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Abstract

Molecular dynamics programs simulate the behavior of biomolecular systems, leading to in-

sights and understanding of their functions. However, the computational complexity of such

simulations is enormous. Parallel machines provide the potential to meet this computational

challenge. To harness this potential, it is necessary to develop a program that can scale well

on large parallel machines. Application domain programmers should be able to easily reuse

the parallel program with minimal modifications to integrate their science routines and test

their motivations.

This thesis presents LeanMD, a parallel molecular dynamics simulation framework writ-

ten in Charm++ for PetaFLOP class supercomputers. LeanMD is designed to be scalable

to large parallel machines (with tens of thousands of processors). LeanMD uses fine-grained

spatial decomposition combined with force decomposition to enhance its scalability. The

computation is modeled using a large number of virtual processors, which are mapped flex-

ibly to available processors with assistance from the Charm++ runtime system. Charm++

allows the use of “parallel” libraries to facilitate common operations such as 3-D FFTs.

Charm++ also provides libraries for communication optimizations and has built in support

for automatic load-balancing.
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Chapter 1

Introduction

1.1 Molecular Dynamics Simulation

In a molecular dynamics (MD) simulation, full atomic coordinates of proteins, nucleic acids,

and/or lipids of interest, as well as explicit water and ions, are obtained from known crys-

tallographic or other structures. An empirical energy function, which consists of both inter-

molecular and intramolecular interactions, is applied. Intramolecular interactions are mod-

eled using harmonic approximations to describe the bonds and bends between atoms. The

intermolecular interactions are modeled using Lennard-Jones 12-6 potential and coulombic

interactions to describe the interaction of point charges. The resulting Newtonian equations

of motion are typically integrated by symplectic and reversible methods. Modifications are

made to the equations of motion to control temperature and pressure during the simulation.

1.2 Importance of Molecular Dynamics Simulation

Software

The application of molecular dynamics simulation methods in biomedicine is directly depen-

dent upon the capability, performance, usability and availability of the required simulation

and analysis software. Simulations often require substantial computing resources, sometimes

1



available only at supercomputing centers. Development of LeanMD provides the biomedical

research community with a freely available software framework in which science routines

can be modified/replaced, for performing high quality (with respect to accuracy and per-

formance) MD simulations of large biomolecular systems using a variety of available and

cost-effective hardware.

1.3 Increase in System Size and Simulation Length

With continuing increase in high performance computing technology, the domain of biomolec-

ular simulation has rapidly expanded from isolated proteins in solvent to include complex

aggregates, often in a lipid environment. Such simulations can easily exceed 100,000 atoms.

Similarly, studying the function of even the simplest of biomolecular machines requires sim-

ulation of 10 ns or longer, even when techniques for accelerating processes of interest are

employed.

However, getting good speedup for small systems (25000 - 30000 atoms) is a very chal-

lenging task. As the number of processors used for simulation increases, work load per

processor decreases and performance is affected by communication latency.

1.4 Importance of Parallel Computing to Simulations

Despite the seemingly unending progress in microprocessor performance, the urgent nature

and computational needs of biomedical research demand that we persue the additional factors

of tens, hundreds, or thousands in total performance which may be achieved by harnessing

a multitude of processors for a single calculation. While the MD algorithm is blessed with

a large ratio of calculation to data, its parallelization to large number of processors is not

straightforward.
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1.5 Increasing Availability of Large Parallel

Resources

The Accelerated Strategic Computing Initiative, a U.S. Department of Energy program,

has provided an unprecedented impetus for the application of massively parallel teraflop

computing to the problems of the physical sciences and engineering. The National Science

Foundation has followed this lead, funding terascale facilities at the national centers with

the intent of enabling research that can employ many or all of the processors on these

new machines. The concept of grid computing promises to make this computational power

readily available from any desktop. Huge computing resources (with tens of thousands of

processors) will soon be available to the biomedical researcher who will be able to harness

it using software such as LeanMD.

1.6 Other Available Simulation Programs

The biomolecular modeling community sustains a variety of software packages with over-

lapping core functionality but varying strengths and motivations. Examples of these are

AMBER, CHARMM, GROMACS, NWChem, TINKER and NAMD.

AMBER [14] and CHARMM [1] are often considered the standard “community codes” of

structural biology, having been developed over many years by a wide variety of researchers.

Both AMBER and CHARMM support their own force field development effort, although the

form of the energy functions themselves is quite similar. Both codes are implemented using

FORTRAN 77, although AMBER takes the form of a large package of specialized programs

while CHARMM is a single binary. The parallelization of these codes is limited and not

uniform across features, e.g., the GIBBS module of AMBER is limited to costly shared

memory machines. Neither program is freely available, although the academic versions are

highly discounted in comparision to commercial licenses.
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GROMACS 3.0 [8], claims the title of “fastest MD”. This can be attributed largely

to the GROMOS force field, which neglects most hydrogen atoms and eliminates Van der

Waals interactions for those that remain. In contrast, AMBER and CHARMM force fields

represent all atoms and new development has centered on increasing accuracy via additional

terms. Additional performance on Intel x86 processors comes from the implementation of

inner loops in assembly code. GROMACS is implemented in C as a large package of programs

and is released under the GNU General Public License (GPL). Distribution takes the form

of source code and Linux binaries.

NWChem [3] is a comprehensive molecular simulation system developed by a large group

of researchers at the PNNL EMSL, primarily to meet internal requirements. The code cen-

ters on quantum mechanical methods but includes an MD component. Implemented in C

and FORTRAN, NWChem is parallelized using MPI and a Global Arrays library which

automatically redistributes data on distributed memory machines. Parallel scaling is re-

spectable given sufficient workload, although published benchmarks tend to use abnormally

large cutoffs rather than 12 Å(or PME) typically used in biomolecular simulations. Access

to NWChem source code is available with the submission of a signed license agreement,

although support is explicitly unavailable outside of PNNL.

