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ABSTRACT
Charm++, a parallel object language based on the idea of
virtual processors, has attained significant success in effi-
cient parallelization of applications. Requiring the user to
only decompose the computation into a large number of ob-
jects (“virtual processors” or VPs), Charm++ empowers its
intelligent adaptive runtime system to assign and reassign
the objects to processors at runtime. This facility is used
to optimize execution, including via dynamic load balancing.
Having multiple sets of VPs for distinct parts of a simulation
leads to improved modularity and performance. However, it
also tends to obscure the global flow of control: One must
look at the code of multiple objects to discern how the sets
of objects are orchestrated in a given application. In this
paper, we present an orchestration notation that allows ex-
pression of Charm++ functionality without its fragmented
flow of control.

1. INTRODUCTION
We have been developing an approach to parallel program-
ming that seeks an optimal division of labor between the
system and the programmer: the system automates what
it can, while the programmer does what they can do bet-
ter. In particular, our approach has been based on the idea
of migratable objects: the programmer decomposes the ap-
plication into large number of parallel parts (called “virtual
processors” or VPs), while the runtime system (RTS) assigns
those parts to processors. This gives the RTS the flexibility
to migrate VPs among processors to effect load balance and
communication optimizations. (See Figure 1)1

Charm++ is an early system that embodies this idea: Here
each VP is an object (aka chare), and VPs communicate
via asynchronous method invocations. Many VPs can be
organized into an indexed group, called a “chare-array”. A
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1Figure taken from [13]

single program may contain multiple chare-arrays. The sim-
plest chare arrays are 1-D dense arrays. Charm++ supports
multi-dimensional arrays, sparse arrays (where only a sub-
set of indices are “alive”), as well as collections indexed by
bit-vectors.

User View

System Implementation

Figure 1: Virtualization in Charm++

Adaptive MPI (also called AMPI) [11] brings the benefits
of virtualization to MPI programs. Programs are written
using standard MPI, except that each MPI “process” is im-
plemented as a user-level migratable thread.

This idea of using indirection in mapping work to processors
has been used and developed in the past, including in DRMS
[19, 23]. Olden [9, 4] did thread migration to move threads
to data. Using process migration for load balancing has also
been investigated [8]. This broad approach has gained a new
momentum recently [1, 12].

A large number of applications have been developed using
Charm++. These include NAMD, a production-level Molec-
ular Dynamics program which has demonstrated unprece-
dented speedups on several thousand processors [2, 17], and
CPAIMD[22], a Quantum-Chemistry program. Other exam-
ples include Rocket Simulation, Crack propagation, Space-
time meshing with Discontinuous Galerkin solvers, Dentritic
Growth in Solidification processes, level-sets methods, com-
putational comsology simulations, parallel visualization of
cosmology data, etc.

Although Charm++ has demonstrated its utility in run-
time optimizations such as load balancing, and although
it is more modular than MPI (see [16]), its expressiveness
has a drawback, especially for complex applications that in-
volve multiple sets of virtual processors (i.e. multiple chare-
arrays), as seen in the motivational example in next section.



Also, in Charm++, methods clearly distinguish the places
where data is received, but the places where data is sent
(invocations) can be buried deep inside the sequential code.
This asymmetry often makes it hard to see the parallel struc-
ture of an application, which is useful for understanding per-
formance issues.

We present a higher-level language notation that retains the
benefits of Charm++ while allowing for easy expression of
global flow of control as well as symmetric expression of com-
munication. The language separates sequential code frag-
ments (methods) from the parallel constructs. It can be
considered a generalization of scripts for the parallel envi-
ronment. Since it controls the behavior of a collection of
virtual processors, we call it an orchestration language.

2. MOTIVATION
The language we propose in this paper can be motivated
from bottom-up – as an evolution of the concepts devel-
oped in Charm++ family of programming abstractions, or
from top-down, a from-scratch motivation for a higher level
parallel language. The top-down motivation of this project
is the need for a language that allows the programmer to
express locality of data access and explicit communication,
along with global flow of control (a la HPF) and migratable
objects. In the following part of the section, we take the
bottom-up approach to motivate our language.

