Figure 3.4: Matrix multiplication pseudocode: 3-level decomposition.

The simplicity of coding the above examples using the MSA abstraction is stressed. No

message packing or communication needs to be specified to share subsections of A, B, and C.

For Figure 3.4, a distributed-programming example would require an array reduction at the

end of the loop to accumulate C[i][j] across the worker threads. With MSA, the reduction

is automatically performed using a page as the unit of the reduction.

3.2.2 Molecular Dynamics

In classical molecular dynamics based on cut-off distance (without any bonds, for this exam-

ple), forces between atoms are computed in each timestep. If two atoms are beyond a cutoff

distance the force calculation is not done (to save computational cost, since force drops as

a square of the distance). After adding forces due to all atoms within the cutoff radius, one

calculates new positions for each atom using Newtonian mechanics.

The pseudocode for molecular dynamics using MSA is shown in Figure 3.5. The key data

structures used are:

• coords [i]: a vector of coordinates (x,y,z values) for each atom i.

• forces [i]: a vector containing forces (x,y,z values) on atom i.

• atomInfo [i]: a struct/class with basic read-only information about each atom such as

its mass and charge.

• nbrList: nbrList [i][j] is true if the two atoms are within a cutoff distance (neighbors).
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There are three phases in each timestep. The atomInfo array is read-only in all phases.

During the force computation phase, the forces array is write-many whereas the coords

array is read-only; while during the integration phase, this is reversed. Every 8 steps

(here) we recalculate the nbrList in phase III, where nbrList is write-many and coords

is read-only. The code assumes a block partitioning of the force matrix as suggested by

Hwang et al.[30] or Plimpton et al.[59].

3.2.3 FEM Graph Partitioning

As an example of the power of the generalized accumulate operation, we present in Fig-

ure 3.7, a part of a program that deals with an unstructured mesh for a finite-element method

(FEM) computation. The data structures used are shown in Figure 3.6. The mesh connec-

tivity data is available at input in the EtoN array: for each element i, the EtoN [i] contains

three node numbers (we assume triangular elements). The objective is to produce the EtoE

array, where EtoE [i] contains all element (numbers) that are neighbors of Ei. E1 is said to

be a neighbor of E2 if they share a common node. So, e2 and e3 are neighbors because they

share Node 4.

The algorithm for doing this using MSA proceeds in two phases. In the first phase, an

intermediate array NtoE is created by accumulation: NtoE [j] contains all elements that have

nj as their node. To construct this, each thread processes a section of the EtoN array.

The accumulate operation in this example is user-defined set accumulation. It demon-

strates the power of the MSA abstraction: allowing elements of the MSA array to be variable-

sized. The user defines a class for the element, which contains a reference to an instance of

the same class, and implements an assignment operator, a + = operator, and a pup method.

(If using Jade, the pup is generated by the compiler. And since Jade does not support

operator overloading, the user defines assign and accumulate methods.)

As a matter of efficiency, pages are normally copied as a string of bytes in Jade; but when

using variable-sized pages, each element needs to be copied using the pup method. An API
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1 // Dec la ra t i ons o f the 3 arrays
2 class XYZ; // { doub le x ; doub le y ; doub le z ; }
3 typedef MSA1D<XYZ, MSA SumA<XYZ> , DEFAULT PAGE SIZE> XyzMSA;
4 class AtomInfo ;
5 typedef MSA1D<AtomInfo , MSA SumA<AtomInfo>,
6 DEFAULT PAGE SIZE> AtomInfoMSA ;
7 typedef MSA2D<int , MSA NullA<int >,
8 DEFAULT PAGE SIZE , MSA ROW MAJOR> NeighborMSA ;
9

10 XyzMSA coords ;
11 XyzMSA f o r c e s ;
12 AtomInfoMSA atominfo ;
13 NeighborMSA nbrL i s t ;
14
15 // broadcas t the above array hand les to the worker th reads .
16 . . .
17
18 // Each thread does the f o l l ow i n g code
19 coords . e n r o l l ( numberOfWorkerThreads ) ;
20 f o r c e s . e n r o l l ( numberOfWorkerThreads ) ;
21 atominfo . e n r o l l ( numberOfWorkerThreads ) ;
22 nbrL i s t . e n r o l l ( numberOfWorkerThreads ) ;
23
24 for t imestep = 0 to Tmax {
25 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Phase I ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
26 // f o r a s e c t i on o f the i n t e r a c t i o n matrix
27 for i = i s t a r t to i end
28 for j = j s t a r t to j end
29 i f ( nbrL i s t [ i ] [ j ] ) { // nbrL i s t en t e r s ReadOnly mode
30 f o r c e = ca l cu l a t eFo r c e ( coords [ i ] , atominfo [ i ] ,
31 coords [ j ] , atominfo [ j ] ) ;
32 f o r c e s [ i ] += f o r c e ; // Accumulate mode
33 f o r c e s [ j ] += − f o r c e ;
34 }
35 f o r c e s . sync ( ) ;
36
37 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Phase I I ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
38 for k = myAtomsbegin to myAtomsEnd
39 coords [ k ] = i n t e g r a t e ( atominfo [ k ] , f o r c e s [ k ] ) ; // WriteOnly mode
40 coords . sync ( ) ;
41
42 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Phase I I I ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
43 i f ( t imestep %8 == 0) { // update ne ighbor l i s t every 8 s t e p s
44 // update nbrL i s t wi th a loop s im i l a r to the f o r c e loop above
45 . . . nbrL i s t [ i ] [ j ] = value ;
46
47 nbrL i s t . sync ( ) ;
48 }
49 }

Figure 3.5: Jade MSA molecular dynamics example code.
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Figure 3.6: FEM graph partitioning data structures.

1 // Phase I : EtoN : RO, NtoE : Accu
2 for i =1 to EtoN . l ength ( )
3 for j =1 to EtoN [ i ] . l ength ( )
4 n = EtoN [ i ] [ j ] ;
5 NtoE [ n] += i ; // s e t accumulate opera t ion
6
7 // Phase I I : NtoE : RO, EtoE : Accu
8 for j = my s e c t i o n o f NtoE [ j ]
9 // foreach pa i r e1 , e2 element−o f NtoE [ j ]

10 for i 1 = 1 to NtoE [ j ] . l ength ( )
11 for i 2 = i 1 + 1 to NtoE [ j ] . l ength ( )
12 e1 = NtoE [ j ] [ i 1 ] ;
13 e2 = NtoE [ j ] [ i 2 ] ;
14 EtoE [ e1 ] += e2 ; // s e t accumulate
15 EtoE [ e2 ] += e1 ; // s e t accumulate

Figure 3.7: Jade MSA FEM Code.
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is provided for the user to over-ride the default byte-copy behavior when using variable-sized

data elements.

3.2.4 Livermore Loops

The Livermore Loops[25] consist of a set of kernels of loops extracted from operational code

at LLNL. The loop kernels display a wide range of loop access patterns and have been widely

used as a performance benchmark.

We examined the set of 14 loops and analyzed whether they can be expressed using the

MSA paradigm. For instance, consider Kernel 1:

1 for ( l=1 ; l<=loop ; l++ ) {
2 for ( k=0 ; k<n ; k++ ) {
3 x[k] = q + y[k]*( r*z[k+10] + t*z[k+11] );
4 }
5 }

Here, y and z can be placed in read-only mode, and x in write-many mode to implement

this kernel in MSA.

But consider Kernel 11:

1 for ( l=1 ; l<=loop ; l++ ) {
2 x[0] = y[0];
3 for ( k=1 ; k<n ; k++ ) {
4 x[k] = x[k-1] + y[k];
5 }
6 }

Here, y can be placed in read-only mode, but the close dependence of x[k] on x[k − 1]

makes it difficult to express x using MSA’s. Each iteration of the k loop would require a

sync operation on x for correct operation. Of course, it should be pointed out that this close

dependence issue, as we will call it in our discussion below, is difficult for any compiler to

parallelize due to the nature of the dependences.