TINKER [11] is small FORTRAN code developed primarily for the testing of new meth-

ods. It incorporates a variety of force fields, in addition to its own, and includes many

experimental methods. The code is freely available, but is not parallelized, and is therefore

inappropriate for traditional large-scale biomolecular simulations. It does, however, provide

the community with a simple code for experiments in method development.

NAMD [10] builds upon other available programs in the field by incorporating popular

force fields and reading file formats from other codes. NAMD complements existing capa-

bilities by providing a higher performance alternative for simulations on the full range of

available parallel platforms. NAMD is a state-of-art molecular parallel molecular dynamics

application that is written in Charm++ and has been proved to be able to scale to 3000
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processors. However, NAMD is not ready for next generation parallel machines with tens of

thousands of processors due to limited parallelization exploited in the application.

1.7 Motivation for LeanMD Development

LeanMD is being developed as a framework for parallel molecular dynamics simulation. In

LeanMD, science routines can be easily modified/replaced to test different motivations. This

framework allows the biomedical researchers to reuse the core parallelization technique, thus

saving them a lot of time and energy.

Scaling to the massively parallel machines (PetaFLOP class supercomputers) of the future

with tens or hundreds of thousands of processor was a requirement for the development of

LeanMD. LeanMD is implemented using Charm++, which offers the benefit of virtualization,

and enables us to demonstrate better scalability. The performance analysis/visualization

tool “projections” (associated with Charm++) is used for analysis/optimization of LeanMD.

1.8 LeanMD Development History

LeanMD development started three years ago. Initial design and implementation of LeanMD

was done by Gengbin Zheng and Joshua Mostkoff Unger.

When I started working on LeanMD, it had implementations for short range pair calcula-

tion and intra-molecular force calculation. It had a parallel data reader that could read ‘pdb’

(protein data bank) files. LeanMD was able to use the automatic load balancing support built

in the Charm++ system.

1.9 My Contribution to LeanMD Project

My main contribution to the LeanMD project is completion of missing components in ex-

isting LeanMD structure and getting it to work correctly with PINY [13] science routines.
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I separated data-reader from LeanMD and converted it into a library. I also worked to-

wards making the interface with data-reader cleaner. I worked on optimizing LeanMD to

improve performance for a relatively small benchmark (30652 atoms) for simulations up to

1024 processors.

LeanMD was integrated with PINY science routines and data-reader. This helped a lot

in completing the parallel structure of LeanMD that is needed for MD simulations. It also

tested the capability of LeanMD to act as a framework for MD simulations and provided

us the opportunity to enhance the LeanMD interface. PINY was developed by application

researchers Dr. Glenn J. Martyna1 and Prof. Mark E. Tuckerman2.

This thesis presents my work along with description of LeanMD structure.

1.10 Thesis Organization

In chapter 2, we describe the basic steps and data-structures used by the sequential algo-

rithm, and expose the data-dependencies. We also describe our approach to parallelizing

this computation, based on the idea of processor virtualization. Chapter 3 describes how

LeanMD can be used as a framework for molecular dynamics simulation. Chapter 4 describes

optimizations and performance results obtained by running LeanMD with PINY science to

simulate Human Carbonic Anhydrase (with 30652 atoms) system on Pittsburg Lemieux3

super-computer. Chapter 5 presents some concluding remarks and future research.

1Physical Science Division, IBM TJ Watson Research Center, Yorktown Hghts, NY
2Associate Professor, Department of Chemistry and Courant Institute of Mathematical Science, New

York University
3more information on Lemieux can be found at http://www.psc.edu/machines/tcs/lemieux.html
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Chapter 2

The Computation

2.1 Molecular Dynamics Simulation

The MD computation involves calculating forces on all atoms during each time-step, and

“integration” – using these forces to update the positions and velocities of atoms. Integration

requires a small fraction of the total computation time. The force computation can be broadly

divided into two categories: bonded force computations and non-bonded force computations.

Force fields (equations) in MD simulation (CHARMM and AMBER) are of the form:

Φtotal = Φinter + Φintra (2.1)

Φinter = ΦCoulomb + Φvdw,rep (2.2)

Φintra = Φbonds + Φbends + ΦUrey−Bradley + Φtorsions + Φ1,4 pairs (2.3)

2.1.1 Intra–molecular Interactions

There are several categories of bonded (Φintra) forces which involve between 2 and 4 nearby

(bonded) atoms. Intramolecular interactions are defined between atoms connected by three

or fewer bonds.
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In molecular dynamics, a bond is defined as a link between a pair of atoms, a bend1

is defined as a group of three atoms having two bonds which share a common atom and a

torsion2 is defined as a set of four atoms linked in a chain by three bonds. The bond, bend

and torsion forces are represented by Φbonds, Φbends and Φtorsions in equation 2.3 respectively.

A bend (1–2–3) interaction combined with a bond (1–3) interaction is termed Urey-

Bradley interaction. ΦUrey−Bradley in equation 2.3 represents the Urey-Bradley interaction

force.

1-4 pair interaction is a modified Lennard-Jones interaction between atoms separated

by three bonds. It is calculated as an intra-molecular interaction. Φ1,4 pair in equation 2.3

represents this interaction.

2.1.2 Inter-molecular Interactions

Intermolecular interaction (Φinter) calculation involves electrostatic (Coulomb) and Vander

Waals and short-range repulsion (Lennard Jones) forces. Lennard Jones and Vander Waals

interactions are short range in nature as they decay faster than 1/r3. These interactions

are thus calculated using a spherical cutoff (RC). However, Coulombic interactions are

proportional to 1/r and are long range, and can not be accurately treated using a spherical

cutoff (RC). Coulomb interaction can be divided (as in equation 2.4) into a short range and

a long range term as suggested by Ewald.

ΦCoulomb = ΦCoulomb short range + ΦCoulomb long range (2.4)

The short-range term can be calculated using spherical cutoff without loss of accuracy

and long-range term is calculated using Particle Mesh Ewald [2] (PME) method.

