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Abstract

High-performance systems with thousands of processors
have been introduced in the recent past, and systems with
hundreds of thousands of processors should become avail-
able in the near future. Since failures are likely to be fre-
quent in such systems, schemes for dealing with faults are
important.

In this paper, we introduce a new fault tolerance solution
for parallel applications that proactively migrates execution
from a processor where a failure is imminent. Our approach
assumes that some failures are predictable, and leverages
the fact that current hardware devices contain various fea-
tures supporting early indication of faults. By using the con-
cepts of processor virtualization in Charm++ and Adaptive
MPI (AMPI), we describe a mechanism that migrates ob-
jects when a failure is expected to arise in a given proces-
sor, without requiring spare processors. After migrating ob-
jects, and applying a load balancing scheme, the execution
of an MPI application can proceed and achieve optimized
efficiency. We modify the implementation of collective oper-
ations, such as reductions, so that they continue to operate
efficiently even after a processor is evacuated and crashes.
To demonstrate the feasibility of our approach, we present
preliminary performance data.

1 Introduction

Various high-performance systems with thousands of
processors have been introduced in the recent past, provid-
ing support for execution of large-scale scientific applica-
tions. Meanwhile, the present trends in circuit fabrication
and packaging technologies indicate that systems with hun-
dreds of thousands of processors should become available
in the next few years. In such environments, reliability be-
comes a major concern, because the overall system reliabil-
ity is a product of the individual components’ reliabilities.
Thus, it is very likely that a large system will incur a failure
within the execution of an application.

Many production-level scientific applications are cur-
rently written using the MPI paradigm [11]. However, the
original MPI standards specify very limited features related
to reliability or fault tolerance [10]. In most MPI implemen-
tations, the entire application has to be shutdown when one
of the executing processors experiences a failure. Some al-
ternative MPI implementations have been recently proposed
(we discuss representative examples in§5). Most of these
solutions implement some form of redundancy, forcing the
application to periodically save part of the execution state.
When a failure is detected, the most recent state prior to the
failure is restored, and execution proceeds from that point.
In our previous work, we have demonstrated solutions fol-
lowing this general scheme. In some of them, we used
checkpointing/restart mechanisms [13, 21], with the option
of saving the checkpointed data to memory or to disks; in
another, we used sender-based message-logging [7], where
messages are recorded by the sender and resent in case of
failures.

In this paper, we introduce a new solution that goes one
step ahead: instead of waiting for failures to occur and re-
acting to those failures, we proactively migrate the execu-
tion from a processor where a failure is imminent, without
requiring the use of spare processors. To be effective, this
approach requires that failures be predictable. We lever-
age the fact that current hardware devices contain various
features supporting early fault indication. As an example,
most modern disk drives follow the SMART protocol [3],
and provide indications of suspicious behavior like transient
access errors, retries, etc. Similarly, motherboards contain
temperature sensors, which can be accessed via interfaces
like lm sensor [1] and ACPI [12]. Meanwhile, many net-
work drivers, like those for Myrinet interface cards [5],
maintain statistics including packet loss and retransmission
counts. Processor manufacturers are building similar infras-
tructure to detect transient errors inside processor chips [?].
By periodically collecting this kind of information, one can
create a very powerful mechanism to predict that a severe
hardware failure is developing, and act appropriately before
that failure becomes catastrophic to the application.
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The remainder of this paper is organized as follows.
In §2 we describe the major concepts of processor virtual-
ization and object migration. Next, in§3 we present our ap-
proach for relocating the execution upon detection of immi-
nent failures, which is based on object migration. We report
preliminary results of applying our proactive technique to
Charm++ and MPI applications in§4, review related work
in §5, and conclude the paper with an overview of our next
steps for this research in§6.

2 Processor Virtualization

Our strategy for proactive fault handling is based on the
concepts of processor virtualization and object migration, as
provided by Charm++ [16] and Adaptive-MPI (AMPI) [14].
Processor virtualization [15] involves the user dividing the
problem into a large number of objects without consider-
ing the actual number of physical processors. Each such
object is called a virtual processor. The user’s view of a
program is of these virtual processors and their interactions
with each other. The programmer leaves the mapping of vir-
tual processors to physical processors to the runtime system.
Charm++ organizes the virtual processors as collections of
C++ objects that interact via asynchronous method invoca-
tions [18]. It refers to each object by a globally unique, user
assigned logical address, called an array index. All commu-
nication occurs via the array index, which allows the object
to be migrated in a way that is completely user transparent.
Charm++ supports message delivery to and creation, dele-
tion, migration of the virtual processors in a scalable and
efficient manner. It also allows reductions and broadcasts in
the presence of migrations.

