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Abstract

One of the attractive features of Grid computing is that
resources in geographically distant places can be mobi-
lized to meet computational needs as they arise. A partic-
ularly challenging issue is that of executing a single ap-
plication across multiple machines that are separated by
large distances. While certain classes of applications such
as pipeline style or master-slave style applications may
run well in Grid computing environments with little or no
modification, tightly-coupled applications require signifi-
cant work to achieve good performance.

In this paper, we demonstrate that message-driven ob-
jects, implemented in the Charm++ and Adaptive MPI sys-
tems, can be used to mask the effects of latency in Grid
computing environments without requiring modification of
application software. We examine a simple five-point sten-
cil decomposition application as well as a more complex
molecular dynamics application running in an environment
in which arbitrary artificial latencies can be induced be-
tween pairs of nodes. Performance of the applications run-
ning under artificial latencies are compared to the perfor-
mance of the applications running across TeraGrid nodes
located at the National Center for Supercomputing Appli-
cations and Argonne National Laboratory.

1. Introduction

Due to the growth of distributed Grid computing tech-
nologies and environments [8, 9] over the past several years,
consumers of high performance computing cycles are in-
creasingly considering the feasibility of deploying appli-
cations that span multiple geographically distributed sites.
Software such as Globus [7] allows the creation of so-called
“virtual organizations” in which computational resources
owned by multiple physical organizations are united to form
a single cohesive resource for the duration of a single com-

Figure 1. An example of an application co-
allocated across two clusters

putational job.
One of the fundamental challenges to deploying Grid ap-

plications across geographically distributed computational
resources is overcoming the effects of the latency between
sites. While the interconnects used in contemporary high-
performance clusters and supercomputers can deliver data
to applications with latencies on the order of a few mi-
croseconds, latencies across the wide-area are usually mea-
sured in milliseconds. Figure 1 illustrates this idea. Certain
classes of applications lend themselves well to running in
such an environment. Pipeline style applications such as
those that do simulation on one cluster and visualization
on another typically have very coarse granularity and ac-
cordingly can tolerate latency well. Master-slave style ap-
plications are also good candidates for Grid environments
because they typically have small communication require-
ments and because communication delays are often not on
the critical path.

In contrast, some classes of applications present serious
challenges to deployment in Grid computing environments.



For example, tightly-coupled applications where processors
communicate with each other during every iteration present
a significant challenge. Masking the effects of wide-area la-
tency is critical for achieving good performance with these
types of Grid applications that involve non-trivial amounts
of communication. To date, most work involving the de-
ployment of tightly-coupled applications on computational
Grids has focused on algorithm-level modifications neces-
sary for latency tolerance.

In this paper, we demonstrate that message-driven ob-
jects, implemented in the Charm++ and Adaptive MPI
systems, can be used to mask the effects of latency in
Grid computing environments when tightly-coupled appli-
cations are co-allocated across geographically distributed
resources. Because the technique is encapsulated within the
runtime layer, it can be applied to a wide variety of prob-
lem decomposition strategies, such as regular and irregular
mesh decomposition or spatial decomposition, without re-
quiring modification of application software. Furthermore,
through the use of Adaptive MPI, any MPI application can
take advantage of our techniques. The remaining sections of
this paper describe the enabling technologies that provide a
basis for our work, the relationship between our work and
other work in this area, and the experimental results of ap-
plying our technique to two example applications. Perfor-
mance of the example applications, a simple five-point sten-
cil decomposition application and a more complex molecu-
lar dynamics application, is examined in an environment in
which arbitrary artificial latencies can be induced between
pairs of nodes. Performance for the applications running
under artificial latencies is compared to the performance of
the applications running across TeraGrid nodes located at
the National Center for Supercomputing Applications and
Argonne National Laboratory.

2. Enabling Technologies

In this section, we describe the enabling technologies
upon which our work is based. These technologies include
the Charm++ runtime system and the Virtual Machine In-
terface message layer.

