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Abstract

We present a performance prediction environment for

large scale computers such as the Blue Gene machine. It

consists of a parallel simulator, BigSim, for predicting per-

formance of machines with a very large number of proces-

sors, and BigNetSim, which incorporates a pluggable mod-

ule of a detailed contention-based network model. The sim-

ulators provide the ability to make performance predictions

for very large machines such as Blue Gene/L. We illustrate

the utility of our simulators using validation and predic-

tion studies of several applications using smaller numbers

of processors for simulations.

1 Introduction

Parallel machines with enormous compute power and

scale are now being built consisting of tens of thousands of

processors and capable of achieving hundreds of teraflops

of peak speed. For example, the Blue Gene (BG/L) ma-

chine being developed by IBM and slated for early 2005

delivery, will have 128K processors and 360 teraflops peak

performance. Ambitious projects in computational model-

ing for science and engineering are gearing up to exploit

this power to achieve breakthroughs in areas such as ratio-

nal drug design, genomics, proteomics, engineering design

and computational astronomy.

Development of a programming environment for such

machines is a significant challenge. It may require quali-

tative changes to the way we write parallel programs in or-

der to exploit the enormous compute power available. Fur-

ther, it is also important to understand performance issues in

specific algorithms thoroughly, so that next-generation ap-

plications can be written to scale to such large machines.

We have been engaged in a project1 to address these chal-

lenges for over two years. In this paper we summarize our

progress and findings so far.

We explored CHARM++ and Adaptive MPI as an appro-

priate programming model for large machines because of its

ability to virtualize processors [7], allowing programmers to

not worry about specific actions running on specific proces-

sors. This property seems essential for dealing with large

machines, because it would be impractical to think about

what is running where on 100K processors. The rest of the

paper is organized as follows. We first use an emulator to

explore scaling CHARM++ and Adaptive MPI [3] to run on

large machines. Next in Section 3 we present our perfor-

mance prediction system, based on parallel discrete event

simulation techniques, and some novel ideas to avoid re-

execution during optimistic simulation. We present recent

performance results using the simulator for structural dy-

namics computations involving the Finite Element Method

(and unstructured grids) in Section 4 and Molecular Dy-

namics Simulation. An overview of future and ongoing re-

1This work was supported by a National Science Foundation grant NSF
NGS #0103645.
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search issues is presented in the final section.

2 Emulating Petaflops Machines

Deciding the characteristics of an ideal programming en-

vironment for a massively parallel machine like IBM Blue

Gene is a challenging task. This is because dealing with

tens of thousands or even millions of processors requires

a qualitative change in both the programming environment

and the runtime system. Further, it is very challenging to

evaluate these programming models in a real context before

such machines are built.

To this end, we have developed a software emulator to

mimic a class of target parallel machines, on which a multi-

tier programming model is built. The lowest layer, a low

level programming API enabled by the emulator provides a

general message passing interface for implementing a high

level parallel language which forms a middle layer in our

programming environment. The higher level components

in the programming environment consist of domain specific

languages and libraries.

Figure 1. Functional view of an emulated node

The lowest level model strives to provide access to a

machine’s capabilities. In the programmer’s view, each

node consists of a number of hardware-supported threads

with common shared memory (see Figure 1). Within a

node, we divide threads intoworker threads andcommu-

nication threads. A runtime library call allows a thread to

send a short message to a destination node. The header

of each message encodes a handler function to be invoked

at the destination. Communication threads check incom-

ing messages from theInBufferand put the messages in ei-

ther a worker thread’saffinity queue or a node level global

queue. Worker threads repeatedly retrieve messages from

both queues and execute the handler functions associated

with the messages. We believe this low level abstraction of

the petaflops architecture is general enough to encompass a

wide variety of parallel machines with different numbers of

processors and co-processors on each node. The details of

the emulator and its API were presented in [11].

Despite its generality, programming in this low-level

message-passing model is difficult. The programmer must

decide which computations to run on which node. The pro-

gramming environment at the higher level relieves the ap-

plication programmer of the burden of deciding where the

subcomputations run.

