
MSA: Multiphase Specifically Shared Arrays

Jayant DeSouza and Laxmikant V. Kalé

University of Illinois, Urbana IL 61801, USA
jdesouza@uiuc.edu,kale@cs.uiuc.edu

Abstract. Shared address space (SAS) parallel programming models
have faced difficulty scaling to large number of processors. Further, al-
though in some cases SAS programs are easier to develop, in other cases
they face difficulties due to a large number of race conditions. We contend
that a multi-paradigm programming model comprising a distributed-
memory model with a disciplined form of shared-memory programming
may constitute a “complete” and powerful parallel programming system.
Optimized coherence mechanisms based on the specific access pattern
of a shared variable show significant performance benefits over general
DSM coherence protocols. We present MSA, a system that supports such
specifically shared arrays that can be shared in read-only, write-many,
and accumulate modes. These simple modes scale well and are general
enough to capture the majority of shared memory access patterns. MSA
does not support a general read-write access mode, but a single ar-
ray can be shared in read-only mode in one phase and write-many in
another. MSA coexists with the message-passing paradigm (MPI) and
the processor virtualization-based message-driven paradigm(Charm++).
We present the model, its implementation, programming examples and
preliminary performance results. 1

1 Introduction

Parallel programming remains a complex task, even though parallel machines
and their use in applications has spread widely, especially with deployment of
thousands of clusters. The predominant programming paradigm used is message-
passing among independent processes (each with its own address space), as em-
bodied in MPI. It is often argued that shared address space (SAS) is an easier
method of programming. Although quantitative empirical support for such a
statement is lacking, their probably is an intuitive basis for this belief among a
section of researchers.

Our experience with a number of parallel applications over the years indicates
that there are distinct programming situations where SAS is an easier program-
ming model whereas there are equally distinct situations where it is not. E.g.
when there are data races, shared memory paradigm, which allows for a much

1 This work was supported in part by the National Institute of Health under Grant
NIH PHS 5 P41 RR05969-04 and the local Department of Energy ASCI center under
Grant DOE B341494

larger number of distinguishable interleavings of executions of multiple threads,
tends to be a difficult paradigm. In contrast, in a computation such as matrix
multiply, where the data in input matrices is only read, and data in the output
matrix is only written, is relatively easier to express in SAS. Further, since SAS
views all data as uniformly accessible, it does not lend itself to locality-conscious
programming, which is needed for efficiency.

We suggest that the problems with SAS are due to trying to do everything
(i.e. all kinds of information exchange between processes) with SAS. It may be
more productive to incorporate SAS as a part of a programming model that
also allows private data for each thread, and mechanisms for synchronization
and data-exchange such as message-passing or method-invocations. This frees
us to support only those SAS access modes that can be efficiently and scalably
supported on distributed memory machines including clusters, without being
encumbered by having to support a “complete” programming model.

Which access modes can be efficiently supported? read-only accesses, write-
-many accesses (where each location is updated by at most one thread), and
accumulate accesses (where multiple threads may update a single location, but
only via a well-defined commutative associative operation) seem to be the obvi-
ous candidates. The idea of distinguishing between access patterns was studied
in Munin[2] and also in Chare Kernel[8, 20] (the precursor to Charm[13, 14]) and
is used in TreadMarks/NOW[15]. The generalized notion of accumulate accesses
(see Section 1) is relatively new, although compiler research (e.g. Polaris[4]) has
often focused on identifying commutative-associative operations.

Another observation stemming from our application studies is that the access
pattern for the same data changes distinctly between computation phases. For
example, a matrix multiply operation (C = AxB) may calculate a C matrix
in Phase I of the computation (where A and B matrices are accessed in read-
only manner, and C is written-only or accumulated), whereas in the phase II,
C matrix may be used in a read-only manner while A and B may be updated.
These phases may then iterate.

This suggests the idea of multi-phase shared arrays. For each array, the pro-
grammer specifies its access mode, and may change it between phases. The
phases may be separated by array-specific synchronizations such as barrier (as
in release consistency).

The restricted set of operations simplifies the consistency protocol and traffic
associated with that: no invalidations are needed, all writes can be buffered, etc.
For all other operations not covered, one is free to use other mechanisms such
as message passing.

One of the original motivations for this work was computations performed
at initialization, where efficiency is less important, and coding productivity is
the dominant consideration. However, it quickly became clear that the method
is useful more broadly beyond initialization. Of course, such broad use requires
more serious consideration of efficiency issues. With “prefetch” calls (See Sec-
tion 2) , we provide efficiency comparable to that of local array accesses. Further,
one of the costs of DSM systems is the long latency on “misses”. Processor vir-

tualization techniques that we have been exploring in Charm++ and Adaptive
MPI (AMPI)[9] allow many user-level (lightweight) threads per processor, which
help tolerate such latencies.