Consider as an example, a simplified version of the rocket
simulation application we are developing at Illinois: The
interior gasses of a burning solid rocket motor is modeled
using fluid dynamics whereas the solid fuel (imagine a hol-
low cylinder) is modeled using structural dynamics. In tra-
ditional MPI style, fluid and solid modules are partitioned
across P processors. Since the partitioning program for the
solids’ unstructured mesh are different than those for the
structured grids of fluids, partition i of solids is not geo-
metrically or topologically connected with partition i of the
fluids. Yet, they are glued together in processor i by virtue of
them being identically numbered partition! If solid and fluid
computations alternate with each other (rather than being
run in parallel), you are also required to decompose both do-
mains into equal number (P) of partitions (See Figure 2(a)).
In contrast, with Charm++ or AMPI, the fluids and solids
code get their own set of virtual processors. Fluids may be
implemented by an array of 1000 virtual processors, while
solids may need 1,700 VPs (See Figure 2(b)). These num-
bers are independent of the physical processors being used.
(E.g. the above VPs can be distributed to 170 physical pro-
cessors by the RTS). The RTS’s load balancer may decide
to assign the i’th VP of Fluids on the same processor as the
j’th VP of Solids if they happen to communicate more.

Such independent mapping can lead to significant perfor-
mance benefit, as the communication volume is reduced.
The benefits of measurement-based dynamic load balancing
in Charm++ have been demonstrated elsewhere [3, 20]. But
even from the point of view of modularity, the separate sets
of VPs are beneficial, in general. If the modules can run
concurrently, this technique allows idle time in one module
being overlapped with useful computation in another, with-
out breaking abstraction boundaries between them [16].
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Figure 2: Rocket simulation example under tradi-
tional MPI vs. Charm++/AMPI framework

However, along with this advantage comes a seemingly small
cost. The overall control loop has now disppeared from
the program: solid partitions compute when triggered by
the data they need, sending messages to other solid and
fluid modules, which trigger them to execute. This message
driven style requires us to look at implicit transfer of control
buried inside all the modules to understand the behavior of
the program as a whole. In case of two modules, whether
they execute one after the other or concurrently, this ex-
pressiveness problem is small. However, as the application
becomes complex, the penalty may increase.

Consider the Car-Parrinello algorithm for ab initio molec-
ular dynamics. One major data structure in a particular
form of the algorithm[21] is the representation of N elec-
tronic states: each state is represented in both real-space
and frequency-space, often called G-space, by MxMxM 3D
arrays of complex numbers, ΨR and ΨG. We wanted to par-
allelize this problem to a number of processors significantly
larger than N.

The parallelization of this problem using Charm++ is shown
in Figure 3. (It is not important to understand this algo-
rithm completely to see the broad point being made here).
Each state’s representation is decomposed into M planes.
For N=128, and M=100, this decomposition leads to 12,800
VPs in real-space and a somewhat smaller number in G-
space (due to its sparsity). The probability density function
(ρReal) and its reciprocal space are each represented by 100
VPs. There are 1,600 VPs in the S-calculator phase for cal-
culating the correlation matrix for orthonormalization. In
addition, several VPs are needed for calculations related to
the Nuclei.

With this aggressive parallelization, we are able to scale the
application to 1500 processors with only 128 states (with a
speedup of about 550)[18]. This unprecedented scalability
for this application attests to the success of processor vir-
tualization. Expressing such an algorithm with MPI would
have been difficult, especially since it involves multiple (over-
lapping) collective operations in the transpose phases (I and
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Figure 3: Parallel structure of CPMD implementation using virtual processors

VI). Charm++ separates the issue of resource management,
and in that respect, it simplifies programming.

However, the Charm++ code for this application is spread
across several C++ classes. The real-space component ΨR,
for example, only specifies that when it gets all the rows in
its plane, it computes a 2D FFT (Ph. I) and sends the result
into a non-blocking reduction (II); and when it gets a new
plane back (in Ph. V via a multicast) it does an inverse 2D
FFT and sends rows to the corresponding G-space rows. The
overall global flow of control is not represented directly, and
must be inferred by readers. This makes the code difficult
to understand and modify.