2.1. Charm++ and AMPI

Charm++ [16] is a message-driven parallel programming
language designed with the goal of enhancing programmer
productivity by providing a high-level abstraction of a par-
allel computation while at the same time providing good
performance on platforms ranging from traditional super-
computers to more recent commodity cluster environments.
Charm++ is based on the C++ programming language and
is backed by an adaptive runtime system that provides fea-
tures such as processor virtualization, load balancing, and

optimized communication libraries, especially for collec-
tive operations such as broadcasts and reductions.

Programs written in Charm++ consist of parallel ob-
jects called chares that communicate with each other
through asynchronous message passing. When a chare re-
ceives a message, the message triggers a corresponding
method within the chare object to handle the message asyn-
chronously. Further, chares may be organized into one or
more indexed collections calledchare arrays. Messages
may be sent to individual chares within a chare array or to
the entire chare array simultaneously.

The chares in a Charm++ program are assigned to pro-
cessors by an adaptive runtime system. The runtime system
may also change this assignment dynamically by migrating
chares among processors. A suite of measurement-based
load balancers is provided to take advantage of this capa-
bility. In addition, the migration capability is leveraged to
support other capabilities such as automatic checkpointing,
fault tolerance, and the ability to shrink and expand the set
of processors used by a parallel job.

Adaptive MPI (AMPI) [15] provides the same capabil-
ities as Charm++ in a more familiar MPI programming
model. AMPI implements the MPI standard by encapsulat-
ing each MPI process within a user-level migratable thread.
By embedding each thread within a Charm++ object, AMPI
programs can automatically take advantage of the features
of the Charm++ runtime system with little or no changes to
the underlying MPI program.

One of the central enabling ideas in Charm++ and AMPI
is that of having the programmer divide the computation
into a large number of objects, sometimes thought of as
virtual processors. Because there are typically multiple
objects per physical processor, a scheduler that sequences
object execution based on availability of messages is nat-
urally needed. This model ofmessage driven execution
leads directly to some performance benefits such as auto-
matic adaptive overlap of communication and computation.
The message-driven execution model is similar to the model
used in systems such as Active Messages [32], Fast Mes-
sages [27], and Nexus [10, 11]; Charm and its predecessor
Chare Kernel [18] is contemporaneous to or precedes the
development of these models.

The idea of using multiple virtual processors per phys-
ical processor appears in the literature early. For exam-
ple, Fox’s book [12] describes the use of virtualization to
randomize the placement of sub-blocks for load balancing.
Virtualization techniques were also used in the CM-2 [2]
and in DRMS [23, 24]. Charm++’s contribution is in pro-
viding an adaptive runtime system, including measurement
based load-balancing, that exploits the degree of freedom
provided by virtualization.



2.2. Virtual Machine Interface

The proliferation of high-performance clusters built from
commodity off the shelf components has resulted in the
widespread deployment of several high-bandwidth low-
latency networks such as Myrinet [5] and InfiniBand [30].
The Virtual Machine Interface (VMI) message layer [29,
28] was designed to be a low-cost abstraction layer provid-
ing compatibility across multiple interconnects. Using soft-
ware modules that are dynamically loaded at runtime, VMI
allows applications to be switched from one interconnect to
another without requiring the application to be recompiled
or re-linked. Further, by organizing these dynamically-
loaded software modules into send and receivechainsof
modules, novel capabilities can be developed at the messag-
ing layer level. For example, by loading multiple modules
simultaneously, data may be striped across multiple inter-
connects. Also, an application can run in a Grid computing
environment using high-performance networks to commu-
nicate with local neighbors within a computation and wide-
area networks to communicate with neighbors located on
remote nodes. Finally, because modules can intercept and
manipulate message data as it is passed from module to
module, capabilities such as encrypting or compressing the
data are possible.

VMI is not typically intended to be a software layer
exposed to application developers, but rather as a layer
upon which higher level message layers or runtime systems
can be built. To this end, an efficient implementation of
Charm++ that uses VMI as its underlying message passing
layer has been developed [20]. This version of Charm++ is
used for all experiments described in this paper.

3. Related Work

The work we describe in this paper shares characteristics
with several other projects while at the same time offering
its own unique contributions. In this section, we describe re-
lated work and draw comparisons and contrasts to our work.