The details required to implement each kernel in the MSA paradigm are described below:

1. x in write-many, y and z in read-only
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2. duplicate of x in write-many, x and v in read-only

3. x and z in read-only

4. duplicate of x in write-many, x and y in read-only

5. close dependence issue for x; y and z in read-only

6. close dependence issue for w; b in read-only

7. x in write-many mode, u, y, z in read-only

8. break innermost loop into two parts (1) du1, du2, du3 in write-many, u1, u2, u3 in

read-only (2) du1, du2, du3 in read-only, duplicates of u1, u2, u3 in write-many,

and u1, u2, u3 in read-only.

9. Since 2D MSA arrays cannot have different modes for each row, the px array must be

re-written as separate 1D arrays for each row. Then in iteration i, pxi is placed in

write-many mode, and all other arrays in read-only mode.

10. Basically, PX(i,j) is first read, then overwritten. Therefore, we use a duplicate PX

in write-many mode and the original PX in read-only mode. At the end of the

comutation, we overwrite the old PX.

11. close dependence issue for x; y in read-only. This loop is a prefix sum and can be

expressed using a different algorithm that might be more amenable to MSA.

12. x in write-many, y in read-only

13. b, c, y, z in read-only; but close dependence issue for p

14. close dependence issues for vx, xx, ir, rx
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3.3 Jade Strip-mining Compiler Optimization

Figure 3.8 shows a Jade loop that accesses an MSA array arr1 using array index notation.

The equivalentCharm++ loop (generated by the Jade compiler, or written by a Charm++

programmer using the MSA library API described in Chapter 3) is shown in Figure 3.9.

The MSA get method, shown in Figure 3.10, is declared as inline, and this eliminates the

function call overhead. However, the get function contains the overhead of an if statement

in every call, which is expensive for performance.

An obvious optimization to try is to strip-mine the loop so that once a page is fetched

into the local MSA cache, its elements are thereafter accessed directly using a pointer and

offset notation, which completely bypasses the get function call. We implemented such an

optimization in the Jade compiler; the generated code for the input loop of Figure 3.8 is

shown in Figure 3.11.
Several cases can arise when fetching pages for local access:

1. page size == row size

2. page size < row size, and divides evenly

3. page size < row size, and does not divide evenly

4. page size > row size, and divides evenly

5. page size > row size, and does not divide evenly

i0, iFinal, and iDelta are the bounds and increment of the outer loop; and j0, jFinal,

and jDelta are the same for the inner loop. The 2D MSA indices must be converted into

a page/offset format to access the internal MSA array of pages. indexSt and indexEnd

are the starting and ending internal-indices of the current page that has been fetched. The

user-index tuple (iSt,jSt) represents the starting user-indices on the current page, and

tuple (iN,jN) represents the ending user-indices on the current page. jEnd and jFinal are

needed for the cases when the page size and row size do not divide evenly. The column-major

case is symmetric with the row-major case: ROWS and COLS are interchanged, and i and j

are interchanged.

66



1 for ( int r = rowStart ; r <= rowEnd ; r++)
2 for ( int c = 0 ; c <= TheMain .COLS1−1; c++)
3 arr1 [ r ] [ c ] = 1 . 0 ;

Figure 3.8: Jade MSA loop code input for strip-mining optimization.

1 for ( int r = rowStart ; ( r <= rowEnd ) ; ( r++))
2 for ( int c = 0 ; ( c <= (TheMain : : COLS1 − 1 ) ) ; ( c++))
3 arr1 . s e t ( r , c ) = 1 . 0 ;

Figure 3.9: Equivalent Charm++ MSA loop code.

The performance improvements due to the strip-mining optimization are detailed in Sec-

tion 3.5.

3.4 Related Work

3.4.1 DSM, TreadMarks, and Munin

Distributed Shared Memory (DSM) is a much-studied software-level shared memory solution.

Typically, DSM software uses the virtual memory page fault hardware to detect access to

non-local data, which it then handles. It works at the page level, fetching and delivering

virtual memory pages. DSM uses relaxed consistency memory models to reduce false sharing

overheads and improve performance[31, 1].

Munin[8, 9] and TreadMarks[40] are DSM implementations. TreadMarks implements the

release consistency memory model, which typically does not require any additional synchro-

nization over a general shared memory (sequential consistency) program. To reduce false

sharing overheads, their multiple-writer coherence protocol allows multiple threads to write

to independent locations within a page.

Munin takes such coherence optimizations further, and identifies several access modes
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1 // / Return a read−only copy o f the element at idx .
2 // / May b l o c k i f the element i s not a l r eady in the cache .
3 inl ine const ENTRY& get (unsigned int idx )
4 {
5 unsigned int page = idx / ENTRIES PER PAGE;
6 unsigned int o f f s e t = idx % ENTRIES PER PAGE;
7 return readablePage ( page ) [ o f f s e t ] ;
8 }
9

10 // MSA CacheGroup : :
11 inl ine const ENTRY TYPE∗ readablePage (unsigned int page )
12 {
13 accessPage ( page , Read Fault ) ;
14
15 return pageTable [ page ] ;
16 }
17
18 // / Make sure t h i s page i s a c c e s s i b l e , f a u l t i n g the page in i f needed .
19 // MSA CacheGroup : :
20 inl ine void accessPage (unsigned int page , MSA Page Fault t a c c e s s )
21 {
22 i f ( pageTable [ page ] == 0) {
23 pageFault ( page , a c c e s s ) ;
24 }
25 #ifndef CMK OPTIMIZE
26 i f ( stateN ( page)−> s t a t e != ac c e s s ) {
27 CkPrintf ( ”page=%d mode=%d pages ta te=%d” ,
28 page , acces s , stateN ( page)−> s t a t e ) ;
29 CkAbort ( ”MSA Runtime e r r o r : Attempting to a c c e s s a page that \
30 i s s t i l l in another mode . ” ) ;
31 }
32 #endif
33 replacementPol icy−>pageAccessed ( page ) ;
34 }

Figure 3.10: MSA get method code.
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1 {
2 int accessMode = (−1);
3 int acce s sPat t e rn = (−1);
4 int MAJOR SIZE = (( arr1 . getArrayLayout () == MSAROWMAJOR)?
5 arr1 . getCo l s ( ) : a r r1 . getRows ( ) ) ;
6 int numEntriesPerPage = arr1 . getNumEntriesPerPage ( ) ;
7 int i 0 = rowStart ;
8 int i F i n a l = rowEnd ;
9 int iDe l t a = 1 ;

10 int j 0 = 0 ;
11 int j F i n a l = (TheMain : : COLS1 − 1) ;
12 int jDe l ta = 1 ;
13 int i = i 0 ;
14 int j = j0 ;
15 do {
16 int index = (( arr1 . getArrayLayout () == MSAROWMAJOR)?
17 arr1 . getIndex ( i , j ) : a r r1 . getIndex ( j , i ) ) ;
18 int indexSt = (( index / numEntriesPerPage ) ∗ numEntriesPerPage ) ;
19 double ∗ pi = &( arr1 . getPageBottom ( index , Write Fault ) ) ;
20 int indexEnd = (( indexSt + numEntriesPerPage ) − 1) ;
21 int i S t = ( indexSt / MAJOR SIZE ) ;
22 int iN = ( indexEnd / MAJOR SIZE ) ;
23 int j S t = ( indexSt % MAJOR SIZE ) ;
24 int jN = ( indexEnd % MAJOR SIZE ) ;
25 for ( ; ( i <= JADE MIN( iF ina l , iN ) ) ; i += 1) {
26 int jEnd ;
27 i f ( ( i == iN ) )
28 jEnd = JADE MIN( jF ina l , jN ) ;
29 else
30 jEnd = jF i na l ;
31 i f ( ( j > j F i n a l ) )
32 j = j0 ;
33 for ( ; ( j <= jEnd ) ; j += jDe l ta ) {
34 double ∗newname = &( pi [ ( ( ( ( i − i S t ) ∗ MAJOR SIZE) + j ) − j S t ) ] ) ;
35 // i n t r = i ;
36 // i n t c = j ;
37 {
38 // arr1 . s e t ( r , c ) = 2 . 0 ;
39 newname [ 0 ] = 1 . 0 ;
40 }
41 }
42 i f ( ( ( ( i == iN) && ( j > jN )) && ( j <= jF ina l ) ) )
43 break ;
44 }
45 i f ( ( j > j F i n a l ) )
46 j = j0 ;
47 }
48 while ( ( ( i < i F i n a l ) | | ( ( i == iF i n a l ) && ( j <= jF ina l ) ) ) ) ;
49 }

Figure 3.11: Jade compiler-generated code for MSA loop strip-mining.
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with correspondingly efficient coherence protocols, as follows:

• Synchronization: Global locks were optimized by using a local proxy to minimize global

communication.