Adaptive MPI (AMPI)[14] implements its MPI pro-
cesses as user-level threads bound to Charm++ objects.
Message passing between AMPI processes is implemented
as communication among these Charm++ objects and the
underlying messages are handled by the Charm++ runtime
system. Thus AMPI allows traditional MPI codes to exploit
the advantages of processor virtualization as well.

The ability to migrate virtual processors means that the
runtime system can change the mapping of virtual to phys-
ical processors in the middle of an execution to account
for the changing load characteristics of a program. Cou-
pling this ability with the fact that for most applications the
computation loads and communication patterns exhibited
by the virtual processors tend to persist over time, one can
now build measurement based runtime load balancing tech-
niques. Distributed or centralized load balancing strategies
can be devised to provide efficient remappings. Dynamic
load balancing has been used to scale molecular dynamics
to thousands of processors [17].

Processor virtualization and its attendant benefits, auto-
matic migration and load balancing, make Charm++ suit-

able for responding to processor failure predictions. We
build upon these available features to implement a system
that can respond to a predicted failure in a timely fashion
and still allow the application to run efficiently on the re-
maining processors.

3 Fault Tolerance Strategy

We now describe our technique to migrate tasks from
processors where failures are imminent.

3.1 Problem Specification

Our strategy for reacting to fault predictions is entirely
software based. However, it requires some support from the
hardware and makes the following assumptions about it:

1. The application program is warned of an impending
fault through a signal to the application process on the
processor that is about to crash.

2. The processor, memory and interconnect subsystems
on a warned node continue to work correctly for some
period of time after the warning. This gives us an op-
portunity to react to a warning and adapt the runtime
system to survive a crash of that processor.

3. The application continues to run on the remaining pro-
cessors, even if one processor crashes.

4. We currently assume that warnings for two processors
do not occur simultaneously.

For a machine that satisfies the above assumptions, we
define the following set of requirements for our strategy to
respond to warnings:

1. The response time of our strategy should be as low as
possible. The time taken by the runtime system to re-
act, so that it can survive the processor’s crash, should
be minimized.

2. Our strategy should not require the start up of a new
application process on either a new processor or any
of the existing ones. The runtime system should be
able to deal with a warning and possible crash without
having to resort to ”spare” processes [21][7].

3. After responding to a fault warning on a processor,
the efficiency loss in the application should be propor-
tional to the fraction of computing power lost.
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3.2 Solution Design

Our solution has three major parts. The first part mi-
grates the Charm++ objects off the warned processor and
ensures that point-to-point message delivery continues to
function even after a crash. The second part deals with al-
lowing collective operations to cope with the possibility of
the loss of a processor. The third part makes sure that the
runtime system can balance the application load among the
remaining processors after a crash. The three parts are in-
terdependent, but for the sake of clarity we describe them
separately.

Each migratable object in Charm++ is identified by a
globally unique index which is used by other objects to
communicate with it. A scalable algorithm is used for point-
to-point message delivery in the face of asynchronous ob-
ject migration, as described in [18]. The system maps each
object to ahomeprocessor, which always knows where that
object can be reached. An object need not reside on its home
processor. As an example, in Figure 1 an object on proces-
sor A wants to send a message to an object (say X) that has
its home on processor B but currently resides on processor
C. If processor A has no idea where X resides, it sends the
message to B, which then forwards it to C. Since forward-
ing is inefficient, C sends a routing update to A, advising it
to send future messages for object X directly to C.

Figure 1. Message forwarding among proces-
sors: A is the source, B the home, and C the
destination.

The situation is complicated slightly by migration. If a
processor receives a message for an object that has migrated
away from it, the message is forwarded to the object’s last
known location. Assume object X migrates from C to an-
other processor D at the same time that A starts sending it a
message. As a result, X’s home processor (B) does not yet
have the correct address for X when it decides to forward
the message to C. However, C forwards it to D and then D
sends a routing update to A. B also receives the migration
update from C and forwards any future messages to D. The
protocol is described in much greater detail in [18].