We evaluated CHARM++ as a parallel programming lan-

guage for petaflops machines, as well as the popular MPI

methodology. CHARM++ is an object-based portable par-

allel programming language that embodies message-driven

execution. A CHARM++ program consists of parallel ob-

jects and object arrays[8], which communicate via asyn-

chronous method invocations. CHARM++ includes a pow-

erful runtime system that supports automatic load balancing

based on migratable objects. CHARM++ has been ported to

the emulator as reported in [14].

Adaptive MPI, or AMPI, is an MPI implementation and

extension based on CHARM++’s message-driven system,

that supports processor virtualization[7]. AMPI imple-

ments virtual MPI processes (VPs) by migratable user-level



threads, several of which may be mapped to a single phys-

ical processor. Taking advantage of CHARM++’s load bal-

ancing framework, AMPI supports adaptive load balancing

by migrating MPI threads. In this environment, MPI is a

special case of AMPI when exactly one VP is mapped to a

physical processor.

3 Performance Modeling Environment

Accurately estimating the performance of target applica-

tions on massively parallel machines is useful to application

programmers in adapting their codes to the new architec-

tures. Such a performance estimator is also an essential tool

for designers of petaflops machines who, in order to make

good design choices, need to evaluate alternate architectural

features in the context of specific benchmarks.

It is clearly impractical, if not impossible, to simulate

a million processor machine on a single processor. In-

stead, we aim at the challenges involved in carrying out

such simulations on a conventional parallel machine with

over 1,000 processors, attaining the desired timing accuracy

using multi-level simulation techniques.

For this purpose, we have developed a performance mod-

eling environment which consists ofBigSimsimulator [13]

for performance prediction of large parallel machines.

In the rest of this section, we will present the simula-

tion techniques and optimizations we explored in the perfor-

mance prediction of parallel applications with simulations

using different degrees of fidelity.

3.1 Parallel Discrete Event Simulation

All of the important behaviors that model a parallel ap-

plication on a very large parallel machine can be efficiently

described as actions occurring at a particular time and last-

ing for a known duration. These behaviors are thus best

simulated with a parallel discrete event model.

However, performance prediction for parallel applica-

tions withparallel discrete event simulation(PDES) is very

challenging due to complexity of the communication sys-

tem and non-determinacy of the simulation. Messages may

arrive out of order, arising from the fact that we are us-

ing multiple processors to carry out the simulation. As a

result, messages with later time stamps may arrive before

messages with earlier timestamps, resulting in causality er-

rors and destroying the accuracy of the simulation.

Traditional methods in PDES of correcting this involve

high synchronization overheads. For example, in optimistic

concurrency control these overheads include: (a) check-

pointing overhead, (b) rollback overhead and (c) forward

reexecution overhead. These overheads may be prohibitive

given the size of the simulated petaflops machines.

One simple observation of parallel applications leads to

optimizations in PDES to make such simulations feasible.

That is theinherent determinacyoften found in parallel ap-

plications. Parallel applications tend to be deterministic,

with a few exceptions (such as branch-and-bound and cer-

tain classes of truly asynchronous algorithms). Parallel pro-

grams are written to be deterministic. They produce the

same results, and even though the execution orders of some

components may differ slightly, they carry out the same

computations. Our approach takes advantage of this char-

acteristic of parallel applications to improve the simulation

efficiency.

3.2 Component Performance Models

The BigSim simulator is an extension to the emulator de-

scribed in the previous section. Converting the emulator to

a simulator requires correct estimation of the time taken for

sequential code blocks and for network messaging. We have

adopted a range of possible methods for prediction with dif-

ferent degrees of accuracy.

To predict the computation time for a target machine



(which may not exist), we use several heuristic approaches

as described below to estimate the CPU time. They are

listed in the increasing order of accuracy and the complexity

involved.

1. User-supplied expression for every block of sequen-

tial code estimating the time that it takes to run on the

target machine. This is a simple and highly flexible ap-

proach. However it burdens the user with the onus of

accurate estimation.

2. Wallclock measurement of the time taken on the sim-

ulating machine can be used via a suitable multiplier

(scaling factor), to obtain the predicted running time

on the target machine.