Does this disdvantage of inability to clearly express global
flow of control so serious that we should go back to pro-
gramming with plain MPI? Clearly not. The advantage of
virtual processors (or migratable objects) methodology are
too numerous and too signficant for that [13]. They include
dynamic load balancing[15], adaptive overlap of comunica-
tion and computation[13], easier automatic checkpoint and
restart[10], faster fault tolerance on extremly large parallel
machines[24, 5], responding to predicted faults on individual
processors by migrating objects away, ability to shrink and
expand the sets of processors assigned to a job at runtime,
running tightly coupled applications across geographically
separated clusters (by taking advantage of the latency tol-
erance created by a large number of VPs), and so on. In-

stead, we aim at raising the level of abstraction within the
Charm++ framework of processor virtualization via some-
thing akin to a scripting language that specifies the global
flow of control explicitly without giving up the idea of multi-
ple sets of virtual processors. Since the script is orchestrat-
ing the behavior of a large number of objects of different
types, we call this an orchestration language. Although the
focus of this paper is on global flow of control, we also in-
corporate our recent work on providing a limited and disci-
plined use of global arrays in the form of multiphase shared
arrays [7], as described in Section 3.

3. ORCHESTRATION LANGUAGE
The orchestration language enables the programmer to have
a global flow of control. A typical orchestration program has
two components: the script-like orchestration code specify-
ing the global control flow, and the sequential code provided
by the programmer. The orchestration code will then be
translated into target language, and the user code will be
integrated.

The skeleton of the orchestration code is the orchestration
statements. The programmer put together the structure of
the control flow and corresponding code will be generated by
our translator. In this section we give detailed description
of the orchestration language design, including important
orchestration statements and communication patterns.



3.1 Chare Array Creation
Our language is based on the idea of orchestration of parallel
virtual processors. When programming in the orchestration
language, the programmer first creates one or more arrays of
virtual processors (called chare arrays) and describes the be-
havior of and interaction among the elements of the arrays.
A “chare” in Charm++ is an object which includes methods
that can be remotely invoked. Although they are called “ar-
rays”, the chare-arrays are a collection of chares, indexed by
very general mechanisms. In particular, the chares (objects)
can be organized into 1 or multi-dimensional arrays that can
be sparse, and also into collections indexed by arbitrary bit-
patterns or strings. One can also dynamically delete and
insert elements in a chare array. The Charm++ run-time
system is responsible for adaptively mapping the chare array
elements onto available physical processors efficiently.

A chare array is constructed using elements that are declared
as C++ classes inheriting from an appropriate chare-array-
element type (e.g. ChareArray1D for 1-dimensional chare
arrays). The class methods (defined in separate files) specify
the behavior of individual chares; however, the size of the
array is specified in the orchestration language. Sample code
for creating a chare array myWorkers follows.

The classes section declares one or more types of chare-
arrays. The private variables and methods of this class are
declared in a separate file. The vars section specifies in-
stances of chare-arrays. There can be mutlple chare arrays
created with the same chare-array class. (E.g. one could
have myWokers : MyArrayTpe[100]; in addition to the one
shown below).

classes

MyArrayType : ChareArray1D;

Pairs : ChareArray2D;

end-classes

vars

myWorkers : MyArrayType[1000];

myPairs : Pairs[8][8];

otherPairs: Pairs[2][2];

end-vars

3.2 Orchestration Statements
The orchestration language consists of a forall statement
that specifies parallelism across all chares of chareArray (or
its subset), and an overlap statement that specifies concur-
rency among multiple sections of foralls. Communication
between objects is specified using two main mechanisms:
Multiphase shared array accesses and parameters prodcued
and consumed by chare methods.