The MSA abstraction has been implemented as a library in Charm++ and
AMPI, and as a language-level feature in a compiler-supported parallel language
called Jade [7]. Compiler support simplifies syntax and automates optimizations
which have to be done manually by MSA users (such as inserting prefetches).

2 MSA Description

Conceptually, an MSA is an array of data elements that can be globally accessed
in an MIMD program in one of several dynamically chosen global access modes
and in units of a user-defined page size. The modes are not expected to be fixed
for the lifetime of an array, but for a phase of execution of the program. MSA’s
are implemented as a templated, object-oriented C++ class. Currently 1D and
2D MSA arrays are supported.

The elements of an MSA can be one of the standard C++ built-in types, or a
user-defined class with certain operations. The number of elements in the MSA
is specified in the constructor when the MSA is created. Currently, an MSA
cannot be resized once created.

For complicated element types (such as linked lists), a pup() method must
be defined by the user for the element type: this is used to pack and unpack the
element when pages are shipped around. This allows each element to be a linked
list or other variable sized data structure. (More details of the PUP framework
can be found in [12].)

Internally, the MSA array is split up into “pages” of a user-defined size. The
page size is user specified for each MSA at the time the MSA is created. The
page size is specified as a number of elements and can range from one element to
the total number of elements in the array. For 2D MSA arrays, the data layout
can also be specified at creation time. Currently, row-major and column-major
data layouts are supported, and we plan to support block partitioned layout.

The array of “pages” is implemented as a Charm++ ChareArray object.
ChareArray objects are managed by the Charm++ runtime system (RTS); they
can be migrated across processors under the control of the RTS and can partic-
ipate in system-wide load-balancing based on communication patterns, compu-
tational load, etc.[14]

The MSA runtime system on each processor fetches and replicates remote
pages into local memory on demand, or instantiates blank local copies of remote
pages when needed, based on the mode (described below) of the MSA. The
amount of local memory so used (the local cache) on each processor can be
constrained by the user for each MSA. When the local cache fills up, pages are
flushed out using a user-defined page replacement policy. A default policy is
provided that keeps track of a few most recently used pages and flushes out any
page not listed there.

The MSA is globally accessed in one of several access modes, which can be
changed dynamically over the life of the program. The mode of an MSA is set
implicitly by the first operation (read, write, or accumulate) on it after a sync or
enroll. Each phase of execution in a particular mode is terminated by running
a sync operation on the array.

The modes supported are read-only, write-many and accumulate, and have
been chosen for simplicity and efficient implementation.

In the read-only mode, the elements of the array are only read by the worker
threads. read-only is efficiently implemented by replicating pages of the array
on each processor on demand. Reading a page that is not available locally causes
the accessing thread to block until the page is available. User-level or compiler-
inserted explicit prefetch calls can be used to improve performance. Since the
page is read-only, no invalidates or updates need to be propagated.

In the write-many mode, all threads are permitted to write to the elements of
an MSA, but to different elements, i.e. at most one thread is permitted to write
to any particular index. write-many is efficiently implemented by instantiating
a blank local copy of an accessed page on all processors that need the page. No
page data and no page invalidates or updates need to be communicated during
the phase. The MSA runtime on each processor keeps track of which elements of
the page are written, in a local bit-vector. At the end of the phase, the changed
data in the local cache are forwarded to the above-mentioned ChareArray page
object, where they are merged.

In the accumulate mode, multiple threads can perform an accumulate op-
eration on any given element. accumulate is implemented by accumulating the
data into a local copy of the page on each processor, (instantiated on first ac-
cess), and combining these local values at the end of the phase. Once again, no
page data or coherence traffic is transmitted during the phase.

The commutative-associative operation to be used in an accumulate is spec-
ified at creation of the MSA. In addition, it can be changed at any time by invok-
ing a method of the MSA. Accumulation using the common addition, product
and max operations is provided via built-in types. For the general case, setting
the accumulate operation involves passing in a class that contains accumulate()
and getIdentity() methods. This allows the user to define the accumulate oper-
ation. In combination with the pup framework, accumulate can handle complex
operations such as set union, appending to a hash table in which each element
is a linked list, and so on.

The user is responsible for correctness and coherence; e.g., if an array is in
write-many mode, the user must ensure that two processors do not write to the
same location. The system assists by detecting errors at run-time.