This inter-molecular interaction calculation needs to be modified or omitted for the pair

of atoms that are involved in an intramolecular interaction. In most cases, such pairs of

1angles in NAMD are called bends in PINY
2dihedrals and impropers in NAMD are called torsions in PINY
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atoms are excluded from inter-molecular force calculation.

2.1.3 Molecular Dynamics Simulation Algorithm

Figure 2.1: Schematic flowchart of a typical MD algorithm

The MD simulation algorithm is described broadly in the flowchart in figure 2.1. An

overview of the data-structure and dependencies of the algorithm is shown in figure 2.2.

The basic object in a MD simulation is the simulation box, which is the bounding box

for the atoms in the system being simulated. Simulation box uses the compute objects to

calculate the interactions.

The intra-molecular compute object calculates all the intra-molecular forces on atoms.

The inter-molecular compute object uses a pre-defined cutoff (RC), to calculate the short-

range inter-molecular interactions.
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Figure 2.2: A serial view of a typical MD algorithm, showing data dependencies

PME method is used to calculate the long-range electrostatic energy. PME algorithm

is briefly explained in figure 2.1. The first step in PME method is creation of a real-space

PME grid. The real-space PME grid is obtained by interpolating charges on atoms in the

simulation box. A 3D real-to-complex 3D FFT is done to get the reciprocal-space PME

grid. The reciprocal-space PME grid is used to calculate the long-range electrostatic energy.

After long-range energy calculation, a complex to real inverse 3D FFT is done to update the

real-space PME grid. Once real-space inverse FFT completes, real-space PME grid is used

to calculate the long-range electrostatic forces on atoms.

Forces and energies from the interaction objects are added to get the aggregate force on

each atom. Simulation box integration module updates the atom position and velocity using

the calculated force and the time quanta.

10



2.2 Parallelization

Figure 2.3: Parallel structure of our implementation

We parallelized this algorithm using the processor virtualization approach [5] supported

by Charm++ [6], an advanced parallel programming system. In this approach, work is di-

vided into a large number of objects or virtual processors (VPs), the computation is initially

expressed in terms of these virtual processors, ignoring the issue of which physical processor

they are mapped to. Then, either the runtime system or users can optimize their program

by separately specifying or changing the mapping – either initially or even during the execu-

tion of program. In Charm++, the VPs are implemented as C++ objects 3 (called chares),

which communicate with each other via asynchronous method invocation (also called mes-

3The Charm++ runtime system (RTS) supports multiple types of virtual processors. In Adaptive MPI [4]
for example, each virtual processor is a user-level thread implementing an MPI ”process”. C++ objects are
just one type of a virtual processor.
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sages). Essentially, Charm++ allows programmers to separate the issue of decomposition

and mapping.

2.2.1 Data Decomposition

The idea of assigning nearby atoms to the same processor is called spatial decomposition.

There are three ways in which spatial decomposition can be done:

• Partition space into P boxes, one per processor,

• Partition space into fixed-size boxes, with dimension greater than or equal to the cutoff

distance (RC), requiring communication only between neighboring boxes (‘one-away’

interactions).

• Partition space into a large number of small boxes, requiring each box to communicate

with a large number of boxes

A potential problem with the second decomposition strategy is that the number of pro-

cessors one can utilize is limited to the number of boxes. The third decomposition strategy

addresses the issue of fine-grained parallelism for cutoff interaction. LeanMD uses the third

decomposition strategy. The ‘one-away’ approach of the second decomposition strategy is

replaced with a ‘k-away’ approach [15] to divide the simulation space into large number

of small boxes (called cells). With this strategy, ‘k’ neighboring cells represent the cutoff

distance(RC). To do the cutoff calculation, a cell must compute its interaction with every

cell that is k-away or closer.

Defining formally, a ‘cell’ in a LeanMD simulation is a regular cubic region of simulation

space. For a k-away simulation, a cubic region of simulation space formed by k× k× k cells

is called a ‘patch’. Figure 2.4 pictorially shows the decomposition of simulation space. A

cell is responsible for all the atoms within its boundary, their coordinates, and the forces

exerted on them. Cells in LeanMD are represented by a 3-D array of chares.

12



Figure 2.4: Data decomposition in LeanMD

Equation 2.6, shows the formula to calculate the dimension of an edge of a cell for a

k-away simulation. While dividing the simulation space, ‘patchdim’ is chosen to be slightly

larger than the cutoff radius (eqn 2.5). Thus one can make the assumption that a cell needs

coordinates from at most k-away neighbors.

patchdim = RC + margin (2.5)

celldim = patchdim/k (2.6)

To ensure that all the atoms in a cell indeed belong there, it is necessary to check all atoms

at the end of every timestep, and migrate them to their proper home cells, if needed. This

check for migration and migration itself can be prohibitively expensive. One can optimize

this by choosing a ‘margin’ properly. Even if an atom strays outside the coordinate space of

its patch, the assumption stays valid as long as the straying is less than the margin. Thus

depending on the choice of ‘margin’, the number of time steps between migration can be

varied.
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2.2.2 Parallelization of Non-Bonded Force Computations

This section describes the parallelization of short-range pair interactions. The pair calcu-

lation compute block in figure 2.3 represents the ‘cell-pair’ objects. There is one cell-pair

object for every pair of cells between whom cutoff (short-range pair interaction) calculation

is required. There are some cell-pair objects which represent only one cell, these objects com-

pute cutoff interactions between atoms present in the cell they represent. Cell-pair objects

that receive atoms from two cells are responsible for calculating inter-cell cutoff interactions.

Cell pair objects in LeanMD are represented by a very sparse 6-D array of chares, the first

three and the last three components of a cell-pair object’s index represents the index of cells

that object interacts with.

Communication between cell-pair and cell object is straight-forward. Each cell maintains

a neighbor list (list of cells-pair objects it interacts with). This neighbor list is precomputed

before the simulation starts. A cell sends its atoms data to all the cell-pair objects in the

neighbor list, i.e. all the cell-pair objects that a cell interacts with receive same data. For

communication optimization, section-multicast (because each cell sends data to a section of

cell-pair chare array) library is used in this case. This section-multicast4 library is one of

the many libraries built into Charm++ system. Atom data sent to cell-pair objects include

atoms positions, ids (used to get the static information as mass, charge) and rootids (for the

reason explained below).