Viewing a distributed computation as a set of interacting
objects and, accordingly, using Object Oriented Program-
ming techniques to manage complexity is an attractive ap-
proach to Grid computing. Several other projects such as
Legion [13] and Globe [31] share this characteristic with
our work. In contrast to our work, however, both of these
projects tend to be focused more on the entire range of prob-
lems surrounding Grid computing, including resource man-
agement, file and data access, information brokering, and
security. Indeed, the designers of Legion call such an all-
encompassing system ametasystemwhile the designers of
Globe have the goal of building a middleware layer capable
of scaling to billions of users around the world. Examples
of applications running in these kinds of environments ap-

pear to be focused on those types that can implicitly toler-
ate latency, such as parameter sweep applications [26], or
applications such as molecular dynamics applications run-
ning entirely within the context of a single machine on the
Grid [25]. Our goal differs from this type of work in that
we are specifically focused on the topic of developing tech-
niques for masking latency for tightly-coupled applications
running across multiple machines connected via a Grid.1

Several projects extend the MPI parallel computing stan-
dard to work in a Grid environment with the goal of allow-
ing jobs that can span multiple clusters. Examples of such
projects include MPICH-G2 [19] and MPICH/MADIII [4].
These projects, like ours, view the communication infras-
tructure of a distributed Grid job as a hierarchy of inter-
connects. Such a view consists of, for example, high-
performance interconnects such as Myrinet or InfiniBand
(used for intra-cluster communication between processes
co-allocated on the same cluster) at one level of the hierar-
chy and lower-performance wide-area interconnects such as
TCP/IP (used for inter-cluster communication between pro-
cesses on different clusters) at another level of the hierarchy.
The goal is to allow any pair of processors to communicate
via the most efficient channel possible within the hierarchy.
MPICH-G2 achieves this goal by relying on whatever un-
derlying native MPI implementation that exists on a cluster
to provide efficient intra-cluster communication and TCP/IP
to provide inter-cluster communication. MPICH/MADIII
takes an approach that is very similar to our implementation
of Charm++ on VMI. MPICH/MADIII is implemented on
top of a communication library, Madeleine III, that allows
multiple underlying networks to be used in a way similar to
VMI. Further, MPICH/MADIII uses an efficient user-level
thread library, Marcel, that provides task decomposition ca-
pabilities similar to what is available with AMPI threads or
Charm++ chares. In contrast to MPICH/MADIII, however,
our work seeks to increase the number of opportunities for
the adaptive runtime system to overlap useful computation
with communication by using very large degrees of virtu-
alization, with perhaps thousands of objects per physical
processor in the computation. MPICH/MADIII seems to
typically use a much smaller number of threads per proces-
sor. Further, the Charm++ adaptive runtime system includes
the ability to dynamically load-balance objects within a dis-
tributed computation while MPICH/MADIII does not seem
to offer this functionality. We believe that this capability is
critical to achieving good performance on fine-grained Grid
computations that span multiple clusters.

Various algorithm-level approaches to tolerating latency
in Grid computing environments exist. For example, the
authors of [6] describe a technique for improving the per-

1Although it should be noted that we are also involved in a project
called Faucets [17] that has the goal of efficient resource management and
scheduling of computational resources within a Grid environment.



formance of Partial Differential Equation solvers running in
a Grid environment by increasing the number of ghost cell
layers used per processor. Increasing the number of ghost
zones allows each processor to buffer more data and reduces
the number of messages sent between processors. Further
improvements to the PDE algorithm allow the elimination
of diagonal communications. Together, these algorithm-
level optimizations allow the performance of the applica-
tion described in the paper to be improved by as much as
170%. The primary contrast between approaches such as
the one described in the paper and our work is that we are
attempting to provide techniques that operate at the runtime
layer rather than at the application layer. While algorithm-
level approaches have the advantage that they can gener-
ally achieve very good levels of optimization, runtime-level
approaches have the advantage that they are automatically
available to developers and do not require modification of
application software. Further, the technique of increasing
the number of ghost zone layers is a pattern-specific tech-
nique that is not applicable to all problems such as the
LeanMD molecular dynamics code described later in this
paper.