At startup, the threads accessing an MSA must perform an enroll operation
for the system to detect the number of worker threads on each processor.

When accessing data, the user does not need to check if data is available in
the local cache or not. Unlike DSM, MSA does not use VM hardware page faults
to detect whether a local copy of the data exists. Thus, MSA page sizes are not
tied to the VM page size but can be controlled by the user as described above.

In principle, every MSA access is checked for whether the data is local or remote
with an if. Since this is expensive, using compiler support in Jade we strip-mine
for loops and use local (non-checked) accesses within a page.

3 Example Programs

3.1 Matrix Multiplication

The pseudocode for a matrix-matrix multiplication using a straighforward row-
wise decomposition is as follows (assuming N ∗N matrices and P processors):

for i= subsection of size N/P // Rows of A matrix

for j=1..N // Columns of B matrix

for k=1..N

result += A[i][k] * B[k][j]

C[i][j] = result

The i dimension is shared among the worker threads. Thus in this case, each
thread will request a subset of the rows of A and C, and the entire B matrix.
If all matrices are N ∗N matrices, the required number of elements required by
each of P processors works out to N2 + 2N2/P .

Relevant sections of the corresponding MSA program are shown in Fig. 1.
2D MSA arrays are used in this example. We use row-major data layout for the
A and C matrices, and column-major for the B matrix. The page size for each
MSA (i.e. the minimum number of elements fetched) is specified when defining
the MSA (lines 1–2). In this case we set it to 5000, in order to fetch an entire
row of A or C, or column of B. (We could set B’s page size to the number of
elements in B, and that would fetch the entire B matrix into local memory upon
the first access to it.) The page size is often a crucial parameter for performance.
The per processor cache size is specified when instantiating the MSA (lines 5–7).
We set the cache size to hold at least the number of elements calculated above,
unless it is too large a number to fit in the available memory. (The MSA API
has not been finalized yet, and it is likely that the template parameters will be
reduced.)

Next, consider the following pseudocode for a block decomposition matrix
product:

for i= subsection of size N/sqrt(P) // Rows of A matrix

for j= subsection of size N/sqrt(P) // Columns of B matrix

for k=1..N

result += A[i][k] * B[k][j]

C[i][j] = result

Here too, one thread is solely responsible for an element of C and write-many
mode suffices. The number of elements required by each processor is 2N2/

√
P .

Finally, consider the case where we decompose in the k-dimension as well.

for i=subsection of size N/cuberoot{P} // Rows of A matrix

for j=subsection of size N/cuberoot{P} // Columns of B matrix

1 typedef MSA2D<double, MSA_NullA<double>, 5000,MSA_ROW_MAJOR> MSA2DRowMjr;
2 typedef MSA2D<double, MSA_SumA<double>, 5000,MSA_COL_MAJOR> MSA2DColMjr;
3

4 // One thread/process creates and broadcasts the MSA’s
5 MSA2DRowMjr arr1(ROWS1, COLS1, NUMWORKERS, cacheSize1); // row major
6 MSA2DColMjr arr2(ROWS2, COLS2, NUMWORKERS, cacheSize2); // column major
7 MSA2DRowMjr prod(ROWS1, COLS2, NUMWORKERS, cacheSize3); //product matrix
8

9 // broadcast the above array handles to the worker threads.
10 ...
11

12 // Each thread executes the following code
13 arr1.enroll(numWorkers); // barrier
14 arr2.enroll(numWorkers); // barrier
15 prod.enroll(numWorkers); // barrier
16

17 while(iterate)
18 {
19 for(unsigned int c = 0; c < COLS2; c++) {
20 // Each thread computes a subset of rows of product matrix
21 for(unsigned int r = rowStart; r <= rowEnd; r++) {
22

23 double result = 0.0;
24 for(unsigned int k = 0; k < cols1; k++)
25 result += arr1[r][k] * arr2[k][c];
26

27 prod[r][c] = result;
28 }
29 }
30

31 prod.sync();
32 // use product matrix here
33 }

Fig. 1. MSA Matrix Multiplication Code in Jade.

for k=subsection of size N/cuberoot{P}

result += A[i][k] * B[k][j]

C[i][j].accumulate(result);

Here, the MSA accumulate mode comes in useful. An Add accumulator class
can be specified as the default when creating the C MSA. MSA also provides
templated Null, Product, Max and Min Accumulators.) The number of ele-
ments required by each processor reduces from the previous case to 2N2/P 2/3.