• Private: No coherence.

• Write-once These are read-only after initialization. Optimized by replication.

• Result: Read by only one thread. Optimized by maintaining a single copy and propa-

gating updates to it.

• Producer-Consumer: Optimized by eager update of copies.

• Migratory: Optimized by migrating the object.

• Write-many: Optimized by a multiple-writer protocol.

• Read-mostly: Optimized by replication.

• General Read-Write: Uses standard coherence protocol.

Their study of several shared memory programs and their performance results relative

to message-passing are impressive and appear to validate their idea of “adaptive cache

coherence”[18].

Munin’s modes were applied on both a per-object and a per-variable basis. While Tread-

Marks attempts to maintain the illusion of a general shared address space, Munin requires

the programmer to specify the mode for each variable. This was done at compile time and so

a variable’s mode could not change during the program, and only statically allocated memory

was supported. Munin put each shared variable on a separate page of virtual memory.

Comparison: Munin is designed to be a complete shared memory programming model

rather than the blended model of MSA. MSA supports Munin’s Private and Write-many
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modes, and introduces a new accumulate mode and prefetching commands. Munin’s Write-

once, Result, and Read-Mostly modes seem to be of limited use, since synchronization will be

required at the application level before accessing the updated data; which leads us to believe

that these modes are an artifact of Munin’s static style of specifying modes. MSA accom-

plishes these modes by dynamically specifying a write-many mode followed by a read-only

mode. Munin’s Producer-Consumer mode with its eager update offers unique features, but,

again, given the need for synchronization, a message send might be more efficient. MSA

does not support the General Read-Write or the Read-mostly modes, in order to simplify

the coherence protocol by avoiding race conditions, as explained in Section 3.1.4.

Specifying portions of an array to be in different modes is not supported in MSA, but

this cannot be done in Munin either because of the static specification. Munin’s granularity

for data movement is the size of a virtual memory page; whereas MSA works physically

on a user-defined page size. MSA’s user-defined physical page size allows the “page” to be

as small as one element, or as large as several rows of a matrix allowing the user (or Jade

compiler) to optimize for the expected access pattern. Munin’s modes are static, whereas

MSA arrays can change their mode dynamically over the life of the program, which leads to

needing fewer modes. Furthermore, MSA supports row-major, column-major, and (in the

future) other array layouts, which can further improve performance.

DSM systems suffer considerable latency on “misses” and provide no latency tolerance

mechanisms since control transfers to the DSM software in kernel space. MSA is implemented

in user space, and Charm++’s virtual processors (user level threads) can tolerate latency

by scheduling another virtual processor when one thread suffers a “page” miss. Section 3.5

shows performance results.

DSM uses page fault hardware to detect non-local access; MSA checks each data access

(similar to Global Arrays) and we need to study the cost of this detection mechanism.

MSA also has operations that work on data that is known to be available locally (e.g.

using prefetch), and the Jade compiler can generate code for some such cases. When
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combined with MSA’s prefetch feature, we expect that the efficiency of array element access

will approach that of sequential programs.

3.4.2 Specifically Shared Variables in Charm

Charm (and its earlier version, the Chare Kernel) supported a disciplined form of shared

variables by providing abstractions for commonly used modes in which information is shared

in parallel programs. [39, 36]. The modes were readonly (replicated on all processors),

write-once, accumulator, monotonic variable (useful in branch-and-bound, for example), and

distributed tables (basically, readonly or write-once, with distributed storage and caching).

However, unlike MSA, it does not support the notion of phases, nor that of pages. Fur-

ther, the original version did not have threads, and so supported a split phase interface to

distributed tables.

3.4.3 Global Arrays

The Global Arrays (GA) project[50], like MSA, attempts to combine the portability and

efficiency of distributed memory programming with the programmability of shared memory

programming. It allows individual processes of an MIMD program to “asynchronously access

logical blocks of physically distributed matrices” without requiring the application code on

the other side to participate in the transfer. GA typically uses Remote DMA(RDMA)[20]

and one-sided communication primitives to transfer data efficiently. GA coexists with MPI.

Each block is local to exactly one process, and each process can determine which block is

local. GA provides get, put, accumulate (float sum-reduction), and int read-increment

operations on individual elements of the array. The GA synchronization operation completes

all pending transfers. fence waits until all transfers this process initiated are completed.

Global Arrays does not implement coherence. It is the user’s responsibility to guard shared

access by using synchronization operations.
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GA does not use page fault hardware to detect non-local access. Typically, data accesses

are at the level of user-specified blocks of a matrix. Every data access is checked (with

an if) and redirected to a local or non-local version of the operation. In GA one-sided

communication is used to access a block owned by a remote processor: there is no automatic

caching of remote data. The user can explicitly fetch remote data for extended local access

and then directly access the data.

Comparison: In shared-memory terminology, it appears that GA maintains a single copy

of each “page” and propagates updates to it quickly using RDMA. Unlike DSM, GA does

not tie the “page” size to the VM page size but allows the user to specify an exclusive logical

block of the array. It allows the block to migrate to be closer (i.e. local) to an accessing

process. GA seems well-suited to certain access patterns, but, for example, implementing

write-many on GA would involve a lot of unnecessary RDMA operations since there is only

one home processor for a block of data, and every other processor that writes to that block

does so via RDMA operations. This lack of “page” replication in GA makes reading of

elements on a “page” by many threads inefficient, since, again, each read is implemented via

an RDMA operation. The GA accumulate does not support variable-sized elements as MSA

does. The MSA FEM example in Section 3.2.3 shows the expressivity of this feature.

3.4.4 HPF and others

Other approaches that deal with similar issues include implementation strategies for HPF[42].

For example, the inspector-executor idea [61, 41] allows one to prefetch data sections that

are needed by subsequent loop iterations. HPF provides only the owner-computes model,

which does not apply well to all programming problems, especially applications with dynamic

irregular workloads. MSA supports owner-computes, as described in Section 3.1.4.

Obtaining full performance from MSA requires bypassing the local/remote test-condition

for each access through manual fetching of blocks of data by the programmer or by using

the strip-mining compiler optimization presented in Section 3.3. The simple case-based
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strip-mining optimization presented only predicts monotonic access patterns. HPF (data

parallel) research and other compiler technology to detect more complex access patterns[4,

2, 60] can be applied to Jade MSA programs to significantly broaden the range of access

patterns detected and simplify MSA usage substantially. The user-specified MSA mode

could potentially be used to simplify compiler analysis, and the MSA system can be used

as a backend for data parallel code generation, providing page level data transfer instead of

byte level send/receive’s typically used in data parallel systems. A similar mechanism using

a DSM system as the backend is presented in the paper by Min and Eigenmann[46].

Bulk Synchronous Processing[67] offers a simple parallel programming model in which

all processes alternate computation with a global synchronization. Data is exchanged only

during the synchronization. This model offers a simple, accurate cost model and is meant

to be a bridging model connecting hardware designers and compiler writers.

Co-Array Fortran (CAF)[51] enhances Fortran95 with a very powerful notation to address

remote data, and permits synchronization between all or a subset of the processes accessing

a co-array. The user works with local data, and explicitly fetches and updates remote data

on an as-needed basis.