3. A better approximation is to use hardware performance

counters on the simulating machine to count floating-

point, integer and branch instructions (for example),

and then to use a simple heuristic interpolation ap-

proach using the time for each of these operations on

the target machine to estimate the total computation

time. Cache performance and memory footprint ef-

fects can be approximated by the percentage of mem-

ory accesses and the cache hit/miss ratio.

4. A much more accurate way to estimate the time for

every instruction is to use a hardware simulator that

is cycle accurate for the target machine. However, in-

struction level simulation is very expensive.

The first three of the above described methods are cur-

rently supported in BigSim simulator, while we plan to sup-

port the last in future.

To simulate the network environment of the target ma-

chine for message passing, the following approaches are ex-

plored:

1. No contention modeling: The simplest approach ig-

nores the network contention. The predicted arrival

time of any message is computed just based on topol-

ogy, designed network parameters and a per message

overhead.

2. Network simulation: This approach uses detailed mod-

eling of the network, implemented as a parallel (or se-

quential) simulator.

3.3 Online Simulation: BigSim

BigSim is based on direct execution of an application on

the emulator described previously. It represents the network

as a three dimensional torus network with latency-based

modeling. To deal with causality errors, BigSim lets the

emulated execution of the program proceed as usual, while

concurrently running a parallel algorithm that corrects time-

stamps of individual messages. Thisonlinemode of simu-

lation provides several advantages. For example, it makes

it simple to simulate dynamic characteristics of a parallel

application such as dynamic adaptive load balancing.

Online mode BigSim simulation has been shown to be

very efficient and is capable of performing simulations with

very large configurations [13]. It applies to simulations of

a large category of applications that do not require high fi-

delity in network modeling.

There are a few drawbacks to the online simulation

mode. First, if we choose to vary the latency in the model,

we must re-run the entire simulation. Second, we cannot ef-

ficiently model the complexities of a contention-based net-

work model simultaneously with execution of sequential

computation blocks. However, for the category of applica-

tions we are addressing, execution behavior of the sequen-

tial computation blocks does not change. For this reason,

we can use the emulation mode to generate logs containing

this information, and then rely on postmortem simulation



to predict the behavior of the application on a variety of

network configurations. We discuss this postmortem simu-

lation mode in the next section.

3.4 Postmortem Simulation

In postmortem mode, the BigSim emulator generates

logs of sequential computation blocks, the messages gen-

erated by each of these blocks, their send time relative to

the beginning of the block, and the dependencies between

these blocks. This information is sufficient to produce de-

tailed simulations of an application’s behavior on a variety

of network topologies and contention models.

This type of simulation is more complex and requires

the flexibility of a full discrete event simulation model. It

also presents the problem of fine granularity of computa-

tion. Since most of the interactions modeled involve the

transmission of packets through the network model, actual

computation time on each modeled entity is minimal. This

presents challenges to the parallel simulation of these mod-

els since the overhead of event synchronization is high rel-

ative to the computation time. We make use of POSE[12],

a parallel object-based simulation environment specifically

designed to handle such simulations, both sequentially and

in parallel.

Postmortem simulation can operate in two modes. In the

first mode, a simple latency-based network model is used to

correct the start time on each sequential computation block.

This is described in more detail in Section 3.4.2. The second

mode uses a detailed contention-based network model to

perform the start time corrections. We discuss this further

in Section 3.4.3.

3.4.1 POSE

POSE is built in CHARM++ which supports thevirtual-

ization programming model, an approach we believe will

give rise to great improvements in PDES performance [7].

The logical processes (LPs) of PDES can be mapped onto

CHARM++’s chares(parallel objects) in a straightforward

manner. Similarly, we use timestamps on messages as pri-

orities and thus the CHARM++ prioritized scheduler takes

the place of an event list. Virtualization provides the sim-

ulation programmer with a view of the program consisting

of the entities in the model and not the underlying parallel

configuration.

In POSE, simulation entities, orposers are special types

of chares that have a data field forobject virtual time (OVT).

This is the number of simulated time units that have passed

since the start of the simulation relative to the object. Posers

also haveevent methods similar to CHARM++ entry meth-

ods (invoked by sending messages from one object to an-

other, possibly on a different processor), with the main dif-

ference being the presence of a data field fortimestamp in

all messages sent to invoke an event method.