Finally, Cactus-G [3] is a Grid-enabled computational
framework that is based on the Cactus problem solving
environment and the MPICH-G2 message passing library.
Originally designed for use in numerical relativity appli-
cations such as modeling black holes, neutron stars, and
gravitational waves, Cactus has grown into a framework
well-suited to solving general mesh decomposition prob-
lems. A novel feature of Cactus is that it consists of a central
core called thefleshwhich connects to application modules
called thorns through an extensible interface. The thorns
in a computation encapsulate the actual scientific code gov-
erning the application as well as capabilities such as par-
allel I/O, data distribution, and checkpointing. The experi-
ment described in the paper leverages this rich platform to
synthesize a heterogeneous environment consisting of four
machines distributed between the San Diego Supercomput-
ing Center (SDSC) and the National Center for Supercom-
puting Applications (NCSA) to run a tightly-coupled mesh
decomposition problem. The authors are successful in this
endeavor due to the ability to leverage thorns that optimize
the computation in three ways. First, because the resources
physically allocated to the computation consisted of one
machine at SDSC and three machines at NCSA, the authors
positioned the gridpoints in the mesh to reflect this uneven
distribution. Second, the authors increased the size of the
ghost zone layers on each processor similar to the method
used in [6] above. Third, the authors used a thorn to com-
press message data that were sent over the wide-area con-
nection between SDSC and NCSA. In many ways, Cactus-
G can be thought of as an elaborate runtime system that
offers features similar to those found in the Charm++ run-

time. Our work differs from the work in Cactus, however,
in that our approach is to focus on dividing a computation
into a large number of Charm++ objects or AMPI threads
and then to dynamically map and re-map these entities onto
physical processors as the computation progresses. In some
sense, our approach is at a lower level than the approach
taken by Cactus-G.

The common thread that differentiates our work from
others is our use of processor virtualization, in the form of
Charm++ chares or AMPI threads, as a means of tolerating
latency in Grid computing environments without requiring
modification of application software. To this end, we exam-
ine this concept in greater detail in Section 4.

4. Latency Tolerance in Grid Applications

The fundamental idea behind the Charm++ runtime sys-
tem is that a programmer divides a program into a large
number of message-driven objects, implemented in the
form of either Charm++ chares or AMPI threads. In some
sense, these entities virtualize the notion of work, so it is
sometimes also convenient to think of them as virtual pro-
cessors. The number of virtual processors (objects) is in-
dependent of, and in practice much larger than, the number
of physical processors. The runtime system maps virtual
processors onto physical processors and may dynamically
adjust this mapping as the application executes to balance
load or optimize communication costs. Rather than thinking
in terms of physical processors, the programmer thinks in
terms of the virtual processor abstraction and writes code to
coordinate interactions among these virtual entities. These
interactions are realized as asynchronous messages that are
passed between physical processors in the computation. As
messages arrive at a physical processor, they are enqueued
in a message queue in either FIFO or priority order. When a
physical processor becomes idle, its message scheduler de-
queues the next waiting message and delivers it, triggering
the execution of code that is encapsulated within an object
to handle the message. This code runs to completion, pro-
ducing other messages for objects on this or another physi-
cal processor.

Because messages are asynchronous, the runtime system
may schedule the execution of a new object immediately
after execution within an existing objects completes, result-
ing in one or more messages sent by the object. Rather
than waiting for these messages to be delivered, the newly-
scheduled object begins work immediately, thus overlap-
ping its computation with the communication of the previ-
ous object. This ability to overlap useful computation with
communication is important within the context of a single
cluster, but is especially critical for applications that are co-
located across multiple clusters separated by a high-latency
wide-area network. Figure 2 illustrates this concept by de-



Figure 2. A hypothetical timeline illustrating
the use of message-driven objects to tolerate
wide-area latency

picting a hypothetical timeline for three processors running
on two clusters that are connected by a high-latency wide-
area network. Processors A and B are located within one
cluster and processor C is located within the second cluster.
At the left side of the timeline, processor B sends a message
to processor C; this message must cross the high-latency
inter-cluster network. Rather than waiting idly for this mes-
sage to be delivered, B is free to respond to an incoming
message from processor A, and in fact performs several
short computations and message exchanges with A. Finally,
processor C responds to processor B with the result of the
computation previously triggered by B. The important idea
is that B is able to do useful work during the gap between
dispatching a message to C and receiving a response.