When a processor (say B) starts failing, it is easy enough
in Charm++ to migrate away the objects residing there.
However, if B were to crash, it would disrupt message deliv-
ery to objects such as X which have their homes on B. There
would be no processor that would always know where that
object can be reached. We solve that problem by changing
the index-to-home mapping such that all objects mapped
to B now map to some other processor D. This mapping
needs to change on all processors in such a way that they
stop sending messages to B as soon as possible. The pro-
tocol has two parts, one running on the processor that has
received a warning and the second part running on the other
valid processors.

Once processor B receives a warning that it might crash,
it must:

1. Change the index-to-home mapping so that all objects
that previously had their homes on B, now map to D.

2. Send a high priorityevacuationmessage to all other
valid processors (processors that have not sentevacu-
ation messages to this one in the past). The message
contains this processor’s number.

3. Send all objects on B to their home processors, includ-
ing objects that previously had their homes on B.

Meanwhile, when a processor receives anevacuationmes-
sage, it must:

1. Mark the sending processor as invalid.

2. Change the mapping so that all objects previously
mapped to B now map to D. The mapping should be
changed in such a way that all processors indepen-
dently agree on the same replacement for B.

3. Change routing records for any object that point to B
so that those records now point to that object’s new
home processor.

4. If this processor contains any object that previously
had its home on B, inform its new home D about the
object’s current position.

We now discuss the protocol’s behavior in different cases
and whether B needs to process a message after being
warned. Of course, any messages to B sent before a pro-
cessor receives theevacuationmessage from B will have to
be processed or forwarded by B. There is no way around it,
although the high priority of theevacuationmessage tries
to reduce the chances of such a case.

We first analyze the effect of this algorithm on objects
that had their homes on B. This protocol assigns a new home
D for all such objects (let X be one of them). If some of
these objects were on B, they are migrated to D; if they
existed on other processors, D is informed of their current
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position. If D receives a message for object X after having
received theevacuationmessage from B but before X has
migrated into it or it has been informed of its new position,
the message is buffered. Thus, no messages are sent to B
in this case. If a processor sends to D a message for object
X before D has received theevacuationmessage from B,
D has no option but to send it to either B or some other
processor which has previously told D that X exists on it.
In this case, it is possible that B would have to process a
message after receiving a fault warning.

Any object (say Y) existing on B but having its home on
some other processor (say C) is sent to its home processor
(C). Theevacuatemessage changes the routing tables of all
processors such that they will send to C all messages for
object Y, instead of sending to B. If any message for Y gets
to C before Y itself, but after theevacuatemessage, it is
buffered. Again the only case in which B might receive a
message is if C has not received theevacuatemessage when
it receives a message for Y. All objects on B are sent to
their home processors and not some other ones because, in
this case, B does not need to send a migration update to the
home processors. Thus, according to this protocol, B might
have to forward some messages sent or forwarded by other
processors before they had received theevacuatemessage.
Once all processors have received theevacuatemessage, no
messages destined for Charm++ objects will be sent to B.

3.3 Support for Collective Operations

Collective operations are important primitives for par-
allel programs. It is essential that they continue to oper-
ate correctly even after a crash. Asynchronous reductions
are implemented in Charm++ by reducing the values from
all objects on one processor and then reducing these par-
tial results across all processors [18]. The processors are
arranged in a k-ary reduction tree. Each processor reduces
the values from its local objects and the values from the pro-
cessors that are its children, and passes the result along to
its parent. Reductions occur in the same sequence on all ob-
jects and are identified by a sequence number. If a processor
were to crash, the tree could become disconnected. There-
fore, we try to rearrange the tree around the warned node.
If the warned node is a leaf, then the rearranging involves
just deleting it from its parent’s list of children. In the case
of an internal node, the transformation is shown in Figure
2. Though this rearrangement increases the number of chil-
dren for some nodes, the number of nodes whose parent or
children change is limited to the warned node, its parent and
its children.