3.2 Molecular Dynamics

In classical molecular dynamics based on cut-off distance (without any bonds,
for this example), forces between atoms are computed in each timestep. If two
atoms are beyond a cutoff distance the force calculation is not done (to save
computational cost, since force drops as a square of the distance). After adding
forces due to all atoms within the cutoff radius, one calculates new positions for
each atom using Newtonian mechanics.

The pseudocode for a particular molecular dynamics algorithm using MSA
is shown below. The key data structures used are:

– coords[i]: a vector of coordinates (x,y,z values) for each atom i.
– forces[i]: a vector containing forces (x,y,z values) on atom i.
– atomInfo[i]: a struct/class with basic read-only information about each

atom such as its mass and charge.
– nbrList[i][j]: is true if the two atoms are within a cutoff distance.

1 // Declarations of the 3 arrays
2 class XYZ; // { double x; double y; double z; }
3 typedef MSA1D<XYZ, MSA_SumA<XYZ>, DEFAULT_PAGE_SIZE> XyzMSA;
4 class AtomInfo;
5 typedef MSA1D<AtomInfo, MSA_SumA<AtomInfo>,
6 DEFAULT_PAGE_SIZE> AtomInfoMSA;
7 typedef MSA2D<int, MSA_NullA<int>,
8 DEFAULT_PAGE_SIZE, MSA_ROW_MAJOR> NeighborMSA;
9

10 XyzMSA coords;
11 XyzMSA forces;
12 AtomInfoMSA atominfo;
13 NeighborMSA nbrList;
14

15 //broadcast the above array handles to the worker threads.
16 ...
17

18 // Each thread executes the following code
19 coords.enroll(numberOfWorkerThreads);
20 forces.enroll(numberOfWorkerThreads);
21 atominfo.enroll(numberOfWorkerThreads);
22 nbrList.enroll(numberOfWorkerThreads);
23

24 for timestep = 0 to Tmax {
25 /**************** Phase I : Force Computation ****************/
26 // for a section of the interaction matrix
27 for i = i_start to i_end
28 for j = j_start to j_end
29 if (nbrlist[i][j]) { // nbrlist enters ReadOnly mode
30 force = calculateForce(coords[i], atominfo[i],
31 coords[j], atominfo[j]);
32 forces[i] += force; // Accumulate mode
33 forces[j] += -force;
34 }
35 nbrlist.sync(); forces.sync(); coords.sync(); atominfo.sync();
36

37 /**************** Phase II : Integration ****************/
38 for k = myAtomsbegin to myAtomsEnd
39 coords[k] = integrate(atominfo[k], forces[k]); // WriteOnly mode
40 coords.sync(); atominfo.sync(); forces.sync();
41

42 /**************** Phase III ****************/
43 if (timestep %8 == 0) { // update neighbor list every 8 steps
44 // update nbrList with a loop similar to the force loop above
45 ... nbrList[i][j] = distance(coords[i], coords[j]) < CUTOFF;
46

47 nbrList.sync(); coords.sync();
48 }
49 }

There are three phases in each timestep. The atomInfo array is read-only in
all phases. During the force computation phase, the forces array is write-many
whereas the coords array is read-only; while during the integration phase, this
is reversed. Every 8 steps (here) we recalculate the nbrList in phase III, where
nbrList is write-many and coords is read-only. The code assumes a block
partitioning of the force matrix as suggested by Saltz[10] or Plimpton[18].

3.3 FEM Graph Partitioning

Fig. 2. FEM Graph Partitioning Example.

As an example of the power of the generalized accumulate operation, we
present a part of a program that deals with an unstructured mesh for a finite-
elemment method (FEM) computation. Here, the mesh connectivity data is avail-
able at input in the EtoN array: for each element i, the EtoN [i] contains 3 node
numbers (we assume triangular elements). The objective is produce EtoE array,
where EtoE [i] contains all element (numbers) that are neighbors of E. E1 is said
to be a neighbor of E2 if they share a common node. So, e2 and e3 are neighbors
because they share Node 4.

The algorithm for doing this using MSA proceeds in two phases. In the first
phase, an intermediate array NtoE is created by accumulation: NtoE [j] contains
all elements that have nj as their node. To construct this, each thread processes
a section of the EtoN array. In the second phase, e1, e2 ∈ NtoE[j] are set to be
neighbors of each other.

Note that the accumulate operations in lines 5, 15 and 16 are actually set-
union operations, implemented as described in Section 2.