For illustrative purposes, we consider the effectiveness
of this technique for masking wide-area latency experienced
by two example applications that are co-allocated across
two clusters on a computational Grid. In Section 5, we give
specific details regarding experimental results for these ap-
plications.

The first application we consider is a simple five-point
stencil finite difference method. In this class of numerical
method, a multidimensional mesh is repeatedly updated by
replacing the value at each point with some function of the
values at a small, fixed number of neighboring points. In
this case, the neighboring points taken into consideration
are the ones directly above and below as well as to the left
and right of a given cell. This produces four discrete com-
munication events per cell for each time-step. For the work
in this paper, we consider a mesh of size 2048x2048 cells.
The problem is decomposed using virtualization by dividing
the cells within the mesh evenly among a specified num-
ber of objects. For example, for a 2048x2048 mesh divided
among 64 objects, 8 objects are mapped along each axis of
the mesh. Accordingly, each object has a 256x256 square
section of the mesh to operate upon. During each time step,
each object communicates values for a 256x1 vector of cells
to its appropriate neighbor. Because the problem is split
across two clusters separated by a wide-area connection,
every time step involves some processors communicating
with neighbors situated across the wide area. More impor-

tantly, however, each cluster contains a large number of pro-
cessors that communicate with neighbors solely within the
local cluster. The expectation is that the message-driven
execution model will allow the high-latency communica-
tion operations to be masked by other communication that
is carried out with neighbors situated on the local cluster.
The five-point stencil is an attractive problem to consider
because it allows us to readily choose a varying degree of
virtualization by increasing or decreasing the number of ob-
jects used to decompose the mesh.

The second application we consider is a more complex,
classical molecular dynamics code called LeanMD [22].
Within a LeanMD simulation, the atoms of a biomolecular
system, including proteins, cell membranes, SNA, and wa-
ters, are partitioned into a group of cells. Electrostatic (and
van der Waal’s) interactions between every pair of neighbor-
ing cells are computed by a separate cell-pair object. These
interactions constitute the bulk of processor time used by
the application, although there are other force computations
involving bonds between atoms. In each time-step, each cell
“integrates” all forces on its atoms, and changes their posi-
tions based on new acceleration and velocities calculated.
It then multicasts its atom’s coordinates to the 26 cell-pairs
that depend on it. Each cell pair calculates forces on the
two sets of atoms it receives, and sends them back to the
two cells. In the context of this paper, it is important to note
that the computations in each cell pair depends on messages
from at most two other objects, possibly on two different
processors. Thus, in the benchmark used in this paper (Sec-
tion 5), there are 216 cells and 3,024 cell pairs. On each
processor, there may be several tens of cell-pair objects.
In a multi-cluster context, some of subset of these objects
(“subset A”) require messages from cells within their own
cluster, while a different subset (“subset B”) may require
one or both messages from outside the cluster. As a result,
a processor is able to execute objects in subset A while wait-
ing for high-latency messages for objects in subset B from
another cluster. This renders the application latency tolerant
to some extent. Although the degree of virtualization can be
varied much more readily in applications such as the sten-
cil decomposition described above, LeanMD is an attractive
application to consider because it is more representative of
realistic scientific codes.

The key contribution of this paper is the demonstration
that the use of parallel message-driven objects, as imple-
mented in systems such as Charm++ or AMPI, can mask
the high latencies found in Grid computing environments
when tightly-coupled applications are co-allocated across
distributed resources.



5. Experimental Results

In this section, we describe a set of experiments based
on the five-point stencil decomposition application and
LeanMD application described in Section 4. Results of
these experiments demonstrate that virtualization of work
can be used as a mechanism for masking latency in Grid
computing environments.