Figure 2. Components of a poser.

Posers can pass simulated time in two ways. First, they

canelapse a certain amount of local time (presumably per-

forming some activity). This advances the OVT of the

poser. Second, anoffset can be added to event invocations.

This is used to schedule a future activity or to indicatetran-



sit time in a simulation. For example, suppose the event be-

ing invoked involves the movement of data such as a packet

being sent over a network, and it takest time units to trans-

mit it; we would schedule an event at the point receiving the

packet at a time that is offset byt from the current time.

Each poser has its own event queue and an instance of

a synchronization strategy. Its internal state is encapsulated

in an object that receives event messages and queues them

locally for execution on the internal state. Figure 2 illus-

trates this structure. Thus, the scope of simulation overhead

resulting from a synchronization error is limited to the en-

tity on which the error occurs. Since different entities may

have different behaviors, this limits the effects of those be-

haviors to a smaller scope, and allows the synchronization

strategy to adapt to the behavior of the object.

Speculative Synchronization POSE makes use of opti-

mistic concurrency control as in TimeWarp[4]. When an

object receives an event, it gets control of the processor. The

object’s synchronization strategy is then invoked and checks

for any synchronization error corrections (rollbacks, cancel-

lations) before it performs forward execution steps (events).

Here the opportunity to perform speculative

computation[5] arises. All optimistic strategies per-

form some amount of speculative computation. In more

traditional approaches, an event arrives and is sorted into

the event list and the earliest event is executed. We know

the event is the earliest available on the processor, but we

do not know if it is the earliest in the entire simulation, thus

executing it is speculative.

In our approach, we have aspeculative window that gov-

erns how far into the future beyond the global virtual time

(GVT) estimate an object may proceed. Speculative win-

dows are similar to the time windows of other optimistic

variants, except in how events within the window are pro-

cessed. Events are inserted into the event queue on the ob-

ject for which they are destined. In POSE, when the object

invokes the synchronization strategy to process events,all

events with timestampt ≥GVT within the speculative win-

dow are executed. The later events are probably not the

earliest in the simulation, and it is likely that they are not

even the earliest on that processor. We allow the strategy

to speculate that those events are the earliest that theob-

jectwill receive. By handling events in bunches, we reduce

scheduling and context switching overhead and benefit from

a warmed cache, but risk additional rollback overhead.

POSE has an adaptive synchronization strategy that

strives to execute more events at a time while minimizing

rollbacks. This strategy automatically adjusts the size of

an object’s speculative window according to the rollback

history and queued future events on the object. This maxi-

mizes the effects discussed earlier, localizing the effects of

individual object’s behaviors.

3.4.2 Simple Latency-Based Network Simulation

For the simple latency-based network simulation, we

read the log files generated by the BigSim emulator. The

size of the log is proportional to the number of messages ex-

changed. An application execution was emulated on some

configuration, and all the sequential computation blocks

(called tasksin postmortem simulation), messages gener-

ated by these tasks, and the dependencies between tasks are

recorded in these logs. In our simulation, we recreate enti-

ties in POSE to model the processors and nodes of the em-

ulation. We then read in the tasks and use the simulation

to pretend to execute them. For each task, we know what

it depends on, what depends on it, the duration of the task,

and what other tasks were generated by it and when these

other tasks were generated (as an offset from the current

task’s start time). We also have an estimate of network la-



executeTask(task)
if (task.dependencies = 0) //dependencies met

oldStartTime := task.startTime;
task.startTime := ovt; //correct start time
for each task y in task.generatedTasks

yStart := task.newStartTime +
(y.generatedTime - oldStartTime);

generate executeTask event on y at time
yStart+latency;

end
elapse(task.duration); //advance virtual time
task.done := TRUE;
for each x in task.dependents //enable dependents

decrement x.dependencies;
if (x.dependencies = 0)

generate executeTask event on y at time ovt;
end

end
end

end

Figure 3. Feigned task execution in POSE.

tency which we use to determine how much time generated

tasks spend in transit to the processor on which they will be

executed.