When a cell-pair object receives the atoms from cell(s), it calculates the cutoff interactions

and sends the forces and energy back to the cells. Cell-pair objects receiving atoms from

two cells, send zero energy back to one of the two cell they interact with. This is done to

avoid adding same energy twice.

Cell objects on receiving force messages from cell-pair objects, accumulates force on

each atom. This communication between cell-pair and cell is optimized using the section-

4For details, see the array section multicast/reduction section in Charm++ manual available at
http://charm.cs.uiuc.edu/manuals/html/charm++/manual.html.
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reduction5 support built in the section multicast library. Using section-reduction, the force

messages from cell-pair objects are combined (accumulate is one of the combine operations

supported) on the fly and the final force message is delivered to the designated cell object.

As an optimization, calculation of bond interactions (which involves a pair of atoms) is

also divided among cell-pair objects. This optimization will not affect the correctness of the

simulation if bond lengths are smaller than ‘patchdim’.

If a pair of atoms in a cell-pair object are part of a bond, then the bond interaction

can be calculated locally by that cell-pair object. Knowing whether a pair of atoms form

a bond is not a trivial operation. To do this efficiently, each cell-pair object caches the

bond information. This cache needs to be updated once after every atom-migration step, as

between the atom-migration steps a cell-pair object always receives same atoms information

from the cells it interacts with. A hash-table with bond-index (a unique bond identifier)

as the key is used to cache the bond information. Using a hash-table makes the process

of updating the cache more efficient. As an additional optimization, a per-atom bond list

(list of bonds an atom is part of) is maintained on every processor to make cache updation

efficient. The algorithm used to populate/update the cache with bonds is described in figure

2.5.

An additional check is needed in the algorithm described in figure 2.5 to avoid bond

interactions that are calculated at cell-pair objects that receive atoms from one cell, from

being added to the cache of cell-pairs that receive atoms from two cells. This check is omitted

in the algorithm mentioned for presentation purposes.

Once the cache is populated, to calculate the bond-interaction, a simple iteration over the

objects in the cache is needed to know the bonds for which force calculation can be done.

The size of the cache is equal to the number of bonds that cell-pair object can calculate

interaction for. Figure 2.6 describes the calculation of bond interaction at a cell-pair object.

Before this optimization was implemented, intramolecular force computation objects were

5Section-reduction reduces the communication cost as it is built on the multicast principles.
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// add all the bonds for which any atom is locally available

foreach (atom ‘a’)

get the bond list ‘l’.

foreach (bond ‘b’ in ‘l’)

if (‘b’ is not in the hash table) {

create a bondinfo object with ‘a’.

put the bondinfo object in hash table.

} else {

add ‘a’ to the bondinfo object in the hash table.

}

// delete the bonds from the hash table for which both atoms are not available

foreach (bondinfo object ‘b’ in the hash table)

if (‘b’ has one atom) {

delete ‘b’ from hash table.

}

Figure 2.5: Algorithm to cache bond info in cell-pair object

// loop over all the objects in the hash table and calculate bond interaction

foreach (bond in hash table) {

calculate bond interaction.

}

Figure 2.6: Algorithm to calculate bond interactions in cell-pair object

responsible for bond force computation. Thus the atoms needed to compute bond forces were

sent to the responsible intramolecular objects. Now as the bond forces are calculated at cell-

pair objects there is a reduction in communication cost.
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2.2.3 Parallelization of Bonded Force Computations

The Intramolecular compute objects block in figure 2.3 represents the 1-D array of chares

responsible for calculating intramolecular interaction. Each intramolecular interaction com-

putation object is responsible for computing a part of bends, torsions and 1-4 interactions6

in the simulation. Each of these interactions (bends, torsion and 1-4 interactions) have a

global unique intramolecular interaction identification number.

For communication efficiency and to reduce the memory required to store atoms at the

intermolecular compute objects, a cell object sends the atoms to an intramolecular compute

object that are needed by that compute object. To send the required atom to intramolecular

compute objects, a cell caches the information that tells it which atoms should be sent to a

intramolecular compute object. This information helps a cell to pack all the required atoms

in one message per intramolecular compute object. This cached information needs to be

updated once after every atom-migration step.

foreach (atom ‘a’ in the cell) {

get the list of intramolecular interactions ‘a’ is part of.

foreach (intramolecular interaction ’i’)

add ‘a’ to the required atoms list for the intramolecular compute object

responsible for calculating ‘i’.

}

Figure 2.7: Algorithm used by cell to know the atoms that need to be sent to intramolecular
compute objects

The algorithm used to create the list of atoms to be sent to intramolecular compute

objects is described in figure 2.7.

The algorithm used by a intramolecular compute object for calculating intramolecular

interactions it is responsible for is described in figure 2.8.

6currently Urey-Bradley interaction calculation routine is not integrated with LeanMD
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foreach (atom ‘a’ received from a cell)

get the list of local intramolecular interactions ‘a’ is part of.

foreach (intramolecular interaction ‘i’) {

add ‘a’ to the list of available atoms.

if (all atoms needed to compute ‘i’ are available) {

compute ‘i’.

foreach (atom ‘a1’ involved in ‘i’) {

increment the number of interactions calculated for ‘a1’.

if (number of interactions calculated for ‘a1’ is equal to the number of

interactions ‘a1’ is involved in interactions to be calculated by

this intra-molecular compute object) {

increment the number of atoms for which all the interactions are

calculated for the cell ‘c’ that sent ‘a1’.

if (number of atoms sent by ‘c’ is equal to the number of atoms for

whom all the interactions have been computed) {

send the forces and energy to ‘c’.

reset energy to zero.

}

}

}

}

}

Figure 2.8: Algorithm used by intramolecular compute objects to calculate intramolecular
interactions

When a cell object receives a force message from intra-molecular compute object, it adds

the intra-molecular forces in the force message to the force object for the corresponding atom

it houses.