5.1. Experimental Environment

All experiments described in this paper are carried out
in two environments, both consisting of a pair of clusters.
All cluster nodes in both environments are dual-processor
Itanium 2 machines running at 1.5 GHz and containing 4
GB of main memory each. For each experiment conducted,
the number of physical processors used for the experiment
is varied in increasing powers of 2 (i.e., 2, 4, 8, 16, 32, and
64 processors) and these processors are evenly distributed
between the two clusters (i.e., 1+1, 2+2, 4+4, 8+8, 16+16,
and 32+32 processors). The result is that half of the pro-
cessors allocated to the application are physically located
on one cluster and the other half on the second cluster, with
messages sent between co-allocated processors going over
a high-latency interconnect.

The first environment used for experiments is a “simu-
lated Grid environment” physically consisting of nodes that
exist within a single real cluster.2 In this simulated Grid en-
vironment, arbitrary latencies can be inserted between any
pair of nodes, allowing us to sweep cross-cluster latencies
across a range to study the impact of varying wide-area
latencies on the underlying application. Recall from Sec-
tion 2.2 that the Virtual Machine Interface messaging layer
is used for all communication operations described in this
paper, and that a novel feature of VMI is the ability to orga-
nize the device drivers used for these communication oper-
ations into send and receive chains of drivers. As message
data travels along a chain, each driver on the chain examines
the message to determine whether that driver should deliver
the message or whether it should simply send the message
to the next device in the chain for eventual delivery by some
lower-level device. Furthermore, a device driver may ma-
nipulate the message in arbitrary ways. We leverage this
capability to inject pre-defined latencies between arbitrary
pairs of nodes by constructing send and receive chains that
consist of two network drivers with a “delay device driver”
in between. By affiliating a subset of the cluster’s nodes
with the first driver in the chain, message data are imme-
diately sent between the nodes within that subset without
passing through the delay device. For nodes not in this af-
filiation (i.e., those that exist on the “remote cluster”), mes-

2This is the NCSA TeraGrid cluster, tg-login.ncsa.uiuc.edu, also known
as Mercury.

sages are intercepted by the delay device which delays the
message by a pre-defined amount of time before passing it
to the network device driver used to communicate over the
“wide area.”

The second environment used for experiments is a true
Grid computing environment composed of TeraGrid [1]
resources located at the National Center for Supercom-
puting Applications and at Argonne National Laboratory.3

ICMP ping latencies between these clusters are reported
as approximately 1.725 ms one-way latency, and simple
Charm++ ping-pong latencies are approximately 1.920 ms.

5.2. Results for Five-Point Stencil

Figure 3 shows results for the five-point stencil experi-
ment running on a 2048x2048 mesh. Separate sub-graphs
show the performance of the application for numbers of
physical processors ranging from 2 to 64 processors. Be-
cause the problem is of a fixed size, always 2048x2048
cells, as the number of physical processors increases, the
granularity of the portion of the problem residing on each
processor decreases.

The first thing to observe is that for instances of the prob-
lem with relatively large grain size (e.g., for 2 and 4 proces-
sors in Figures 3(a) and 3(b)), the execution time for sev-
eral different degrees of virtualization remains almost con-
stant. That is, the near-horizontal lines on the graphs are
significant because they indicate that execution time stays
near constant as latency increases. As the number of pro-
cessors increases and the granularity of the problem begins
to decrease, latencies above a certain point are no longer
able to be tolerated as well. This is shown on the graphs
as plots with near-horizontal sections followed by a section
of increasing execution time (e.g., Figures 3(c), 3(d), and
3(e)). Finally, for the graph corresponding to 64 processors
in Figure 3(f), the near-horizontal sections of the plots are
very short. The important thing to note from this figure is
that the near-horizontal sections for plots corresponding to
higher degrees of virtualization (i.e., 256 or 1024 objects)
are longer than those of the plot corresponding to a lower
degree of virtualization. Moreover, as the system begins to
become less able to tolerate the latency between clusters,
the slope of the plots corresponding to higher degrees of
virtualization is less steep than the slope of the plot cor-
responding to the lower degree. That is, the experiments
that used higher degrees of virtualization were better able
to mask the effects of wide-area latency, even for latencies
that are very large in comparison to the step time. These
results match predictions made in other work [14].