What we do not know is exactly when each task started

(though we do have an uncorrected timestamp for each

task), and without that information, we do not know how

the emulated application performed. Given the information

above, we start the first task off at virtual time zero, and

let the tasks “execute” and record the virtual time at which

each task starts. The algorithm for this feigned execution is

shown in Figure 3.

When a task executes, it first checks to make sure that

all its dependencies have been met, i.e. all tasks on which

it depends have been executed. If they have, then it is

time to execute this task. We make a backup copy of this

task’s incorrect timestamp (for calculating offsets of gener-

ated tasks later) and record the processor’s current virtual

time (ovt) as the task’s correct start time. Then we invoke

executeTask for all of this task’s generated tasks, calcu-

lating the start time for each by offsetting the correct start

time for this task by the same offset as before.

Next, we elapse the local virtual time by the duration

of the task and mark it done. Now it is safe to enable any

tasks that were dependent on this one. The algorithm goes

Figure 4. Processor sending and receiving
messages in all 6 directions through sender
and receiver units

through all the dependents, and if a dependent is enabled (it

is not dependent on any other unexecuted tasks), it can be

executed immediately.

When all tasks have been executed, they should have

correct timestamps and the final global virtual time (GVT)

should represent a correct runtime for the emulated applica-

tion. Section 5 shows the performance of this postmortem

simple latency-based network model.

3.4.3 BigNetSim: Detailed Contention-based Net-

work Simulation

BigNetSim takes the postmortem network simulation to

the next level. Instead of using some preset latency value

to determine message transit time, we actually model mes-

sages as they pass through a detailed contention-based net-

work model. The power of this approach is that we can

model any type of network we wish and plug it into the

postmortem simulation to get new results. This enables us

to run the application emulation once, and reuse the logs

generated by the emulation to repeatedly analyze the appli-

cation in a variety of network configurations.



In BigNetSim, there are posers corresponding to proces-

sor, switch (including ports and virtual channels), channels

and network/processor interface. Other non-tangible net-

work entities like protocol stack, flow control, routing, arbi-

tration, topology, etc. are modeled in event methods across

one or more posers. There is a network configuration file

which includes parameters for bandwidth, latency, ports,

virtual channels, routing scheme, buffer size, packet size

and option to print link contention statistics.

The network simulator framework is flexible to model

arbitrary topology, routing algorithm, Input and Output Vir-

tual Channels (VC) Selection policies etc. For this paper,

we chose a network design close to the actual Blue Gene/L

network [9]. The processor interface consists of network

injection and reception FIFOs for transferring messages.

There are sender and receiver units in each node which send

and receive messages to and from the network. There are in-

ternal channels connecting the receivers and senders in the

same node, and external channels connecting neighboring

senders and receivers.

Messages are split into packets of up to 256 bytes and

injected into the network. The receiver then sends out an ar-

bitration request to the sender units seeking to transfer data.

Each receiver has four VCs as shown in Figure 4. Escape

VC helps in preventing deadlocks. Bypass channel can be

used to flow through a node without any buffering. Each

buffer has 1KB of memory, enough to hold four full sized

packets. Escape VC can be used only when dynamic VCs

are unavailable. Escape VC can be used only if we can guar-

antee that space required for a full sized packet i.e 256B is

available, even after reserving space for the current packet.

Routing can be done in any of the six directions. The

simulator offers both static and adaptive routing. Both rout-

ing approaches select shortest distances based on the torus

topology. Static routing routes the packet fully in X dimen-

sion, then in Y and Z dimensions respectively. Adaptive

routing routes the packet on the least loaded virtual channel.

”Join the Shortest Queue” (JSQ) algorithm is used to select

the VC with maximum available buffer space among the

valid directions. ”Serve the Longest Queue” (SLQ) strategy

is used to determine which receiver VC wins the right to

request senders. With this strategy, the VC with least avail-

able buffer space is selected. Virtual Cut-Through buffering

is modeled, ensuring reduced latency by pipelining routing

and arbitration. Only the route flits endure routing delays

and the data flits have a free flow.

Output contention in a switch due to simultaneous ac-

cess for a sender from multiple receivers is modeled. Other

types of contention modeled include input contention in a

switch due to Head-Of-Line blocking and contention in the

processor interface due to multiple message transfers.