3.2.1 Forall
The programs covered by the orchestration language oper-
ate in a loosely data-parallel manner. This is specified by
a simple forall statement. As an example, the following
code segment invokes the entry method doWork on all the
elements of array myWorkers.

forall i in myWorkers

myWorkers[i].doWork(1,1000);

end-forall

One can specify a subset of elements in chareArray as:

forall i:0:10:2 in myWorkers

When we span all elements of an chareArray as in the first
statement above, we can ellide the description as:

forall myWorkers

doWork(1,1000);

end-forall

The forall statement may look somewhat like the FORALL

statement in other parallel programming languages such as
HPF, but the distinction between our language and HPF,
especially between the forall in orchestration language and
FORALL in HPF is very important in order to understand our
language. In a language like HPF, global data arrays are cre-
ated and partitioned by user-specified directives, and used
by a fixed set of processors executing identical codes. In
contrast, in our language, we can have multiple sets of mi-
gratable objects (chare arrays), and both local view of data
within the object’s scope and limited global view of data in
the form of imput/output parameters of class methods. In
HPF, FORALL provides a parallel mechanism to assign values
to the elements of a data array, whereas the forall state-
ment in orchestration language not only specifies the paral-
lelism among parallel objects, but also allows for object-level
distributed control. The code in the forall block is more
than parallel data access; the distributed control makes pow-
erful optimization possible.

3.2.2 Overlap
Overlap statements specifies concurrent flow of control. For
example, in the following code segment, the execution of the
two forall statements can be overlapped at run time.

overlap

forall i in workers1

workers1[i].doSomeWork(1,1000);

end-forall

forall i in workers2

workers2[i].doOtherWork(1,100);

end-forall

end-overlap

The distributed object-level control and the overlap state-
ment exposes the opportunity for more efficient run-time
scheduling of the execution of entry methods on parallel ob-
jects. With the help of dependence analysis between the
statements and appropriate use of communication patterns,
we can achieve high parallel efficiency by eliminating un-
necessary synchronization without losing the productivity
of programming.

3.3 Communication Patterns
Before we describe the various communication patterns in
orchestration language, we explain the input and output of
an object method invocation, and the communication pat-
terns are expressed via the input and output of method in-
vocations of different objects.

3.3.1 Input/Output of Object Method Invocations
Here is a statement to exemplify the input and output of a
method.



forall i in workers

<..,q[i],..> := workers[i].f(..,p[e(i)],..);

end-forall

Here, q is one of the “values” produced by the method f,
while p is one of the values consumed by it. The values
produced by A[i] must have the index i, whereas e(i) is an
affine index expression (such as 3*i+4). Although we have
used different symbols (p and q) for the input and output
parameters, they are allowed to overlap. The parameters are
global data items or data arrays supported with a restricted
shared-memory abstraction in the framework.

3.3.2 Point-to-point Communication
We now introduce a mechanism to allow point-to-point com-
munication among objects. First we give a statement to
exemplify the input and output of a method.

Now we can specify point-to-point communication via the
parameters. For example, in the code fragment below, p[i] is
communicated (sent as a message, or asynchronous-method-
invocation) between elements of chare-array A and B: A[i]
produces p[i] and sends it to another element of B, at the
method g.

<p[i]> := A[i].f(...);

<...> := B[i].g(p[(i]);

How is the value p[i] produced by A[i].f used by B[i].g?
We provide a primitive called publish for this purpose. In-
side f, one can call publish_f(0,p) to signify creation of
the 0’th output value, assuming the type of a matches that
of p[i]. By this mechanism, we avoid using any global data
and reduce potential synchronization overhead with data de-
pendence analysis. For example, in the code segment above,
B[2].g does not have to wait on all A[i].f to complete to start
its execution; as soon as A[2].f is completed and the value
p[2] is filled, B[2].g can be invoked.

3.3.3 Multicast
A value produced by a single statement may be consumed by
multiple chare-array elements. For example in the following
code, p[i] is consumed by 3 elements of B: B[i-1], B[i] and
B[i+1], ignoring the boundary case wrap-around for simplic-
ity. This mechanism thus implicitly specifies a multicast of
produced values (admittedly of a small degree of 3 here).

<p[i]> := A[i].f(...);

<...> := B[i].g(p[i-1], p[i], p[i+1]);

3.3.4 Reduction
A reduction is specified by adding the symbol “+” before
an output parameter:

< .. , +e, .. > := A[i].f(..);

The dimensionality of the reduced output parameter must
be a subset of that of the array element producing it. Thus

< r[i] .. > := B[i,j].g(..);

is allowed because i is a subset of the set of indices of A used
(namely [i,j]).