In the graphs in Figures 3(b), 3(c), and 3(d), the re-
sults for the smallest degree of virtualization show markedly

3These are the machines tg-login.ncsa.teragrid.org and tg-
login.uc.teragrid.org, respectively.



Processors Objects Time (ms/step) Time (ms/step)
Artificial Latency Real Latency

2 4 85.774 96.597
2 16 75.050 79.488
2 64 80.436 77.170

4 4 85.095 90.815
4 16 35.018 35.546
4 64 36.667 37.345

8 16 25.468 26.237
8 64 17.596 18.444
8 256 19.853 20.853

16 16 17.114 17.752
16 64 10.959 11.588
16 256 10.017 10.913

32 64 6.756 7.405
32 256 6.022 6.622
32 1024 8.090 8.090

64 64 6.708 7.364
64 256 3.963 4.459
64 1024 4.928 4.906

Table 1. Comparison of five-point stencil ex-
ecution times running under artificial latency
and across multiple clusters

worse performance than for higher degrees of virtualization.
We believe that the performance improvements with higher
degrees of virtualization are due to improved cache perfor-
mance because of smaller grainsize. This is an area of on-
going investigation.

As a means of validating the results collected in the sim-
ulated Grid environment, Table 1 shows a comparison be-
tween the results collected under artificial latencies and in
the real Grid environment between NCSA and Argonne.
For many data points, the real multi-cluster results match
the results collected under artificial latency very well. More
importantly, the trends in the data collected under artificial
latency correspond to the trends in the data collected in the
real Grid environment.

5.3. Results for LeanMD

As explained earlier, LeanMD is a tightly coupled paral-
lel program with a significant complexity in its communi-
cation structure. We conducted two sets of experiments to
demonstrate the extent of latency tolerance achieved with
our approach: one with artifically added latencies and one
with remote clusters.

Figure 4 shows the performance of LeanMD as a func-
tion of message latency on different number of processors.
The latency is varied from 1 to 256 milliseconds. Each com-
putation step is about 8 second on a single processor. The
natural parallelism of the application leads to reasonable
scaling up to 32 processors, as seen by examining the left-
most points on each curve. On 64 processors, the speedup

Processors Time (ms/step) Time (ms/step)
Artificial Latency Real Latency

2 3.924 3.924
4 2.021 2.022
8 1.015 1.018
16 0.559 0.550
32 0.302 0.299
64 0.239 0.260

Table 2. Comparison of LeanMD execution
times running under artificial latency and
across multiple clusters

starts to stagnate. (The runs were conducted without any
load balancing. With load balancing, the speedups are likely
to be good at 64 processors, but they will eventually stag-
nate due to natural limit of application parallelism [22]. The
main point of these experiments is not the speedups per se,
but the impact of latency on speedup.) On 2 processors, la-
tency makes almost no impact, in part because even with
256 ms latency at the right end of the curve, the latency is
a fraction of the step time. But even here, it is worth not-
ing that with a round trip latency of 512 ms (0.5 seconds),
many algorithms would have increased their per-step time
from 4 to 4.5 seconds at least. However, the data for 32
processors is even more impressive: with a per-step time as
short as 300 ms, the graph shows no impact of latency as
high as 32 ms. This latency tolerance is achieved by virtue
of the large number of objects created by the application:
over 3,000 cell-pair objects divided among 32 processors
leads to over 90 objects per processor. Since many of these
objects depend only on local-cluster messages, the wait for
remote-cluster messages is automatically overlapped with
useful computation by Charm++’s message-driven sched-
uler.

To validate these results, we ran the same benchmark on
the two remote TeraGrid clusters mentioned above. The re-
sults are shown in Table 2. For up to 32 processors, the real
multi-cluster results match extremely well with what can be
predicted based on our artificial-latency experiments. For
64 processors, the correspondence is still good, but not as
good as that for fewer processors. We speculate that this
may be due to the fact that latencies will be higher when a
large amount of data is being communicated between two
clusters over a shorter period of time, leading to increased
contention in the network.