18



2.2.4 Parallelization of PME Method

As explained earlier, the PME method involves creation of real-space and reciprocal-space

grids. In LeanMD, both real-space and reciprocal-space grids are represented by separate

1-D chare arrays. Each element (chare) of the real-space slab array represents a slab (a set

of y-z planes) of the real-space grid. Similarly, each element (chare) of the reciprocal-space

slab array represents a set of x-y planes of the reciprocal-space grid. The real-space and the

reciprocal-space grids are partitioned along different axises to allow the FFT library to do

the transpose operation (required in a 3D FFT) efficiently. Communication and computation

aspects of our parallel PME implementation are discussed next.

As the region of simulation space represented by each cell is fixed, the number of cells

that need to communicate with a real-space slab is precomputed. This number is depen-

dent on two variables, the thickness of the real-space slab and the interpolation order used.

Interpolation order is one of the runtime input parameters to LeanMD.

Currently, each cell interpolates the charges on atoms within its boundaries to generate

the portion of real-space grid that is affected by that cell. For PME calculation, each cell

has a PMECellData object. The PMECellData class inherits from BasePMECellData and

is defined specific to the science routine (currently available for PINY science) being used.

PMECellData object of a cell holds the real-space charge grid for that cell. PMECellData

object is mainly an abstraction to science specific data. BasePMECellData is an abstract

class that defines the API’s used by Cell to generate the real-space grid and calculate forces

from real-space grid. Once the real-space grid is generated, Cell sends the sections of the

grid to the real-space slabs responsible for it.

Charm++ provides a library for parallel 3-D FFT 7 which supports both plane based

(currently used) and pencil based decomposition strategies. This library is used to do a

real-to-complex 3D FFT from real-space slab to reciprocal-space slabs and complex-to-real

7For more details, see Charm++ libraries manual available at
http://charm.cs.uiuc.edu/manuals/html/libraries/manual.html
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inverse 3D FFT from reciprocal-space to real-space. Before start of simulation, FFT library is

notified about source and destination chare arrays for real-to-complex 3D FFT and complex-

to-real inverse 3D FFT.

When a real-space slab receives a grid message from a cell object, it adds the charges

(for its section of real-space grid) in the grid message to corresponding points in its slab.

Once a real-space slab receives all the expected grid messages, it calls the routine in 3-D

FFT library to compute real-to-complex 3D FFT.

In the process of calculating FFT, FFT library uses the memory allocated by chares in

destination chare array to store intermediate and final result of FFT computation. When

real-to-complex 3D FFT completes, reciprocal-space slabs have their slabs initialized. Once

reciprocal-space slab is notified that FFT is complete, it computes the long-range elec-

trostatic energy for the part of reciprocal-space grid it represents. To compute the long-

range electrostatic energy, each reciprocal-space slab uses its PMEGSpaceData object. The

PMEGSpaceData class inherits from BasePMEGSpaceData and has properties similar to

the PMECellData class.

After energy computation, FFT library is invoked by reciprocal-space slab to do the

complex-to-real inverse 3D FFT. When inverse FFT finishes, real-space slab sends the rele-

vant data to cells.

When a cell object receives a grid message from a real-space slab, it adds the charges

in the grid message to corresponding points in its local grid. After receiving all the grid

messages, a cell object uses PMECellData object to compute long-range electrostatic force

on the atoms within its boundaries.

As long-range interactions change very slowly, this costly PME computation can be done

less frequently (once every few steps). However, frequency of PME computation will affect

the overall accuracy of the simulation.

Thickness of real-space and reciprocal-space slabs (number of planes represented by an

object) limits the number of processors this parallel PME implementation can use. Another
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interesting parallelization technique to explore will be pencil-based decomposition, where

each chare will represent few lines (pencils) of the grid.

2.2.5 Integration

When all the force messages are received by a cell object, force integration is preformed

to update the position and velocity of atoms within its boundaries. Main parameters for

integration routine are the forces on atoms and the time quanta.

If there are rigid bonds in the system being simulated, integration routine has to do some

additional computation which is explained below.

Constraints Calculation for Rigid Bonds

Some molecules have bond structures which are rigid in nature, i.e. the length of bonds

in such bond structures do not change as their atoms move. In other words, movement of

atoms involved in rigid bond structures is constrained.

To keep these rigid structures rigid, integration module uses “shake” and “rattle” rou-

tines. PINY shake and rattle routines (currently used by LeanMD) implement Ryckaert [12]

constraints.

Typically, rigid bond structures involve hydrogen (called “branch”) atoms bonded to

other atom (called “root”). To implement shake and rattle efficiently, it is desirable to

keep branches along with their corresponding roots, i.e. the branch atoms of a rigid bond

structure always stay on the cell where its corresponding root atom is mapped. To model

this correctly, patchdim is increased as in equation 2.7, where max branch root bond length

is the maximum rigid-bond length between any two pairs of atoms in the simulation system.

Increasing patchdim avoids missing any pair calculation (short-range inter molecular forces)

due to grouping of branches with their roots.

patchdim = RC + margin + (2 ∗max branch root bond length) (2.7)
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Each cell caches information about rigid bond structures that are formed by atoms in

that cell. This information is updated once every atom-migration step.

Currently, three bond structures namely bond, bend and tetrahedral are considered rigid.

A rigid bond involves two atoms and one interaction, a rigid bend involves three atoms and

three interactions and a rigid tetrahedral involves four atoms and six interactions.

2.2.6 Exclusions in Non-Bonded Force Computation

The non-bonded force field used in molecular dynamics is complicated by the bonding struc-

ture and variety of atoms present in the molecule. Non-bonded interactions are generally

excluded (set to zero) for pairs of atoms that are directly bonded (1-2 pairs) or are bonded

to a common atom (1-3 pair). In addition, these interactions are modified for pairs of atoms

separated in the molecule by three bonds (1-4 pairs). 8

To check whether a pair of atoms are to be excluded from short-range pair calculation, a

per atoms exclusion list is maintained. Each atom’s exclusion list tells the atoms with whom

its pair calculation must be omitted. Atoms in any exclusion list have atom indices less than

the atom’s index to which that exclusion belongs. This simplification reduces the average

size of exclusion lists by a factor of two and thus the number of comparisions required to

find whether a pair of atoms are in exclusion list or not.