ZPL[21] is a high-level parallel language for array manipulation with a powerful array

notation based on working with regions of arrays. ZPL programs have a global view of

both data and computation, and this is argued to improves productivity[19]. Jade MSA

provides a global view of data, but computation is still specified locally in most modes. The

owner-computes mode is an example of global specification of computation. ZPL is limited

in its focus on array data, and does not provide more general data structures for dynamic,

irregular applications.

Titanium is compared to Jade in Section 2.7. A recent paper[64] builds upon the

inspector-executor analysis[10] to improve performance of irregularly accessed shared ar-

rays in Titanium. It seems that the same analysis can be implemented in Jade using the

MSA prefetch operation to prefetch the required data.
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P4 2.4 GHz lemieux opteron
Program 2k5k300 4096 2048 4096

Sequential C++ 12.34 273 205.06 364
MSA 358

MSA strip-mined 9 293 66.93 389

Table 3.1: Single-CPU C++ and MSA matrix multiplication execution times.

3.5 Performance Study

The computers used for our performance runs are described at the beginning of Section 2.6.

We present results for the row-wise decomposition matrix multiplication program shown

in Section 3.2.1. We first compare the MSA version running on one processor to a sequential

C++ matrix multiplication, in order to study the overhead introduced by MSA. The results

on several machines are shown in Table 3.1. MSA without the strip-mining optimization

performed by the Jade compiler is significantly slower than the sequential version. However,

after applying the optimization, MSA arrays perform only slightly worse than sequential

C++. An anomaly is the results on one node of the lemieux cluster, where the strip-mined

MSA significantly outperforms sequential C++ matmul.

Table 3.2 below shows the scaling performance for a 2000∗5000∗300 matrix multiplication

on NCSA’s Tungsten cluster. When there are 8 threads per processor, the latency of page

misses by a thread is better hidden by overlapping with computations for another thread.

This effect (the benefit of processor virtualization) can be clearly seen by comparing results

for 1 and 8 threads per processor. With a much larger number of threads per processor (32

or 64) the scheduling overhead and fine-grained communication lead to worse performance,

although a more detailed study is needed to ascertain that.

The speedup plot for a larger run is shown in Figure 3.12. It should be noted that raw

performance is currently unoptimized. With further optimizations, we expect the times to

decrease but possibly speedups may decrease.

As mentioned earlier, the page size chosen significantly affects the performance. This can
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Processors
Threads per processor 1 8 32 64 100 120

1 251.856 42.086 10.265 5.437 3.882 3.403
8 252.967 31.061 8.020 4.191 2.967 2.693

32 252.267 31.780 7.897 4.489 3.667 3.418
64 252.491 31.734 8.025 4.738 3.974 3.887

Table 3.2: MSA matrix multiplication (of size 2000*5000*300) execution times on Lemieux
for varying number of threads per processor.

Figure 3.12: Scaling of MSA matrix multiplication (20483) on Lemieux with varying number
of threads per processor.
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be demonstrated by comparing Figure 3.12 with Figure 3.13, which shows the scaling of the

same program but with a different page size. The absolute execution times on one processor

for both cases are almost the same (about 550s), allowing us to compare the speedups of the

two cases. The maximum speedup on 128 processors drops to about 80 for the page size of

1024 elements as compared to about 116 for the previous case.

Figure 3.13: Scaling of MSA matrix multiplication (20483) on Lemieux using page size of
1024.

Figure 3.14 shows the effect of limiting the MSA local processor page replication cache

size: with a smaller cache, the time is almost twice as large as that with an adequately large

cache. Smaller caches reduce the reuse of fetched data. Although our performance studies

have assumed a sufficiently large cache, MSA’s offer an elegant solution to situations where

the application data is too large to be replicated into local memory on every processor. This

happens for the FEM example described in Section 3.2.3. Studies of the cache performance

for various page replacement policies and applications are an avenue for further exploration.

77



 0

 20

 40

 60

 80

 100

 120

 0.5  1  2  4  8  16  32  64  128

Ti
m

e 
(s

)

Cache Size (MB)

Matrix Mul 2000*5000*300 on 4 cpus (2 nodes) of tungsten

Figure 3.14: Effect of varying MSA cache size for MSA matrix multiplication
(2000*5000*300) on Tungsten.

Finally, the performance results of the MSA molecular dynamics example described in

Section 3.2.2 are shown in Figure 3.15. The application computes VDW and electrostatics

forces for all atom interactions and uses cutoff distances to limit computation, but ignores the

integration step that moves atoms. To compare MSA with Charm++, a similar Charm++

program was implemented and the results are also shown in the graph. The Charm++ pro-

gram uses the same 2D decomposition of the iteration space and handles communication by

communicating chunks of the atom array to the worker threads that need the corresponding

chunks. After the worker threads complete a timestep computation, the results are sent back

to the atom array, which sums them up. The execution times of both the Charm++ and

MSA programs are shown in Table 3.3.

3.5.1 Responsiveness Issues in MSA

Table 3.4 shows the execution times on Lemieux for a matrix multiplication program whose

cache performance was optimized by interchanging the two inner loops and switching the

B matrix to row major data layout. Performance did not scale as expected. We can use
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Figure 3.15: Scaling of the Plimpton-style molecular dynamics example program on LeMieux:
MSA and plain Charm++.

CPU’s MSA Charm++

1 20.89 18.75
2 10.63 9.53
4 5.35 4.93
8 3.41 2.98

Table 3.3: MSA and Charm++ molecular dynamics execution times on Lemieux. 4096
atoms with 2D 16x16 decomposition (256 threads) and page size=256.
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Threads Processors
per processor 1 2 4

1x 19.24287 11.668164 20.198651
4x 20.902221 21.752528 24.398671

Table 3.4: Optimized MSA matrix multiplication (of size 2000*5000*300) execution times
on Lemieux for varying number of threads per processor.

the Projections performance visualization tool to study the program behavior. Figure 3.16

shows the Projections Overview Graph for a 4-cpu/16-worker run of the program. The x-

axis represents time; the y-axis is divided into equal bands for each processor and the color

of the interior depicts the processor utilization. White represents maximum load and black

0% utilization. Examination of the overview graph reveals that the processors are delayed

significantly. Average utilization of processors, shown in the Projections Usage Profile graph

in Figure 3.17, is less than 50%. Analyzing the detailed performance using Projections

Timeline Tool (Figure 3.18) shows that Processor 3 is delayed waiting for page data to

arrive from Processor 2.

The cause of the delay is that page requests have the same priority as any other Charm++

messages. Since the worker messages are enqueued in the processor message queue before the

page requests arrive, they are handled first, delaying other processors that require the data

to proceed. To test our hypothesis, we inserted a CthYield call in our matrix multiplication

loop that would yield after computing 500 elements. Figure 3.5 shows the improved exe-

cution times. Figures 3.19 and 3.20 show the Projections overview graph and usage profile

respectively.

The design solution to this problem is to permit page requests to have a high priority;

even better, page requests should interrupt an executing thread and be immediately handled

for best performance.
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Figure 3.16: Projections performance overview graph for 4-cpu matrix multiplication on
Lemieux.

Figure 3.17: Projections usage profile for 4-cpu matrix multiplication on Lemieux.
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Figure 3.18: Projections timeline graph for 4-cpu matrix multiplication on Lemieux.

Threads Processors
per processor 1 2 4

1x 19.683789 12.033342 8.742496

Table 3.5: Optimized MSA matrix multiplication (of size 2000*5000*300) execution times
on Lemieux after using CthYield.
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Figure 3.19: Projections performance overview graph for 4-cpu matrix multiplication on
Lemieux after using CthYield.