3.3.5 All-To-All
Sometimes, a single method invocation produces a number
of output values: you can think of them as an array of output
values. This can be specified by the syntax exemplified by:

<p[i,j:0:5]> := A[i].f(..);

Here, 6 different values are produced by each A[i]. This
syntax is especially useful for specifying all-to-all communi-
cation and transposes, as illustrated by the 3D FFT example
below.

Here a 3-dimensional array of numbers has been decomposed
into a 1-dimensional array of chares, each holiding a plane
(2-D array of numbers). The A array elements perform sev-
eral 1-D line FFTs along one dimension, and then trans-
pose the data into the B array (as shown in Figure 3). The
2Dforward method of B completes the 3D FFT by carrying
out a 2D FFT on all of its data. (Only forward part of the
FFT is shown: the inverse FFT is similar.)

begin

forall i in A

<rows[i,j:0:N-1]> := A[i].1Dforward();

end-forall

forall k in B

... := B[k].2Dforward(rows[l:0:N-1, k]);

end-forall

end

3.4 Example Code
In this section we give example code of three typical paral-
lel programs: Jacobi (stencil computation), parallel prefix,
and a simple molecular dynamics computation. Through
these examples, we illustrate the use of various statements
and parallel computation patterns in orchestration language.
Shown here is the orchestration language code, and the user
completes the program with function definition in separate
file(s).

3.4.1 Jacobi
In the following example of a Jacobi computation, a reduc-
tion is used to compute the error value. This error value
is then used in the loop control to determine how long to
continue the computation. In the definition of compute func-
tion, the programmer will specify the reduction operation on
e and the publish destination of the function output.

begin

forall i in J

<lb[i],rb[i]> := J.init();

end-forall

while (e > threshold)

forall i in J

<+e, lb[i], rb[i]> :=

J[i].compute(rb[i-1],lb[i+1]);

end-forall

end-while

end

3.4.2 Parallel Prefix
The following program of parallel prefix introduces a few
additional features of the language.



#define N 10

P : PrefixElement[N];

k : int; k = 1;

begin

forall i in P

<s[i]> := P[i].init();

end-forall

while ( k<N )

forall i in P: (i>=k)

<s[i]> := P[i].step(s[i-k]);

k = 2*k;

end-forall

end-while

end

The language has its own scalars (k), and constants (N), and
normal C++/Java style assignment statements (k = 2*k;).
Further, the forall clause may be qualified by a guard (here;
i>=k), since for P[i] with i<=k, there are no incoming s
values).

Note that value consumed by P[i] must be that produced in
the immediately preceding iteration. In other words, there
is an implicit barrier at the end of each forall. Although
the semantics is defined by assuming such a barrier, the im-
plementation does not need to use a barrier for the purpose
of ensuring the semantics: it is free to use other methods
(such as tagging the messages with iteration-number and
buffering them as needed, for this example). In cases when
the programmer knows there should be no barrier, they can
force that by calling noSynch() after a forall.

3.4.3 Molecular Dynamics
As a final example, we show a NAMD-style parallelization of
molecular dynamics (MD). The atoms are partitioned into
3-D chare-array of cells. For each adjacent pair of cells, there
is a cellPairs object for computing electrostatic forces be-
tween atoms. (Thus cellPairs is a 6-D sparse array). The
coordinates are multicast to cell-pairs, while the forces are
added up via a reduction.

begin

forall i,j,k in cells

<coords[i,j,k]> := cells[i,j,k].init();

end-forall

for timestep = 0 to 100000

forall i,j,k,m,n,p in cellPairs

<+forces[i,j,k], +forces[l,m,n]> :=

cellPairs[i,j,k,m,n,p].computeForces(

coords[i,j,k],

coords[m,n,p]]);

end-forall

forall i,j,k in cells

<coords[i,j,k]> :=

cells[i,j,k].integrate(forces[i,j,k]);

end-forall

end-for

end

4. IMPLEMENTATION
Implementing the orchestration language is made easier by
the “back-end” provided by Charm++, which supports mi-
gratable objects and asynchronous method invocations. A