BigNetSim network simulator is very communication in-

tensive when run in parallel with applications like NAMD.

In a typical simulation it transfers millions of small message

packets.

4 Applications and Case Studies

Parallel algorithms developed for conventional parallel

machines are not necessarily appropriate or efficient for

petaflops machines. Parallel algorithms for such class of

petaflops machines must handle low bisection bandwidth

and relatively low memory-to-processor ratio. They must

exploit the availability of dedicated communication threads

and the existence of multiple parallel communication links.

They must also meet the challenges of scalability.

We have developed and evaluated several parallel frame-

works and their applications for petaflops class machines

including Molecular Dynamics (MD) and FEM framework.

The Molecular Dynamics simulation of biomolecules is

one of the important applications for Blue Gene/L and other



large parallel machines. NAMD [6], recipient of a 2002

Gordon Bell Award, is a production quality parallel molec-

ular dynamics code designed for high-performance simu-

lation of large biomolecular systems. Based on Charm++

parallel objects, NAMD scales to thousands of processors

on high-end parallel platforms [10] and tens of processors

on commodity clusters using switched fast ethernet.

The Finite Element Method (FEM) is a popular tech-

nique often used in the study of fracture and structural me-

chanics. We have developed a parallel framework [1], called

the CHARM++ FEM Framework to make it easy to paral-

lelize a serial FEM code. The framework handles the finite

element mesh that discretizes the problem domain, parti-

tioning the mesh for parallel execution, and providing easy

to use communication primitives defined on the mesh.

In this section, we focus on these two applications to

demonstrate the utility of BigSim simulators.

4.1 Exposing Unexpected Obstacles

Our runs with BigSim exposed a number of unexpected

bottlenecks and limitations to scalability of FEM applica-

tions. First, large meshes must be generated; this is difficult

with today’s tools. Second, the meshes must be partitioned

for parallel execution.

One difficulty is that real problems are defined on com-

plicated domains, like machine parts and fracture surfaces,

so generating a mesh for the domain is a nontrivial task.

Meshes are usually generated by special meshing software

in an offline, serial process, so no publicly available mesh-

ing software can generate billion-element meshes. A typical

solution to this is to first generate a relatively coarse mesh in

serial to capture the basic geometry of the domain, then use

parallel mesh refinement (or mesh multiplication) to gen-

erate more elements where needed. The FEM framework

does not handle mesh generation, but it includes rudimen-

tary capabilities for parallel mesh refinement.

Once a mesh is generated, it must be partitioned, and

the pieces sent to different processors for parallel execu-

tion. The FEM framework initially used the serial Metis

partitioning library, so the partitioning was performed com-

pletely on one processor, which was a bottleneck for large

meshes running on BigSim. For example, Metis library con-

sumes memory proportional to the number of output pieces,

not the total size of the mesh; so even our 4GB machine ran

out of memory when partitioning a relatively small 5M ele-

ment mesh into more than 16K pieces. Even on a machine

with much larger memory, we found that Metis is still not

able to partition the mesh to more than 32K pieces due to

the floating point and integer overflow. One solution is inte-

grating the parallel ParMetis partitioning package to avoid

the serial mesh partitioning bottleneck, which allows us to

use larger meshes and scalably partition the mesh. An al-

ternative approach is to use a simpler but inaccurate mesh

partitioner such as geometric recursive coordinate bisection,

then fix the resulting load imbalance using our load balanc-

ing framework.

4.2 FEM Grainsize on Large Machines

FEM computations have a characteristic parallel com-

munication pattern—each processor first exchanges data

with neighboring processors, then performs local compu-

tation and repeats the process. The time spent in local

computation in each step can be quite small, especially for

larger machines and smaller meshes. This small “grainsize”

means communication happens more often, which can lead

to poor performance.

For example, with a 1M element mesh running on

100,000 processors, each processor might only have 10us

of computation between messaging phases. Since message

latencies are typically of the order of several micro seconds,



processors will spend all their time communicating and ef-

ficiency will be very low.

Communication latency can be hidden to a large extent

with the technique of “processor virtualization”, in which

the problem is decomposed into more pieces than proces-

sors, and the pieces scheduled dynamically based on which

messages are available. CHARM++ and the FEM frame-

work fully support virtualization, and in fact require no ex-

tra user code for a virtualized run.