Figure 3.20: Projections usage profile for 4-cpu matrix multiplication on Lemieux after using
CthYield.
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3.6 Summary

We described a restricted shared address space (SAS) programming model called multi-phase

shared arrays (MSA), its implementation and its use with examples. MSA is not a complete

model, and is intended to be used in conjunction with other information-exchange paradigms

such as message passing. It currently supports four modes: read-only, write-many, accumulate,

and owner-computes. An important feature of MSA arrays is that the modes for each array

can change dynamically in different phases of the program separated by synchronization

points. User-selectable page sizes offer scope for maximizing performance, in contrast to

the fixed virtual memory page sizes of DSM approaches. Variable-sized data elements and

the generalized accumulate operation supported by MSA are powerful and can be used to

accumulate by set union, list append, etc. in addition to the more common use in summa-

tions. MSA is implemented in Jade, Charm++ and AMPI, which support many light-weight

threads (virtual processors) per processor. As a result, the latency inherent in page misses

is better tolerated. Further, we provide a page fetch operation and correspondingly special-

ized versions of array accesses, that attain the efficiency of sequential code when we apply

the Jade strip-mining compiler optimization to fetch remote pages and then access the data

locally.

We hope that the mixed mode model provided by MSA and Jade will lead to substantial

improvement in programmer productivity, and bridge the current divide between SAS and

distributed memory programming styles. We have identified several avenues for further study

in the final chapter of this thesis.
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Chapter 4

Compiler-supported Live Data
Migration

The processor virtualization approach insulates the program from the number of proces-

sors, and uses the adaptive runtime system(ARTS) to manage work objects and implement

automatic measurement-based load-balancing. The ARTS responds to load imbalance by

redistributing work through migration of work objects. Object migration is the cornerstone

of the load balancing implementation in Jade, Charm++ and AMPI.

We use compiler support in Jade to reduce the amount of data migrated and the time

taken to migrate objects by the simple expedient of packing and unpacking only data that is

live when the object migrates. A Jade parallel object can contain multiple threads of execu-

tion. At any given time, these threads may have reached different points in their execution

path. Therefore, the set of variables that are live depends on the execution state of each

sub-thread within the parallel object. A mechanism is needed to handle the combinatorial

cases that can occur when migrating an object.

Our user-assisted compiler-supported approach, described in Section 4.1, requires the

user to declare variables live and dead. (The live keyword is needed in order to make a

variable live at the start of a new phase or iteration within the program.) The Jade compiler

generates code to track the set of live/dead variables, and pack/unpack(pup) only live data.

Another benefit that accrues from the enhancement of the Jade pup mechanism, is that
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checkpointing also enjoys the same benefits as migration. This is due to the fact that in

Jade/Charm++, checkpointing is implemented by packing an object into a “message” that

is written to disk.

A full compiler approach that performs live variable analysis in Jade to automatically

determine the liveness of data without programmer assistance would be a natural next step.

In addition to automating this feature, such analysis can determine optimal migration points

by identifying the points of the program at which the amount of live data is least. Multi-

threaded Jade parallel objects complicate liveness analysis due to the combinatorial states the

object can be in based on the execution point of each individual sub-thread of the object.

Another source of complication is the message-driven nature of Jade: the lack of a clear

thread of control expressed in the code makes live variable analysis difficult. We discuss the

issues in more detail and propose a design to resolve them in Section 4.2.

Performance of our user-assisted approach is very promising and is discussed in Sec-

tion 4.3. We conclude the chapter by listing some possibilities for further study.

4.1 User-assisted Compiler-supported Object

Migration and Checkpointing

The basic pack-unpack mechanism available in Jade packs up all the data members of an

object. This mechanism can be optimized for size by packing only the live data members.

As mentioned earlier, the several threads of a multi-threaded parallel Jade object can

each be at a different point in their execution when it is time to migrate/checkpoint the

parallel object. Therefore, code cannot be generated at various migration points to pack a

fixed set of data, since the data that is live depends on the state of the individual threads

within the object.

A mechanism is needed that keeps track of the state of each variable as the various

threads within the object execute. Then, only live data should be migrated at a migration
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point.

As described in the following section, liveness analysis within Jade introduces some com-

plexities that we have left for further study. We have implemented a user-assisted approach,

in which the programmer is required to indicate when a class variable becomes dead.

We use compiler support, as described below, to keep track of the variables within the

parallel object, and added the dead and live keywords to the Jade language to specify

the state of individual variables. Alternative solutions require substantial overhead for the

programmer, as we discuss after describing the solution we chose.

Thus dead A; declares the object A as dead. dead may be applied to primitive types

and sequential arrays or objects in Jade. (For a discussion of the kinds of data in Jade, the

reader is referred to Section 2.2.1.)

dead may also be applied to parallel entities in Jade, but in Jade, variables declared

as parallel entities are actually proxies that contain a reference to the actual entity, and

declaring them as dead only declares the proxy as dead, not the parallel entity itself. These

proxies are very tiny objects and in most cases it may not be worthwhile to declare them as

dead.

The Jade compiler performs the following steps to implement the pupping of live variables:

• The compiler maintains a list of all the class variables in each class declared.

• It generates code that declares a bit-vector of the appropriate size in each class. This

bit-vector is used to keep track of which class variables are dead.

• The compiler converts use of the dead keyword into code that sets the appropriate bit

in the deadness bit-vector. The live keyword clears the bit.

• When generating the pack/unpack code, the compiler packs/unpacks the bit-vector

first followed by only the live variables. When unpacking, only the variables whose

bits are clear in the bit-vector are unpacked into the class member data.
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One point of interest that should be mentioned, is that a variable declared as dead cannot

necessarily be garbage collected, since it may be declared live in the future. Stack-allocated

data also cannot be garbage collected, even if declared dead. Thus, it should be clarified

that the Jade semantics of dead do not automatically deallocate the data.

Alternatives to the solution proposed would essentially require the programmer to per-

form the above steps. There is no clean way to keep track of class variables using a library

API; some kind of registration of each class variable would be required. An alternative

to defining the dead and live keywords would be define a global dead method and an

enum within each class to refer to each class variable, or to require a programmer-defined

or compiler-generated dead method within every sequential class. The latter solution would

not work for primitive types. None of these alternatives is as clean as our compiler-supported

approach.

The performance of this approach is presented in Section 4.3. In the next section, we

discuss the issues with performing live variable analysis in Jade.

4.2 Design for Live Variable Analysis in Jade

An issue arises when analyzing pure message-driven (MD) programs for live variables. As

mentioned earlier, the message-driven nature of Charm++ requires a single conceptual pro-

cedure to be split into multiple non-blocking functions, thus obscuring the control flow within

an object. For example, at line 24 in Figure 2.1 the SayHi method is invoked asynchronously,

i.e. the code does not block and wait for control to return. Execution of the Main method

continues until it is complete. In order for execution to resume after SayHi conceptually

“returns”, we need to introduce the done method (line 27) which is called back from line 53

after keeping track of the number of elements executed.

Now, back to the problem: In a pure message-driven program, there would be no way to

determine the liveness of an object’s member variables since the control flow logic is buried in
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the logic of the program code. We cannot always determine whether a method of an object

has been invoked for the last time. As a corollary, we would be unable to determine when

to garbage collect the object since there is no thread of control for the object that explicitly

terminates.

One solution would be to make use of threads. By forcing objects to be threaded with

a single thread of control, standard liveness analysis can be performed, essentially treating

the threaded method as main. Although threads permit object control flow to be expressed

within a single method, they must be used sparingly to retain the message-driven benefits

of latency tolerance, synchronization-freedom, and easy migration.

As an alternative to threads, a solution based on the existing Structured Dagger (SDAG)

language can be used. SDAG is a preprocessor language used to express the life cycle of a

Charm++/Jade object. SDAG is translated into pure message-driven Charm++ which does

not use any threads. Consider the following example SDAG code from [13]:

1 class compute_object
2 sdagentry compute_object(MSG *msg){
3 atomic{
4 P->get(msg->first_index, ...);
5 P->get(msg->second_index, ...);
6 }
7 overlap{
8 when recv_first(Patch *first) atomic {filter(first);}
9 when recv_second(Patch *second) atomic {filter(second);}

10 }
11 atomic { computeInteractions(first, second);}
12 }

compute-object fires off two requests for data in the first atomic block of code. The

responses might arrive in either order, which is handled by the overlap and when statements.