full-scale implementation requires a translator capable of
static analysis to identify the targets of each producer-consumer
communication indicated by our syntax. For a first im-
plementation, which allows us to experiment with the lan-
guage, we have taken a simpler approach: we have devel-
oped a simple translator that can parse the language and
generate code, but does not perform significant static anal-
ysis to identify and generate point-to-point communication,
multicasts, or reductions. Instead, it use a slightly inef-
ficient but highly flexible mechanism provided by our im-
plementation of limited-access global arrays, called multi-
phase shared arrays (MSA). Further, instead of generating
Charm++ code, our current implementation of the orches-
tration language targets Jade[6], Charm++-like parallel lan-
guage with a Java-like sequential syntax. We first introduce
Jade and MSA, then discuss the currently implementation
and future plans.

4.1 Introduction to Jade and MSA
Jade is a Java-like language that supports parallel classes
with properties and methods. The parallel classes in Jade
are parallel objects called Chares and parallel arrays of ob-
jects called ChareArrays. Communication with a parallel
object occurs through asynchronous method invocation. In
the message-driven paradigm, when a method of a Chare
or ChareArray is invoked, it continues to completion before
any other method of the same parallel object can run.

In contrast to Java’s run-time compilation, the Jade source
code is translated to Charm++ source code, which is then
compiled and executed on the target machine. The result-
ing code supports object migration and load-balancing and
scales well to large number of processors. Java’s standard
libraries are not supported.

The reason we chose Jade as the target language for the first
version is its simplicity. For example, there is no pointers or
pointer arithmetic in Java.

Our initial implementation uses multi-phase shared arrays
(MSA) [7]. MSA provides a restricted shared-memory ab-
straction which can be used to share arrays of arbitrary type.
Shared data is stored into pages which have their home pro-
cessors, Local copies is allowed for the consumer of any par-
ticular page, and a synchronization step is required at the
end of each phase. An MSA is accessed in either a read,
write, or accumulate mode. Access is divided into phases,
with all chares in the same phase accessing an array in the
same mode; phases are demarcated using sync operations
on the array. The phases are used to improve performance
and allow the solution to be more scalable. For instance,
data only needs to be fetched before being read, and data
only needs to be made consistent at the end of a write or
accumulate phase (instead of throughout the phase) since it
cannot be read in that phase. The accessing pattern of an
MSA may look like:

/* in parallel code */

MSA1D<...> arr; // initialization

arr[i] = x; // write-by-one mode

arr.sync(); // change phase

compute(arr[i-1], arr[i+1]); // read mode

arr.sync(); // change phase



. . .

This multi-phase minimizes fetch and consistency traffic,
which is a major difference from other shared memory ab-
straction like Global Array. For instance, in many-write
phase, one page may have different part of data written by
different parallel objects, and the data will be merged at the
sync toward the end of this phase. In GA this might incur
large amount of consistency traffic.

4.2 Current Implementation
A complete orchestration language program consists of two
components: a file containing orchestration language code
that declares the parallel objects and orchestrates their in-
teractions, and sequential code for the methods of their par-
allel classes.

The parallel objects like chare arrays declared in orchestra-
tion code by the programmer are translated to Jade classes.
The creation and initialization code for the chare arrays as
well as for the MSAs will also be generated. The orchestra-
tion will be translated into distributed control specification
for each chare array. For example, the block of code in a
forall statement in orchestration language will be trans-
formed to threaded method of corresponding chare array
classes and distributed down to each individual chare array
element, thus allowing for adaptive optimization.

The programmer is supposed to write code for detailed method
including computations, input and output, etc. The code
is later integrated into the target language code, currently
Jade. The invocation of user methods will be controlled by
the orchestration program. This way the orchestration code
is simplified and the division of labor between the program-
mer and the run time system is clear too. We believe such
optimal division of labor is a key to high productivity in
parallel programming.

Current implementation uses MSAs to store and retrieve the
produced and consumed parameters. In orchestration code,
the programmer first declares MSAs to hold the data to be
processed. Methods producing the data write to MSAs and
methods consuming the data read from MSAs, in different
access phases. In the orchestration language, arrays are de-
fined in the orchestration source file in an arrays section.
Code generated by the orchestration compiler creates the
arrays in the main chare and initializes them in all other
chares that will use them. The user can then access the
arrays in the user defined methods.