Another complementary approach to handle communi-

cation latency is the ghost cell expansion method [2], where

redundant computations around each processor’s border are

used to decrease the frequency of message exchange. This

multiple-ghost approach has only been implemented for

structured grids, however, and the extension to unstructured

grids, while conceptually straightforward, would be com-

plicated to implement.

4.3 NAMD Simulation and its Validation

We have compared the actual execution time of NAMD

with our simulation of it using BigSim on Lemieux.

Lemieux is a terascale computing system comprising an

HP alphaserver cluster with a Quadrics interconnection net-

work. As a benchmark system we used Apo-Lipoprotein

A1 with 92K atom. A multiple time-stepping scheme with

PME (Particle Mesh Ewald) involving a 3D FFT every four

steps is performed. The result is shown in Table 1. The

first row shows the actual running time of NAMD on 128

to 1024 processors on Lemieux; the second row shows the

predicted running time using BigNetSim offline simulation

on a Linux cluster. The network parameters are based on

Quadrics network specifications. It shows that the simu-

lated execution time is close to the actual execution time.

Processors 128 256 512 1024
Actual run time (ms) 71.5 40.3 23.9 17.6
Predicted time (ms) 75.8 43.6 25.1 20.8

Table 1. Actual vs. predicted time

4.4 NAMD Communication Pattern Analysis

Network statistics like link utilization and contention ob-

tained from the network simulation, can be used to visualize

the communication pattern of the application. This helps to

identify communication bottlenecks in the applications for

performance optimizations.

We use NAMD as a case study to illustrate this utility. In

NAMD, the atoms are divided spatially into cells roughly

the size of cutoff distance. Local interactions are calcu-

lated each timestep between only the nearest neighbor cells.

Each simulation timestep starts with multicast communica-

tion for cells to send the atom data to the nearest neighbors;

the computation begins after that, followed by communica-

tion that sends the force result back to the cells. Note that

due to the latency tolerance in CHARM++, communication

and computation can overlap.

Figure 5 shows the average link utilization during the

whole runtime in a 128 node 15 time step NAMD simula-

tion. The irregular utilization pattern matches with bursts

of traffic during time step boundaries as shown in Figure 6.

From the magnified view of a timestep in Figure 7, we can

see most communication happens at the beginning and end

of the timestep as expected, while overlapping of commu-

nication and computation can be observed.

The first synchronization is a simple barrier at around the

1200th Interval and the second one is a load balancing step

between 1285th and 1315th Interval. The load balancing

involves a collection followed by broadcast operation. The

ensuing traffic results in huge contention as shown in Fig-

ure 8. Figure 9 shows the number of links where utiliza-



Figure 5. Average Link Utilization

Figure 6. Data Transferred (KB) during Full
Simulation

tion is greater than 30 percent in an Interval. We can clearly

see that many links during load balancing have utilization

greater than 30 percent. This is significant as a typical mes-

sage is transferred in a few microseconds and it takes many

messages to be transferred in 10 milliseconds to have a high

link utilization. Blue Gene/L has a separate tree network for

doing collective operations, which is not modeled in the cur-

rent network simulator. We think that it will help alleviate

the network contention of such broadcasts.

4.5 FEM Scalability Study

We studied the performance of a CHARM++ FEM

Framework program, which performs a simple 2D struc-

tural simulation on an unstructured triangle mesh. We chose

Figure 7. Data Transferred (KB) in a Single
Time Step

Figure 8. Contention encountered by mes-
sages

Figure 9. Number of links with utilization
greater than 30 percent



a relatively small problem with a 5 million element mesh, so

as to stress efficiency issues. Because our 2D elements take

slightly under a microsecond of CPU time per timestep, this

is less than 5 seconds of serial work per timestep.

Figure 10 shows the predicted execution time per step,

simulating 125 to 32,000 target processors using only

32 Lemieux processors. The simulated network is Blue

Gene/L style three dimensional torus network. The sim-

ulation assumes latency-based network model without net-

work contention. The time per step is 17.48 milliseconds for

125 processors and drops to 185 microseconds on 32,000

processors. Figure 11 is the corresponding speedup, nor-

malized based on the 125 processor time. It shows that the

program can scale well to at least several thousands of pro-

cessors.