After both responses are received and processed, execution continues at the final atomic

block. The use of SDAG clearly expresses the life-cycle of a message-driven (MD) object.

Using this information, live variable analysis (LVA) can be performed.

Returning to liveness analysis, we have the following cases:
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Checkpoint Size (KB) Checkpoint Time
1 cpu 2 cpus 1 cpu 2 cpus

NFS Disk
without optimization 131740 131760 12.780526 12.37902
with optimization 65884 65904 6.178298 6.113425

Local Disk
without optimization 131729 131740 10.781935 2.871472
with optimization 65872 65884 3.307590 1.561786

Jacobi 2D array with 2D decomposition, data array 4096*4096 floats,
decomposition 4*4 = 16 ChareArray elements. Executed on two P4
2.4 GHz single-processor nodes connected by 100 Mbps Ethernet.

Table 4.1: Checkpoint size and time for pup-optimized Jacobi with 2D data matrix of size
4096*4096 elements and 2D decomposition into 4*4 sections.

• Pure MD, no SDAG: We cannot do LVA for object variables.

• Pure MD, SDAG object: We can do LVA.

• One main thread, no public entry methods (AMPI-like): We can do LVA.

• Other cases: We can do LVA within thread, but not for object

Therefore, the proposed solution is to incorporate an SDAG-like facility into Jade, and

enforce the following rule in the language: an object must either use SDAG, or it may have

only one threaded method and no public entry methods. This restriction is not as limiting

as it seems, since it effectively permits Charm++ message-driven and AMPI message-passing

programming, respectively.

4.3 Performance Results

Table 4.1 shows the performance of checkpointing a Jacobi program, in terms of data size

written to disk and time taken for the checkpointing. We executed the program with all pro-

cessors writing to a single NFS-mounted directory, and we also tested the case of processors

writing to local disk.
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In both tests, as expected, the data size with the optimized pup is about half the regular

pup, resulting in significant space savings.

Looking at the NFS-based test results, we see that the time taken to complete the check-

pointing does not decrease as expected for the 2-cpu case over the 1-cpu case. However, for

the local-disk version the performance of the 2-cpu case is much better than the 1-cpu case.

This leads us to believe that the NSF performance delays the processors.

In absolute terms, the local-disk tests are much faster than writing via NFS. This behavior

is expected; however, local disk checkpointing cannot always be used since the local disk

will go down along with a node if a node fails, making the checkpoint useless. Of course,

for application failure (or other faults such as time-limit expiration) local disks may still

be useful. A solution to this issue is the in-memory (which subsumes local disk) double

checkpointing described in [71]. Our pup optimizations can make use of the mechanism

described there without any changes.

4.4 Conclusion

We described a user-assisted compiler-supported mechanism in Jade that improves the perfor-

mance of object migration, checkpointing, and parameter passing. The mechanism requires

the user to specify when variables are no longer live, and uses the compiler to ensure that only

live variables are packed when trasnferring data. Performance results are very promising.

We also discussed the issues involved in performing live variable analysis for message-

driven programs, and proposed a design solution to address these issues. This needs to be

studied further and implemented.

Currently, data is optimized irrespective of its size; this involves keeping track of its

status, and performing a check when the data is packed or unpacked. A more efficient

solution is to completely avoid checking of small data structures and only generate code to

check dead for large structures.
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Chapter 5

Conclusion and Future Work

The main focus of this thesis is to enhance productivity in the programming of processor-

virtualization based (PV) systems.

We identified several issues with current-generation PV languages that interfere with

programmer productivity. Many of the issues identified are syntactic: some of these are the

necessity of writing a translator file, the lack of parameter marshalling in remote method in-

vocation, and the tedious pack/unpack overheads. Other issues are design issues, such as the

complexity of user memory management, the aliasing issues that accompany general pointer

support, and the usefulness of HPF-style array section notation. We argued for a compiler

based solution and a newly designed programming language, and designed and implemented

the Jade programming language and compiler framework. We implemented several applica-

tions in Jade and studied and compared the productivity benefits and performance of Jade

with Charm++.

We identified a key limitation in the multi-paradigm support of current PV languages:

the lack of a general and efficient shared-address-space programming model. We presented

a solution, the multiphase specifically shared array (MSA) programming model, described

its design and implementation in Jade and as a Charm++ library, wrote several applications

using the model, and studied its expressivity and performance. The performance of the MSA

model was optimized using a strip-mining pass in the Jade compiler that improved MSA

performance significantly, putting it on par with locally accessed sequential data arrays.
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The Jade multi-pass compiler framework also provides a foundation for further PV lan-

guage research, including compiler optimizations. We identified one such optimization, re-

ducing checkpoint size and time in multi-threaded objects, we designed a user-assisted so-

lution, and implemented it in the Jade compiler. We compared the simplicity (from the

programmer’s viewpoint) of this compiler-supported solution with the complexity of a non-

compiler-supported solution, presenting it as further evidence of the benefits of compiler

support.

We believe that Jade and MSA substantially simplify parallel programming of processor-

virtualization based systems while retaining the associated performance benefits.

5.1 Future Work

The implementation of the Jade language is not complete. The implementation of some

features has been deferred, although design solutions for their implementation have been

studied. These include:

• garbage collection of sequential and parallel objects

• packing of multiply-referenced data structures

• live-variable analysis of the modified design described in Section 4.2.

• Migration of multi-threaded objects, discussed in Section 2.1.3.

Although the focus of Jade is to improve on PV languages, a detailed comparison of

the expressivity and performance of Jade with programming languages such as Titanium,

Co-array Fortran, and ZPL are an avenue for study. Some of their notational conveniences

and compiler analyses could be added to Jade.

Another compiler optimization could take advantage of MSA prefetch support. Jade

can insert prefetch calls and generate two versions of a section of user code: one for known-

local access of all shared variables, the other for the unknown-if-local case. At the beginning
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of a phase a check is performed to determine whether the shared variables accessed are all

available locally. If so, the known-local case is executed. Otherwise, when possible, we issue

prefetches and then execute the known-local case. If it is not possible to determine the access

we execute the unknown-if-local case.

More MSA applications need to be identified and written. A couple are being imple-

mented by other researchers at the Parallel Programming lab. Additional access modes

beyond read-only, write-many, accumulate and owner-computes can be explored: one

possibility is a producer-consumer mode. Further performance optimization, and detailed

performance studies, including studies of various page-replacement policies for MSA-cache-

limited applications can be done. Finally, compiler support is crucial to MSA performance

and simplifying use of MSA, which can be explored in the Jade programming language and

compiler framework: for example compiler-generated prefetch calls.
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Appendix A

Jade Example Programs

A.1 Jade non-MSA Matrix Multiplication

1 package JadeMatmul ;
2
3 public synchronized class TheMain extends Chare {
4 public stat ic readonly CProxy TheMain mainChare ;
5 public stat ic readonly int M, N, K; // matrix problem s i z e
6 public stat ic readonly int NUMCHUNKS; // decomposi t ion
7
8 public int main ( St r ing [ ] a rgs ){
9 mainChare = thisProxy ;