As an additional optimization, only the pairs which have distance between them less than

“exclusion distance” are checked for exclusion in the exclusion list. Equation 2.8 explains

exclusion distance calculation.

exclusion distance = max distance between excluded pairs + constant (2.8)

In equation 2.8, max distance between excluded pairs is calculated before simulation

starts (i.e. with initial atom position), and the constant in the equation is chosen accord-

8The 1-4 interaction calculated by the intramolecular compute objects is the modified non-bonded inter-
action for 1-4 pairs.
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ing to units used such that exclusion distance represents the maximum possible separation

between pair of atoms that can be excluded.

This algorithm is currently used in LeanMD and was taken from PINY. As the test for

exclusion only uses the exclusion list, the definition of pair of atoms to be excluded can be

modified easily.

23



Chapter 3

LeanMD as Parallel Molecular
Dynamics Simulation Framework

The biomolecular community maintains a variety of software packages with overlapping

“core” functionality but with varying strengths and motivations. One of the motivations

for developing LeanMD is to provide the “core” functionality required for parallel molecular

dynamics simulation. Using LeanMD, application researchers will be able to focus more on

their area of expertise. The block diagram in figure 3.1 shows LeanMD catering to different

sets of science routines. In this chapter we discuss how LeanMD can be used to simulate

different motivations.

3.1 Simulation Runtime Options

Different molecular dynamics simulation systems (Argon, Butane, Water, proteins, etc) have

different properties and require calculation of different set of interactions to simulate their be-

havior. Moreover the force fields used in molecular dynamics simulations can vary. LeanMD

provides run-time configuration options to turn on/off calculations for these interactions.

Currently, LeanMD provides broad options like turning on/off intramolecular, PME, con-

straints and Van der Waals calculation. LeanMD can also be configured at runtime to

simulate periodic or non-periodic boundary conditions.

Run-time configuration options of LeanMD include many parameters for performance op-
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Figure 3.1: LeanMD as parallel molecular dynamics simulation framework

timization. PME calculation frequency, atom-migration frequency, load balancing frequency

are some of these optimization parameters.

3.2 Using LeanMD for Simulating Different

Motivations

As shown in figure 3.1, LeanMD can be used with different sets of science routines. To

integrate a new set of science routines, the interface between LeanMD and science routines

must be updated to call the new science routines with the input in the appropriate format.

LeanMD can also be extended easily to implement new force fields as needed.
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3.2.1 Modifying/Replacing Science Routines

All the science routines interact with LeanMD via an interface class named “Physics”. Figure

3.2 shows the interaction between LeanMD and science routines. The Physics class provides

interfaces for all the force calculation routines and integration routine. All the science rou-

tines are invoked by LeanMD and not vice versa. This relieves the application programmer

of the burden of understanding how LeanMD exactly works.

Figure 3.2: Interaction between LeanMD and science routines

An application programmer can integrate new science routines by modifying the API

definitions in the Physics class to call new routines. In case of data-structure incompatibility,

routines to convert from LeanMD data structures will be needed.

Modifying existing science routines is recommended where suitable to avoid data structure

incompatibility issues. Also the Physics class needs no modification in this case.

3.2.2 Integrating Different Data Reader

There is a clean interface between data-reader and LeanMD. Figure 3.3 shows interaction

between LeanMD and data reader. When the simulation starts, LeanMD creates the data-

reader object and passes a call-back object to it. After the data reader object finishes reading

input files and all the input data objects have been initialized, data-reader uses the call-back

object to notify LeanMD. Input data objects are the objects where data read from input files

are stored by the data reader. Task of “InputInterface” object in LeanMD is to initialize

LeanMD objects. The InputInterface object uses the input converter object to transfer data

to LeanMD defined data-structures. The input converter object gets data from the input

data objects initialized by the data-reader, or reads directly from input files, and copies it
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to LeanMD data-structures.

Figure 3.3: Interaction between LeanMD and data reader

To integrate a new data-reader, a new reader class with a constructor that takes a call-

back object as a parameter is needed. This reader object, once created should read the

input files and initialize its input data objects. For a new data-reader, a converter class

is also needed for the reasons explained above. This converter class must be derived from

“BaseInputInterface” which is an abstract class. All the virtual functions declared in Ba-

seInputInterface must be defined in the new converter class.

3.2.3 Adding New Force Fields and Interaction Types

In parallel programs it is generally very difficult to trace the control flow. Life cycle of each

object in LeanMD is written using structured-dagger [9]. Using structured-dagger makes it

much easier to understand and modify the control flow of entire parallel program. Adding

a new force field to LeanMD requires some understanding of the working of LeanMD at the

code level. In this section, we explain how a new force field object can be integrated into
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the life-cycle of a LeanMD simulation. 1

Adding New Force Fields

Going over the implementation of PME will make it easier to understand, how a new force

field can be added to LeanMD. As explained earlier, PME is implemented using two 1-D chare

arrays representing PME real-space and reciprocal-space. These chare arrays are created and

initialized in the main chare. In a molecular dynamics simulation, all the communication is

between the cells (simulation box in case of sequential simulation) and the compute objects.

Thus it is easy to see the life cycle of LeanMD in the control loop (written in structured-

dagger) of cell class. To process the messages received from PME real-space slabs, cell’s

control loop was slightly modified to call the appropriate function for message processing.

Life cycle of each newly added object (example real-space slab and reciprocal-space slab)

should also be written using structured-dagger.

Adding New Intramolecular Interaction Type

Adding a new intramolecular interaction type involves much simpler changes. All the in-

tramolecular interaction objects in LeanMD are derived from an abstract class. Intramolec-

ular compute objects in LeanMD do not distinguish between different intramolecular inter-

action types. This makes it easier to add or remove interactions types.