Since rearranging a reduction tree while reductions are in
progress is very complicated, we adopt a simpler solution.
The warned node polls its parent, children and itself for the
highest reduction that any of them has started. Because the

Figure 2. Rearranging of the reduction tree,
when processor 1 receives a fault warning.

rearranging affects only these nodes, each of them shifts to
using the new tree when it has finished the highest reduction
started on the old tree by one of these nodes. The exact
sequence of messages is the following:

1. Warned node sends the tree modifications to parent and
children.

2. Parent and children store the changes but do not make
them to the current tree. They reply with the highest
reduction number that they have seen. They also buffer
any further reduction messages.

3. The warned node finds the maximum reduction num-
ber and informs the parent and children.

4. The parent and children unblock and continue until
they reach the maximum reduction number; at that
point, they change to the new tree.

It is evident from the protocol that evacuating a processor
might lead to severe load imbalance (since all of B’s objects
move to D in our example). Therefore, it is necessary that
the runtime system be able to balance the load after a migra-
tion. Minor changes to the already existing Charm++ load
balancing framework allow us to map the objects to only
the remaining valid processors. However, as we show in
§4, this capability has a major effect on performance of an
application.

The protocols described above need to be slightly modi-
fied to accommodate AMPI objects (corresponding to MPI
processes) as they are implemented currently. According
to its current implementation, AMPI objects can not be mi-
grated at an arbitrary place in the code [14]. Thus, we add
a MPI Evacuatecall to mark a place in the code where it
is safe to migrate the object away from a warned proces-
sor. In the fault-free case the overhead of this method is just
one if statement. However, we are working on modifying
AMPI’s implementation so that it can supportanytimemi-
gration. This would allow AMPI objects to use the same
protocols as any other Charm++ object.
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4 Experimental Results

We tested our strategy on a 16 processor cluster of 1Ghz
Pentium III nodes with 1 GB of RAM and 2 GB of swap
space, connected by Gigabit as well as 100 Mbit Ethernet.
We compiled all programs with GNU GCC version 3.2 with
the -O2 flag. We used a simple 5-point stencil calculation
written in Charm++ to perform most of the initial evalu-
ations of our protocol. It is easier to control the memory
usage and granularity in this program than in a real applica-
tion. We evaluated the current AMPI version of our protocol
as well. We simulated a fault warning by sending the USR1
signal to an application process on a computation node.

We wanted to evaluate how fast our protocol is able to
morph the runtime system such that if the warned processor
crashes, the runtime system remains unaffected. We call
this theprocessor evacuationtime. However, it is not ev-
ident how this should be exactly measured. One option is
to measure the time taken to process all messages that need
to be processed by the warned processor before the runtime
system can survive a fault. However, it does not include
the time taken for the objects on the warned processor to
be actually sent to the destination processor. Since the out-
going objects are actually buffered on the sending side the
user code does not know the exact time when the objects
are sent. We decided to measure this time by having all
the other processors reply back to the warned one after re-
ceiving all their objects. Thus, for a certain run, we mea-
sure processor evacuation time as the maximum of the time
taken for all the processors to reply back and the last mes-
sage processed by the warned processor. It should be noted
that these reply messages are not necessary for the proto-
col, but are needed solely for evaluation. The result is, of
course, a pessimistic estimate of the actual processor evacu-
ation time, since it includes the overhead of extra messages.

The processor evacuation time for the Charm++ stencil
program on 16 processors, for different problem sizes and
for both interconnects, is shown in Figure 3. The evacuation
time increases linearly with the total problem size until at
least 1.4 GB. This shows that it is dominated by the time
to transmit the data out from the warned processor. For the
same reason, the processor evacuation time for Gigabit is
a fraction of the time for 100Mbit. However, our method
of measurement is biased against faster interconnects, since
the measurement overheads form a more significant part of
the evacuation time than in the case of slower interconnects.
Hence the actual performance of Gigabit, in comparison to
100Mbit, is even better.

Figure 4 presents the processor evacuation time for a
particular problem size (268 MB) on different numbers of
processors. For both interconnects, the evacuation time de-
creases linearly with the data volume per processor. Gigabit
responds significantly faster than 100 Mbit. This shows that

Figure 3. Processor evacuation time on 16
processors in a Charm++ 5-point stencil com-
putation.

Figure 4. Processor evacuation time for 268
MB of total data in a Charm++ 5-point stencil
computation.

our protocol scales to at least the number of processors used
in the experiment. In fact, the only part in our protocol that
is dependent on the number of processors is the initialevac-
uatemessage sent out to all processors. The other parts of
the protocol scale linearly with either the size of objects or
the number of objects on each processor.