10 M = 2000 ;
11 K = 5000 ;
12 N = 300 ;
13 NUMCHUNKS = CkNumPes ( ) ; // As many workers as proce s so r s
14
15 ChareArray1D mm = new Matmul [NUMCHUNKS] ;
16 mm. mul ( ) ; // Broadcast
17 } ;
18
19 public void mainDone ( ) { CkExit ( ) ; } ;
20 } ;
21
22 public synchronized class Matmul extends ChareArray1D {
23 double [ ] [ ] A, B, C;
24 int i S t a r t , iEnd ;
25
26 public Matmul ( ) {
27 int rangeS i ze = TheMain .M / TheMain .NUMCHUNKS;
28 i S t a r t=CkMyPe( )∗ rangeS i ze ;
29 iEnd=i S t a r t+rangeS i ze ;
30
31 A = new float [ TheMain .M] [ TheMain .K ] ; // c rea t e the whole A, use on ly our par t .
32 B = new float [ TheMain .K] [ TheMain .N ] ;
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33 C = new float [ TheMain .M] [ TheMain .N ] ;
34 i n i t ( ) ;
35 }
36
37 public void mul ( ) {
38 for ( int i=i S t a r t ; i<iEnd ; i++)
39 for ( int k=0; k<TheMain .K; k++)
40 for ( int j =0; j<TheMain .N; j ++) {
41 C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
42 }
43
44 // Reduction c a l l s mainDone ()
45 CkCallback cb = new CkCallback (TheMain . mainDone , TheMain . mainChare ) ;
46 con t r ibu t e ( 1 , th i s Index , CkReduction . sum int , cb ) ;
47 }
48
49 private void i n i t ( ) {
50 for ( int i=i S t a r t ; i<iEnd ; i++)
51 for ( int k=0; k<TheMain .K; k++)
52 A[ i ] [ k ] = 1 . 0 ;
53
54 for ( int k=0; k<TheMain .K; k++)
55 for ( int j =0; j<TheMain .N; j++)
56 B[ k ] [ j ] = 1 . 0 ;
57 }
58
59 }

A.2 Jacobi

1 package Jacobi2D ;
2
3 public synchronized class TheMain extends Chare {
4 public stat ic readonly CProxy TheMain mainChare ;
5 // Tota l s i z e o f each dimension o f data array = CHUNK SIZE ∗ NUM CHUNKS
6 public stat ic f i n a l int NUMCHUNKS=10; // e . g . 100∗100 chunks
7 public stat ic f i n a l int CHUNK SIZE=16; // e . g . 64∗64 e lements per chunk
8 public stat ic f i n a l int NUM ITERATIONS=100;
9

10 public int main ( St r ing [ ] a rgs ){
11 mainChare = thisProxy ;
12
13 ChareArray2D j c = new JacobiChunk [NUMCHUNKS] [NUMCHUNKS] ;
14 j c . s t a r t (NUM ITERATIONS) ; // Broadcast
15 } ;
16
17 public void mainDone ( ) { CkExit ( ) ; } ;
18 } ;
19
20 public synchronized class JacobiChunk extends ChareArray2D {
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21 f loat [ ] [ ] data ; // = new f l o a t [1+CHUNK SIZE+1][1+CHUNK SIZE+1];
22 int numIters ; // How many i t e r a t i o n s l e f t .
23 int numGot ; // in each i t e r a t i o n : have I r e c e i v ed data from a l l
24 // ne i ghbor s ?
25 int numDone ; // terminat ion : how many ChareArray e lements are
26 // done wi th t h e i r i t e r a t i o n s ?
27 int numNeighbors ;
28
29 // Constructor , i n i t i a l i z e s data
30 public JacobiChunk ( ){
31 int i , j ;
32 data = new float [1+TheMain .CHUNK SIZE+1][1+TheMain .CHUNK SIZE+1] ;
33 // F i l l data wi th 1 01 , 9 9 , 1 0 1 , 9 9 , 1 0 1 , . . .
34 for ( i =1; i<=TheMain .CHUNK SIZE ; i++)
35 for ( j =1; j<=TheMain .CHUNK SIZE ; j++)
36 data [ i ] [ j ] = 100 . 0+ ( ( i+j )%2?−1:1);
37
38 numGot = 0 ;
39 numIters = 0 ;
40 numDone = 0 ;
41 numNeighbors = 4 ;
42 i f ( th i s Index . x==0 | | th i s Index . x==TheMain .NUM CHUNKS−1)
43 −−numNeighbors ;
44 i f ( th i s Index . y==0 | | th i s Index . y==TheMain .NUM CHUNKS−1)
45 −−numNeighbors ;
46 maxDelta = 0 . 0 ;
47 } ;
48
49 public void s t a r t ( int n I t e r s ) {
50 numIters = n I t e r s ;
51 s t a r tNex t I t e r ( ) ;
52 } ;
53
54 // push data to consumers
55 public void s t a r tNex t I t e r ( ) {
56 i f ( numIters > 0) {
57 int i ;
58 numIters−−;
59 // send Up
60 i f ( th i s Index . x > 0)
61 thisProxy [ th i s Index . x−1] [ th i s Index . y ] . getBottom (
62 data [ 1 ] [ 0 : TheMain .CHUNK SIZE+1] ) ;
63
64 // send Down
65 i f ( th i s Index . x < (TheMain .NUM CHUNKS−1))
66 thisProxy [ th i s Index . x+1] [ th i s Index . y ] . getTop (
67 data [ TheMain .CHUNK SIZE ] [ 0 : TheMain .CHUNK SIZE+1] ) ;
68
69 // send Le f t
70 i f ( th i s Index . y > 0)
71 thisProxy [ th i s Index . x ] [ th i s Index . y−1] . getRight (
72 data [ 0 : TheMain .CHUNK SIZE+ 1 ] [ 1 ] ) ;
73
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74 // send Right
75 i f ( th i s Index . y < (TheMain .NUM CHUNKS−1))
76 thisProxy [ th i s Index . x ] [ th i s Index . y+1] . g e tLe f t (
77 data [ 0 : TheMain .CHUNK SIZE+1] [TheMain .CHUNK SIZE ] ) ;
78
79 } else { // t h i s array element ’ s i t e r a t i o n s are f i n i s h e d
80 // inform 0 tha t we are done
81 thisProxy [ 0 ] [ 0 ] . done ( 0 ) ;
82 }
83 } ;
84
85 public void ge tLe f t ( f loat [ ] [ ] l e f t ) {
86 for ( int i =1; i<=TheMain .CHUNK SIZE ; i++)
87 data [ i ] [ 0 ] = l e f t [ i ] [ 0 ] ;
88 compute ( ) ;
89 } ;
90
91 public void getRight ( f loat [ ] [ ] r i g h t ) {
92 for ( int i =1; i<=TheMain .CHUNK SIZE ; i++)
93 data [ i ] [ TheMain .CHUNK SIZE+1] = r i gh t [ i ] [ 0 ] ;
94 compute ( ) ;
95 } ;
96
97 public void getTop ( f loat [ ] [ ] top ) {
98 for ( int i =1; i<=TheMain .CHUNK SIZE ; i++)
99 data [ 0 ] [ i ] = top [ 0 ] [ i ] ;

100 compute ( ) ;
101 } ;
102
103 public void getBottom ( f loat [ ] [ ] bottom ) {
104 for ( int i =1; i<=TheMain .CHUNK SIZE ; i++)
105 data [ TheMain .CHUNK SIZE+1] [ i ] = bottom [ 0 ] [ i ] ;
106 compute ( ) ;
107 } ;
108
109 public void compute ( ) {
110 i f (++numGot == numNeighbors )
111 numGot = 0 ;
112 else // not ye t r e c e i v ed a l l ne i ghbor s
113 return ;
114
115 // compute
116 for ( i =1; i<=TheMain .CHUNK SIZE ; i++)
117 for ( j =1; j<=TheMain .CHUNK SIZE ; j++)
118 data [ i ] [ j ] = ( data [ i −1] [ j ] + data [ i ] [ j ] +
119 data [ i +1] [ j ] + data [ i ] [ j −1] + data [ i ] [ j +1 ] ) /5 . 0 ;
120
121 // Do a reduc t ion f o r synchron i za t i on
122 CkCallback cb = new CkCallback ( JacobiChunk . cal lBackTarget ,
123 thisProxy [ 0 ] [ 0 ] ) ;
124 cont r ibu t e ( 1 , th i s Index . x , CkReduction . sum int , cb ) ;
125 } ;
126
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127 public void ca l lBackTarget ( int i ) {
128 // Go to next i t e r a t i o n
129 thisProxy . s t a r tNex t I t e r ( ) ; // broadcas t
130 }
131
132 public void done ( f loat de l t a ) {
133 ++numDone ;
134 i f ( numDone == TheMain .NUMCHUNKS∗TheMain .NUMCHUNKS) {
135 TheMain . mainChare . mainDone ( ) ;
136 }
137 }
138 }
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Appendix B