Beyond several thousand processors, when the simulated

time per step drops below one millisecond, the parallel ef-

ficiency begins to drop. Sub-millisecond cycle times are

indeed extremely challenging even on today’s small ma-

chines, and we continue to seek methods to improve this

performance on even larger machines.

Figure 10. Predicted execution time

We also demonstrate the benefits of processor virtualiza-

tion in CHARM++ for the same FEM program. We use dif-

ferent numbers of MPI virtual processors, each with a sepa-

Figure 11. Predicted speedup

rate chunk of the problem mesh, on each simulated proces-

sor. Larger number of MPI virtual processors with finer de-

composition on a simulated processor results in higher de-

grees of virtualization. Virtualization allows dynamic over-

lap of computation and communication, and can improve

cache utilization because each virtual processor’s dataset is

small.

Figure 12. Predicted execution time vs. de-
gree of virtualization

The predicted performance for various degrees of virtu-

alization is illustrated in Figure 12. The problem size in

this test is still the same—a 5 million element mesh, and

the simulated machine size is fixed at 2000. Even a low

degree of virtualization dramatically improves performance

by allowing computation and communication to be over-



lapped; higher degrees of virtualization provide little bene-

fit, and eventually the overhead of additional virtual proces-

sors only slows the program down.

5 Performance of Post-mortem Simulator

To evaluate the parallel performance of the simulator it-

self, we used the BigSim emulator on 16 real processors

to run a 2D Jacobi program on 8000 simulated processors.

This emulation generated log files that we then simulated by

the POSEpostmortem simulator running the simple latency-

based network model using a varying number of processors.

We show a speedup plot for the POSE simulator from 1 to

64 processors in Figure 13. The simulator had an average

grainsize of 200 microseconds. The figure shows a signif-

icant improvement in simulator speedup over what we pre-

viously reported [15]. The best prior speedup relative to

sequential time was just over 8 on 64 processors. Now we

have a speedup of nearly 16 on 64 processors. Much of

this improvement due to reductions in overhead achieved

by POSE which results in better times on fewer proces-

sors. Thus speedup of the simulation relative to the one-

processor parallel simulation versus speedup relative to se-

quential time are now very close. The one-processor par-

allel time for this run was only slightly slower than the se-

quential time.

Simulation of the more detailed contention-based net-

work models is still quite challenging, but we are achieving

decent speedups relative to one-processor parallel time as

shown in Figure 14.

6 Conclusion and Future Work

It is clear that novel parallel programming models will

be required to program petaflops class machines. This

paper, along with the work in previously published pa-

pers, presents a programming environment for petaflops

machines and Blue Gene. The programming environ-

Figure 13. Speedup of Postmortem Simula-
tion of Jacobi with Simple Latency-based Net-
work Model

Figure 14. Speedup of Postmortem Simula-
tion of NAMD with Detailed Contention-based
Network Model

ment is powered by the idea of processor virtualization in

Charm++’s parallel migratable objects and Adaptive MPI.

Issues faced while porting and developing such environ-

ments to such large machines can be dealt with ahead of

the machine’s availability by using a full scale emulator

that we developed, using a recursive application of proces-

sor virtualization idea. The performance of parallel appli-



cations written for future petaflops computers can be pre-

dicted using the BigSim simulator either in coarse-grained

or fine-grained mode with network simulation that models

contention. For configuration without a co-processors, the

behavior of messaging layers needs to be modeled in de-

tail. The parallel applications that have been developed and

evaluated in this environment include Molecular Dynam-

ics simulation and Finite Element Method simulation. Fu-

ture work will focus on increasing simulation accuracy and

improving the scalability of the parallel applications, using

compiler support to simplify the programming process fur-

ther, as well as testing and refining the programming envi-

ronment on the next large parallel machine, Blue Gene/L.
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Biomolecular simulation on thousands of processors. In

Proceedings of SC 2002, Baltimore, MD, September 2002.

[11] N. Saboo, A. K. Singla, J. M. Unger, and L. V. Kalé. Em-
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