5. SUMMARY AND FUTURE WORK
We described a higher level notation that allows specifica-
tion of parallel algorithms without specifying placement of
data and control. The data resides in indexed collections
of objects called chare-arrays. The control is specified at
a higher level by an notation that includes a forall state-
ment looping over all objects of a collection, and sequencing
and concurrent overlapping of such statements. The body
of such statements only invoke methods inside the objects.
The code inside the methods provides low-level sequential
flow of control. Further, in a pure version of the language,
such sequential code is allowed to access only local data —

instance variable of their object. (Additionally, global read-
only data is supported as in Charm++). The only commu-
nication supported by this language is producer-consumer
communication: each method may produce values that are
consumed by other method invocations.

This approach cleanly separates parallel and sequential code,
strongly encourages locality aware programming, allows ex-
pression of global flow of control in one place, and still reaps
the benefits of runtime optimizations of migratable objects.

The language has been implemented via a simple translator,
using multi-phase shared arrays and Charm++/Jade as the
back-end. However, clearly, MSAs are an inefficient mech-
anism because they require each data item to travel twice:
from the producer to the MSA (home page) and from MSA
to the consumer (via an additional request message). Sim-
ple optimizations to MSAs can be used to store the page
where it is produced; however, our long-term plan is to use
compiler analysis to infer the destinations where each pro-
duced value is needed, and send it via a single message, im-
plemented as Charm++ asynchronous method invocation.
Further compiler optimizations include inferring when and
how to omit barriers. MSA will continue to serve as a pro-
gramming paradigm in our framework, especially when a
global view of data is desired.

When the method of an object produces a value, the cur-
rent implementation waits until the method returns to send
the value to its destination. This is not necessary. A more
efficient method of exchanging messages is to use a publish-
connect style of message exchange, such as that currently
available in Charm++ with Structured Dagger [14]. The
code generated by the orchestration language inserts call-
backs for the produced values before calling a method. When
the user code inside a method invokes the appropriate pub-
lish methods within their code, the data will be sent to the
appropriate recipients using the callback specified. This will
ensure that published values are sent to their destinations
without waiting for the method that produced them to fin-
ish.

The language proposed here does not cover expression of
all application patterns, especially the highly asynchronous
patterns supported by Charm++. Further, it is not even
intended to be a complete language. Instead it will be
used in conjunction with other paradigms where needed
or appropriate. Currently, the orchestration language co-
exist with Charm++ modules and mechanisms thus ensur-
ing completeness and high interoperability. Also, our imple-
mentation of MPI, the Adaptive MPI (AMPI) can be used
inside an object method with little effort.

We plan to investigate several ways of extending, enhanc-
ing and leveraging this language. For example, we plan to
support implicit methods, so that a forall can include object
code in its body directly: If all methods are implicit, then
we can support languages other than C++ with this syntax.

forall i in W {

consumes(p[i+1], p[i-1])

produces(q[i]);



.... user code in C/C++/F90 ...

}

The language described here supports a global view of con-
trol but local view of data, since only object’s own variables
are accessible. In contrast, MSA (which we described as an
initial implementation vehicle) supports a local view of con-
trol and global view of data. Integrating the two notations
is an interesting future work. An initial approach is sug-
gested by the implicit methods above. The implicit method
code can include MSA array-access calls, and array-specific
sync() calls, as needed.

Ability to support modules written in this language is cru-
cial for productivity via code reuse. We plan to design and
implement language features to this end. We plan to inte-
grate user-level libraries such as parallel high-dimensional
FFTs in the framework. We expect further exploration of
this model to lead to significant improvements in produc-
tivity. Other planned extensions include support for sparse
arrays, arrays with index of user-defined type, and other
useful array organizations such as trees.
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Proceedings of the 16th International Workshop on
Languages and Compilers for Parallel Computing (LCPC
03), College Station, Texas, October 2003.

[12] H. Jiang and V. Chaudhary. Process/Thread Migration
and Checkpointing in Heterogeneous Distributed Systems.
In In Proceedings of the 37th Hawaii International
Conference on System Sciences (HiCSS-37). IEEE
Computer Society, 2004.
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