In Figure 5, we compare the performance of the sten-
cil computation after a warning, with and without a subse-
quent load balancing phase. It plots the average time taken
for each iteration over all Charm++ objects in the calcula-
tion. In Figure 5(a), the execution time per iteration nearly
doubles after a processor receives a warning and is evacu-
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(a) Performance after a warning without load balancing

(b) Performance after a warning with Centralized load balanc-
ing

Figure 5. Time per Iteration for a Charm++ 5-
point stencil calculation with 576 MB of data
on 16 processors in the presence of faults.

ated. This happens because all the objects on the warned
processor are sent to their homes, including the objects that
previously had homes on the warned processor. This creates
a load imbalance across the system. As a result, the perfor-
mance of the application degrades significantly. However,
in 5(b), load balancing occurs after the migration and the
performance of the application shows a marked improve-
ment over the previous case. The performance penalty after
the crash is proportional to the computation power lost.

Figure 6 evaluates the processor evacuation time for an
AMPI application consisting of a 7-point stencil computa-

Figure 6. Processor evacuation time on 16
processors in a AMPI 7-point stencil compu-
tation.

tion, for various problem sizes on 16 processors. It shows a
similar behavior as in the Charm++ program. The evacua-
tion time increases linearly with data size; Gigabit performs
significantly better than 100Mbit. However, the evacua-
tion time with the same data size for AMPI is significantly
higher than that of Charm++. Current restrictions on when
an AMPI object is allowed to migrate, due to our present
AMPI implementation, form the primary reason for this.

Thus, these experiments show that our protocol’s re-
sponse to a fault warning is restricted by the amount of data
on that processor and the speed of the interconnect. The
protocol itself scales well with both data size and number
of processors. Load balancing is seen to have a significant
impact on the performance of an application after a fault
warning.

5 Related Work

The techniques for fault tolerance in message-passing
environments can be broadly divided in two classes:
checkpointing schemes and message-logging schemes. In
checkpoint-based techniques, the application status is peri-
odically saved to stable storage, and recovered when a fail-
ure occurs. The checkpointing can be coordinated or inde-
pendent among the processors. However, due to the pos-
sible rollback effects in independent schemes, most imple-
mentations use coordinated checkpointing. Representatives
of this class are CoCheck [20], Starfish [2] and Clip [8].

In message-logging techniques, the central idea is to re-
transmit one or more messages when a system failure is
detected. Message-logging can be optimistic, pessimistic
or causal. Because of the complex rollback protocol, opti-
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mistic logging [?] is rarely used; instead, pessimistic log-
ging schemes are more frequently adopted, like in FT-
MPI [9], MPI/FT [4], MPI-FT [19] and MPICH-V [6].
Causal logging (such as in [?]) attempts to strike a bal-
ance between optimistic and pessimistic logging; however,
its restart is also non-trivial.

In all of these proposed fault-tolerant solutions, some
corrective action is taken in reaction to a detected failure.
In contrast, with the proactive approach that we present in
this paper, fault handling consists in migrating a task from
a processor where failures are imminent. Thus, no recov-
ery is needed. In addition, migration is already an existing
feature in AMPI, as it supports dynamic load balancing via
task migration. Hence, adding fault tolerance support is not
a drastic change to the original AMPI implementation.

6 Conclusion and Future Work

We have presented a new technique for fault tolerance
in MPI applications. Our approach is supported by the ob-
ject migration and load balancing capabilities of Charm++
and AMPI. Upon receiving warnings that a failure is immi-
nent on a given processor, our runtime system proactively
attempts to migrate execution off that processor before a
crash actually happens. Our preliminary results show that
task migration time is constrained mainly by the intercon-
nect speed. The migration performance scales well with the
dataset size.

We are currently working to complete and validate our
protocol in several important aspects. First, we are modify-
ing our AMPI implementation so that migration can occur
at any moment; this should provide a faster evacuation time
for MPI applications. Secondly, we will extend our proto-
col to make it capable of handling simultaneous faults on
different system nodes. Finally, we plan to apply our tech-
nique to a wider set of MPI applications, and will conduct
those tests on large system configurations. These tests will
enable verification of the good scalability that we observed
in our preliminary experiments.
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