Once the new intramolecular interaction type is defined, only the InputInterface and

intramolecular compute object need to be modified for initialization.

1Syntax and semantics of Charm++ and structured-dagger constructs are explained in their manuals
available at http://charm.cs.uiuc.edu.
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3.3 An Example: LeanMD with PINY Science and

Data Reader

Currently, LeanMD is available with PINY science routines and data reader. This section

describes the integration of PINY science routines and data reader with LeanMD.

Most of the simulation input data remains constant through out the simulation. PINY

data reader reads the constant data into read-only2 objects. A piny converter class derived

from BaseInputInterface is used to populate LeanMD data-structures. Only atom position,

velocity, mass, charge and other atom specific data along with bond, bend, torsions and 1-4

pairs information is copied to LeanMD data-structure. Read-only objects makes the rest of

constant data available to science routines on all processors.

PINY science routines were slightly modified to use some simplistic LeanMD objects as

input parameters. PINY science routines interact with LeanMD via the Physics interface

class. For integration, Physics API definitions were modified to include and invoke proper

PINY science routines.

2read-only objects in Charm++ are defined as objects which once initialized are available on all the
processors for reading.
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Chapter 4

Performance and Optimizations

4.1 Machine and Dataset used for LeanMD

Performance Testing

We ran our code on PSC Lemieux, a 750 node, 3000 processor cluster. Each node in Lemieux

is a Quad 1Ghz Alpha server connected by Quadrics Elan, a high speed interconnect with

4.5µs latency.

The Human Carbonic Anhydrase (HCA) dataset was used for LeanMD performance test-

ing. This HCA system has 30652 atoms, 2135 bonds, 3833 angles, 11769 torsions and 10798

1-4 interactions.

4.2 Simulation Configuration

All the simulation results reported do not include PME calculation cost. Cutoff used for

simulations is 10 Å. Timing results reported do not include the load balancing time. However,

these timing results do include atom migration cost. Reported simulation time per step is

the average time per step. All the speedup values reported are with respect to time taken

by same simulation on one processor.
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4.3 Solving Load Imbalance Problem

Figure 4.1: This graph shows the overview of LeanMD 1-away simulation on 64 processors.
In this simulation, RefineLB strategy was used for load balancing.

Initial runs of LeanMD on Lemieux showed bad scalability beyond 32 processors. Table

4.1 and 4.2 shows the result of 1-away LeanMD simulation before load balancing. The load

balancing strategy used in these runs was RefineLB. RefineLB is good when load is almost

balanced, but it shows no improvement when there is severe load imbalance. Using projec-

tions [7] for the analysis of a 64 processor run showed that load imbalance was the cause of

poor scalability beyond 32 processors. Figure 4.1 shows the overview (one of analysis views

in projections) graph of a 64 processor run (without section multicast optimization) with Re-

fineLB strategy used for load balancing. This graph shows the overview of load distribution

on processors. In an overview graph, x-axis represents time and y-axis represents processors.
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White color in overview graph represents 100% utilization and black color represents 0%

utilization, intermediate colors represent utilization between 0% and 100%. In figure 4.1

some of overloaded processors are marked. It can be easily seen that most of the work is

done by few processors. Load distribution in this figure is shown from the time simulation

starts to the time simulation ends (omitting the initialization time).

Nodes Processors Average time per step(sec) Speedup

1 1 10.804893 1.00
1 2 5.660082 1.91
2 4 2.933771 3.68
4 8 1.479690 7.30
8 16 0.846485 12.76
16 32 0.466989 23.14
32 64 0.432417 24.99
64 128 0.198827 54.34
128 256 0.098633 109.55

Table 4.1: Execution times for 1-away LeanMD simulation before load balancing. These
simulations do not use the section multicast library. Time per step reported in this table is
average over five simulation steps.

Nodes Processors Average time per step(sec) Speedup

1 1 11.934467 1.00
1 2 5.500512 2.17
2 4 2.781817 4.29
4 8 1.550974 7.70
8 16 0.833586 14.32
16 32 0.435545 27.40
32 64 0.369723 32.28
64 128 0.196094 60.86
128 256 0.099805 119.58

Table 4.2: Execution times for 1-away LeanMD simulation before load balancing. These
simulations use section multicast library. Time per step reported in this table is average
over five simulation steps.

To identify a better load balancing strategy for LeanMD, 64 processor runs were made

with different load balancing strategies available in Charm++. Table 4.3 summarizes the
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time taken per step after load balancing was done. This comparision showed that LeanMD

performed better after load balancing with all of the Greedy strategies and also with Metis

and RecBisectBf strategy.

LB Strategy Average time per step(sec)

GreedyCommLB 0.187109
GreedyLB 0.183593
GreedyRefineLB 0.190820
MetisLB 0.183203
RandRefLB 0.249608
RecBisectBfLB 0.181249
RefineCommLB 0.328516
RefineLB 0.432417
RandCentLB 0.258789

Table 4.3: Execution times for 1-away LeanMD simulation on 64 processors comparing the
Load Balancing strategies available in Charm++. These simulations do not use section
multicast library. Time per step reported in this table is average over five simulation steps.

For next set of runs, Greedy load balancing strategy was chosen above other strategies

because of low load balancing overhead shown by Greedy with respect to other strategies.

Results after load balancing (with Greedy strategy) are summarized in tables 4.4 and 4.5.

Figure 4.2 shows the overview graph for a 64 processor 1-away (without section multicast

optimization) simulation. This figure shows that after load balancing, computation load was

almost equally distributed between processors. Figure 4.3, is another graph showing the

average processor utilization.

In figure 4.2, it can be noted that after the first load balancing step, processor 0 is

completely idle. In this simulation, the load balancer was collecting statistics from the very

begining of the program, i.e. including initialization (which happens mainly on processor

0). Due to this, the load balancer observed that there was too much load on processor 0

and moved compute objects from it. This problem can be fixed by switching the statistics

collection on/off dynamically.