MSA Examples in Charm++

Notation

B.1 FEM Example

1 // Phase I : EtoN : RO, NtoE : Accu
2 for i =1 to EtoN . l ength ( )
3 for j =1 to EtoN [ i ] . l ength ( )
4 n = EtoN [ i ] [ j ] ;
5 NtoE [ n ] . accumulate ( i ) ; // s e t accumulate opera t ion
6
7 // Phase I I : NtoE : RO, EtoE : Accu
8 for j = my s e c t i o n o f NtoE [ j ]
9 // foreach pa i r e1 , e2 e lemento f NtoE [ j ]

10 for i 1 = 1 to NtoE [ j ] . l ength ( )
11 for i 2 = i 1 + 1 to NtoE [ j ] . l ength ( )
12 e1 = NtoE [ j ] [ i 1 ] ;
13 e2 = NtoE [ j ] [ i 2 ] ;
14 EtoE [ e1 ] . accumulate ( e2 ) ; // s e t accumulate
15 EtoE [ e2 ] . accumulate ( e1 ) ; // s e t accumulate
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B.2 Matrix Multiplication

1 typedef MSA2D<double , MSA NullA<double> ,5000 , MSA ROW MAJOR> MSA2DRowMjr ;
2 typedef MSA2D<double ,MSA SumA<double > , 5000 , MSA COL MAJOR> MSA2DColMjr ;
3
4 // One thread / process c r ea t e s and broadcas t s the MSA’ s
5 MSA2DRowMjr arr1 (ROWS1,COLS1,NUMWORKERS, cacheS ize1 ) ; // row major
6 MSA2DColMjr arr2 (ROWS2,COLS2,NUMWORKERS, cacheS ize2 ) ; // column major
7 MSA2DRowMjr prod (ROWS1,COLS2,NUMWORKERS, cacheS ize3 ) ; // product matrix
8
9 // broadcas t the above array hand les to the worker threads .

10 . . .
11
12 // Each thread does the f o l l ow i n g code
13 arr1 . e n r o l l ( numWorkers ) ; // b a r r i e r
14 arr2 . e n r o l l ( numWorkers ) ; // b a r r i e r
15 prod . e n r o l l ( numWorkers ) ; // b a r r i e r
16
17 while ( i t e r a t e )
18 {
19 for (unsigned int c = 0 ; c < COLS2 ; c++) {
20 // Each thread computes a sub s e t o f rows o f product matrix
21 for (unsigned int r = rowStart ; r <= rowEnd ; r++) {
22 double r e s u l t = 0 . 0 ;
23 for (unsigned int k = 0 ; k < c o l s 1 ; k++) {
24 double e1 = arr1 . get ( r , k ) ;
25 double e2 = arr2 . get (k , c ) ;
26 r e s u l t += e1 ∗ e2 ;
27 }
28
29 prod . s e t ( r , c ) = r e s u l t ;
30 }
31 }
32
33 prod . sync ( ) ;
34 // use product matrix here
35 }
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B.3 Molecular Dynamics

1 // Dec la ra t i ons o f the 3 arrays
2 class XYZ; // { doub le x ; doub le y ; doub le z ; }
3 typedef MSA1D<XYZ, MSA SumA<XYZ> , DEFAULT PAGE SIZE> XyzMSA;
4 class AtomInfo ;
5 typedef MSA1D<AtomInfo , MSA SumA<AtomInfo > , DEFAULT PAGE SIZE> AtomInfoMSA ;
6 typedef MSA2D<int , MSA NullA<int >,DEFAULT PAGE SIZE,MSA ROW MAJOR> NeighborMSA ;
7
8 XyzMSA coords ;
9 XyzMSA f o r c e s ;

10 AtomInfoMSA atominfo ;
11 NeighborMSA nbrL i s t ;
12
13 // broadcas t the above array hand les to the worker th reads .
14 . . .
15
16 // Each thread does the f o l l ow i n g code
17 coords . e n r o l l ( numberOfWorkerThreads ) ;
18 f o r c e s . e n r o l l ( numberOfWorkerThreads ) ;
19 atominfo . e n r o l l ( numberOfWorkerThreads ) ;
20 nbrL i s t . e n r o l l ( numberOfWorkerThreads ) ;
21
22 for t imestep = 0 to Tmax {
23 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Phase I ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
24 // f o r a s e c t i on o f the i n t e r a c t i o n matrix
25 for i = i s t a r t to i end
26 for j = j s t a r t to j end
27 i f ( nbrL i s t . get ( i , j ) ) { // nbrL i s t en t e r s ReadOnly mode
28 f o r c e = ca l cu l a t eFo r c e ( coords [ i ] , atominfo [ i ] , coords [ j ] , atominfo [ j ] ) ;
29 f o r c e s . accumulate ( i , f o r c e ) ; // Accumulate mode
30 f o r c e s . accumulate ( j , − f o r c e ) ;
31 }
32 f o r c e s . sync ( ) ;
33
34 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Phase I I ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
35 for k = myAtomsbegin to myAtomsEnd
36 coords . s e t (k , i n t e g r a t e ( atominfo [ k ] , f o r c e s [ k ] ) ) ; // WriteOnly mode
37 coords . sync ( ) ;
38
39 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Phase I I I ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
40 i f ( t imestep %8 == 0) { // update ne ighbor l i s t every 8 s t e p s
41 // update nbrL i s t wi th a loop s im i l a r to the f o r c e c a l c u l a t i o n loop above
42 . . . nbrL i s t . s e t ( i , j , va lue ) ;
43
44 nbrL i s t . sync ( ) ;
45 }
46 }

102



References

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE

Computer, 29(12):66–76, 1996.

[2] Vikram Adve and John Mellor-Crummey. Using integer sets for data-parallel program

analysis and optimization. In Proceedings of the ACM SIGPLAN 1998 conference on

Programming language design and implementation, pages 186–198. ACM Press, 1998.

[3] V.S. Adve, J. Mellor-Crummey, M. Anderson, K. Kennedy, J.-C. Wang, and D.A. Reed.

An Integrated Compilation and Performance Analysis Environment for Data Parallel

Programs. In Proceedings of Supercomputing’95, December 1995.

[4] Saman P. Amarasinghe and Monica S. Lam. Communication optimization and code

generation for distributed memory machines. In Proceedings of the ACM SIGPLAN

1993 conference on Programming language design and implementation, pages 126–138.

ACM Press, 1993.

[5] Darius Antia and Franck van Breugel. Semantic analysis of pict in Java. Technical Re-

port CS-2003-10, Department of Computer Science, York University, Toronto, Ontario

M3J 1P3, Canada, October 2003.

[6] Pedro V. Artigas, Manish Gupta, Samuel P. Midkiff, and Jose E. Moreira. High perfor-

mance numerical computing in Java: Language and compiler issues. In Languages and

Compilers for Parallel Computing, pages 1–17, 1999.

[7] Henri Bal et al. Manta: Fast parallel Java. URL: http://www.cs.vu.nl/manta/.

103



[8] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Distributed shared

memory based on type-specific memory coherence. In Proc. of the Second ACM SIG-

PLAN Symp. on Principles and Practice of Parallel Programming (PPOPP’90), pages

168–177, 1990.

[9] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Adaptive software cache

management for distributed shared memory architectures. In Igor Tartalja and Veljko

Milutinovic, editors, The cache coherence problem in shared memory multiprocessors:

software solutions. IEEE Computer Society Press, 1995.

[10] Harry Berryman and Joel Saltz. A manual for PARTI runtime primitives, 1990.
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