6. Conclusion

In this paper, we have demonstrated that message-driven
objects, implemented in the Charm++ and Adaptive MPI
systems, can be used to mask the high latencies found in
Grid computing environments when tightly-coupled appli-
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Figure 3. Performance of five-point stencil with artificial latencies 0-32 milliseconds



Figure 4. Performance of LeanMD running Hu-
man Carbonic Anhydrase simulation with ar-
tificial latencies 1-256 milliseconds

cations are co-allocated across geographically distributed
resources. Further, because the technique is encapsulated
within the runtime system, it can be applied to a wide va-
riety of problem decomposition strategies, such as regu-
lar and irregular mesh decomposition or spatial decompo-
sition, without requiring modification of application soft-
ware. This is in contrast to algorithm-specific techniques
for latency masking that are often applicable to only a par-
ticular decomposition strategy.

Based on the preliminary technique described in this pa-
per, we intend to perform further experimentation and in-
vestigation in several areas. First, we intend to further ver-
ify the experimental results obtained under artificial laten-
cies for the five-point stencil and LeanMD applications by
comparing the results against performance results gathered
by running the applications on TeraGrid nodes located at the
National Center for Supercomputing Applications (NCSA)
and at the San Diego Supercomputing Center (SDSC). One-
way latency between these sites is approximately 29.37 mil-
liseconds. Accordingly, we expect that example codes with
larger per-step execution times should be able to run suc-
cessfully in this environment. We further expect that ex-
ample codes such as the five-point stencil running over a
2048x2048 mesh will experience severe performance penal-
ties as suggested by our experiments using artificially in-
duced latencies.

Second, we have begun work on a Charm++ load bal-
ancer specifically designed for Grid computing environ-
ments. The preliminary version of this load balancer uses
the strategy of simply distributing the chares that com-
municate across high-latency wide-area connections evenly
among the processors within a cluster. In this scheme, no

chares are migrated to remote clusters; rather they are sim-
ply migrated among the processors within the cluster in
which they were originally placed.

Third, the Charm++ and AMPI systems support the no-
tion of prioritized message delivery. Under this scheme,
messages are tagged with a priority and are delivered to the
application in order of decreasing priority. This feature is
attractive for our work because one can envision a scheme
in which messages that cross cluster boundaries are tagged
with a higher priority than local messages. This tagging
would allow these messages to be processed first, further
reducing the impact of wide-area latency on the application.

Fourth, we believe that leveraging Adaptive MPI is an
important aspect of our future work due to the large num-
ber of MPI applications that exist, representing a wide vari-
ety of problem types. AMPI programs can take full advan-
tage of Charm++ runtime features including load balancing,
checkpointing and fault tolerance, and communication op-
timizations. Due to this ability to readily leverage existing
Charm++ features, we expect that using AMPI for our fu-
ture investigations in Grid environments to be straightfor-
ward.

Finally, and perhaps most importantly, our future work in
using parallel message-driven objects as a mechanism for
providing latency tolerance to applications running across
multiple clusters in a Grid environment will be underscored
by two primary scenarios in which we envision the work
as being directly applicable. One scenario is running ex-
tremely large computations that exceed the capacity of a
single cluster. For example, applications such as finite el-
ement models are often bounded by the total amount of
memory available, with scientists seeking to run on as many
nodes as possible to gain access to large amounts of mem-
ory. By synthesizing the resources in two or more clusters,
this goal can be more readily achieved. A second scenario
is scheduling computational resources on-demand, in which
a job is submitted along with a deadline by which the job
must be completed [21]. To fulfill such a requirement in
cases where no single computational resource has sufficient
capacity to fulfill the request by the given deadline, a job
request might be satisfied by allocating some nodes from
one cluster and the balance of nodes needed by the job from
a second cluster. This might be useful in circumstances in
which the request for nodes cannot be satisfied by a single
cluster by the deadline specified by the job. Such work fits
well with the goals of our work with the Faucets [17] Grid
computing environment.
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