Once load imbalance problem was solved, LeanMD (table 4.4) showed good speedup till
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Nodes Processors Average time per step(sec) Speedup

1 1 11.85 1.00
1 2 6.36 1.86
2 4 3.52 3.37
4 8 1.49 7.95
8 16 0.78 15.19
16 32 0.38 31.18
32 64 0.19 62.37
64 128 0.10 118.5
128 256 0.05 237
256 512 0.03 395
512 1024 0.019 623.68

Table 4.4: Execution times for 1-away LeanMD simulation after load balancing (Greedy)
without using section multicast library. Time per step reported in this table is average over
fifteen simulation steps.

1024 processors. However, speedup achieved for simulations (on more than 64 processors)

with section multicast communication optimization (table 4.5) was worse compared to runs

without this communication optimization. Multicast optimization will show better perfor-

mance when number of processors to which multicast message has to be delivered is small.

The reason for this being the fact that number of hops to deliver the message increases as

number of processors in multicast tree increases. Also the benefit of only one message being

sent to a processor irrespective of the number of objects expecting the multicast message on

that processor decreases with number of recipients per processor. However a better mapping

of objects to processor (considering communication pattern along with computational load

for mapping of objects) might show benefit with section multicast optimization.

4.4 A Communication Optimization

As explained in chapter 2, cell-pair objects that receive atoms from two cells, compute inter-

cell short-range cutoff interactions. Such a cell-pair object will do no useful work if it receives

zero atoms from one of the cell (because, at this instant this cell has no atoms) object it
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Nodes Processors Average time per step(sec) Speedup

1 1 12.12 1.00
1 2 5.56 2.18
2 4 2.78 4.36
4 8 1.44 8.42
8 16 0.77 15.74
16 32 0.38 31.89
32 64 0.20 60.6
64 128 0.11 110.18
128 256 0.06 202
256 512 0.045 269.33

Table 4.5: Execution times for 1-away LeanMD simulation after load balancing (Greedy)
using section multicast library. Time per step reported in this table is average over fifteen
simulation steps.

interacts with. An optimization was done for this scenario to reduce the number of messages

that need to be sent and hence reduce the communication cost. In this optimization, a

cell-pair object notifies the cell object that it is not doing any useful work with the atom

data it is receiving. Knowing this, cell object updates its active neighbor list, and sends

atom data to cell-pair objects in the active list only from the next step onwards. However,

after migration step, cell objects need to send their atoms to all the cell-pair objects they

are supposed to interact with and update their active list on receiving a response from the

cell-pair objects. This optimization cannot be used when section multicast optimization is

used, because the syntax of section multicast/reduction library. This is another reason why

simulations without section multicast optimizations perform better.

This optimization will show increased performance boost for simulations with fine-grained

spacial decomposition because the probability of a cell object having no atoms increases as

its size decreases. This claim was confirmed with 2-away LeanMD simulations.
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Figure 4.2: This graph shows the overview of a LeanMD 1-away simulation on 64 processors.
In this simulation, GreedyLB strategy was used for load balancing.

4.5 Usage Profile of a LeanMD Simulation

Figure 4.4, is a usage profile graph of a 1-away LeanMD simulation on 512 processors. In

a usage profile graph, x-axis represents processors and y-axis represents percentage usage.

Different colored bars on a processor represent the functions invoked on that processor. The

length of a colored bar tells the percentage time consumed by the routine on the processor

over which that bar appears. Figure 4.4 is drawn for a period of time between two load

balancing steps in that simulation.

White band in this graph represents idle time on processors. The thick grey patch in this

graph represents the inter-molecular force computation routine. In this simulation, average

time consumed by inter-molecular force computation routine is 70% on any processor.
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Figure 4.3: This graph shows the average processor utilization of a LeanMD 1-away simu-
lation on 64 processors over time. In this simulation, GreedyLB strategy was used for load
balancing.

Currently, the PINY inter-molecular force calculation routine computes each interaction

based on the Lennard Jones and electrostatic force equations. PINY also provides a sci-

ence routine which uses a table lookup to approximate inter-molecular forces on a pair of

atoms based on the distance between them. Integration of this routine in to LeanMD should

significantly reduce the time spent in inter-molecular force computation.

Reduction in computation will expose communication inefficiencies (as there is enough

computation currently to completely hide the communication latency) and bring up new

challenges in scaling LeanMD.
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Figure 4.4: A 512 processor 1-away LeanMD simulation showing 70% time consumption by
inter-molecular force computation routine.
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Chapter 5

Conclusion and Future Work

In this thesis, we described the parallelization of the molecular dynamics algorithm using

Charm++. We also described how LeanMD code can be reused with different science routines.

This parallel implementation with PINY science routines scales well till 1024 processors

for a relatively small benchmark system with 30652 atoms. Virtualization and adaptive

overlap of communication, automatically engendered by Charm++, are clearly helpful for

this application.

There is lot of room for both sequential and parallel optimizations in LeanMD. A detailed

study and optimizations for 2-away (or even finer spatial decomposition) simulations should

show better scalability of LeanMD for simulations with 1024 or more processors. LeanMD 2-

away simulations showed that there are a lot of tiny messages, communication optimization

is one important work to be done in future as it is necessary to achieve good performance

results in this case. Charm++ provides a library with many different strategies for communi-

cation optimizations. This library can be used to reduce the communication cost in LeanMD

simulations.

In current LeanMD simulations, PME calculation was turned off because currently used

PINY PME routines cannot be used to calculate PME on more than one processor. Integrat-

ing science routines for parallel PME computation will show more avenues for performance

optimizations. Integrating science routines from NAMD or other molecular dynamics simu-

lation software will bring up the hidden challenges involved in reusing LeanMD. It will also

39



help in making LeanMD interfaces better for easy reuse of LeanMD parallel structure.

Overall, current LeanMD scalability results are good. LeanMD’s clear interface with

data-reader and science routines should allow application researchers to easily reuse the

parallelization techniques used in LeanMD for MD simulations.
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