1 // Phase I: EtoN: RO, NtoE: Accu

2 for i=1 to EtoN.length()

3 for j=1 to EtoN[i].length()

4 n = EtoN[i][j];

5 NtoE[n] += i; // Accumulate

6 EtoN.sync(); NtoE.sync();

7

8 // Phase II: NtoE: RO, EtoE: Accu

9 for j = my section of j

10 //foreach pair e1, e2 elementof NtoE[j]

11 for i1 = 1 to NtoE[j].length()

12 for i2 = i1 + 1 to NtoE[j].length()

13 e1 = NtoE[j][i1];

14 e2 = NtoE[j][i2];

15 EtoE[e1] += e2; // Accumulate

16 EtoE[e2] += e1;

17 EtoN.sync(); NtoE.sync();

4 Related Work

4.1 DSM, TreadMarks, and Munin

Distributed Shared Memory (DSM) is a much-studied software-level shared mem-
ory solution. Typically, DSM software uses the virtual memory page fault hard-
ware to detect access to non-local data, which it then handles. It works at the
page level, fetching and delivering virtual memory pages. DSM uses relaxed
consistency memory models to reduce false sharing overheads and improve per-
formance.[11, 1]

Munin[2, 3] and TreadMarks[15] are DSM implementations. TreadMarks im-
plements the release consistency memory model, which typically does not re-
quire any additional synchronization over a general shared memory (sequential
consistency) program. To reduce false sharing overheads, their multiple-writer
coherence protocol allows multiple threads to write to independent locations
within a page.

Munin takes such coherence optimizations further, and identifies several ac-
cess modes with correspondingly efficient coherence protocols, as follows:

– Synchronization: Global locks were optimized by using a local proxy to min-
imize global communication.

– Private: No coherence.
– Write-once These are read-only after initialization. Optimized by replication.
– Result: Read by only one thread. Optimized by maintaining a single copy

and propagating updates to it.
– Producer-Consumer: Optimized by eager update of copies.
– Migratory: Optimized by migrating the object.
– Write-many: Optimized by a multiple-writer protocol.
– Read-mostly: Optimized by replication.
– General Read-Write: Uses standard coherence protocol.

Their study of several shared memory programs and their performance results
relative to message-passing are impressive and appear to validate their idea of
“adaptive cache coherence”[5].

Munin’s modes were applied on both a per-object and a per-variable basis.
While TreadMarks attempts to maintain the illusion of a general shared address
space, Munin requires the programmer to specify the mode for each variable.
This was done at compile time and so a variable’s mode could not change during
the program, and only statically allocated memory was supported. Munin put
each shared variable on a separate page of virtual memory.
Comparison: Munin is designed to be a complete shared memory programming
model rather than the blended model of MSA. MSA supports Munin’s Private
and Write-many modes, and introduces a new accumulate mode and prefetching
commands. Munin’s Write-once, Result, and Read-Mostly modes seem to be of
limited use, since synchronization will be required at the application level before
accessing the updated data; which leads us to believe that these modes are an
artifact of Munin’s static style of specifying modes. MSA accomplishes these
modes by dynamically specifying a write-many mode followed by a read-only
mode. Munin’s Producer-Consumer mode with its eager update offers unique
features, but, again, given the need for synchronization, a message send might
be more efficient. MSA does not support the General Read-Write or the Read-
mostly modes.

Specifying portions of an array to be in different modes is not supported in
MSA, but this cannot be done in Munin either because of the static specification.
Munin’s granularity for data movement is the size of a VM page; whereas MSA
works physically on a user-defined page size. MSA’s user-defined physical page
size allows the “page” to be as small as one element, or as large as several rows of
a matrix allowing the user (or Jade compiler) to optimize for the expected access
pattern. Munin’s modes are static, whereas MSA arrays can change their mode
dynamically over the life of the program, which leads to needing fewer modes.
Furthermore, MSA supports row-major, column-major, and (in the future) other
array layouts, which can further improve performance.

DSM systems suffer considerable latency on “misses” and provide no latency
tolerance mechanisms since control transfers to the DSM software in kernel space.
MSA is implemented in user space, and Charm++’s virtual processors (user level
threads) can tolerate latency by scheduling another virtual processor when one
thread suffers a “page” miss.

DSM uses page fault hardware to detect non-local access; MSA checks each
data access (similar to Global Arrays) and we need to study the cost of this
detection mechanism. MSA also has operations that work on data that is known
to be available locally (e.g. using prefetch), and the Jade compiler can generate
code for some such cases. When combined with MSA’s prefetch feature, we
expect that the efficiency of array element access will approach that of sequential
programs.

4.2 Specifically Shared Variables in Charm

Charm (and its earlier version, the Chare Kernel) supported a disciplined form
of shared variables by providing abstractions for commonly used modes in which
information is shared in parallel programs. [13, 14]. The modes were readonly

(replicated on all processors), writeOnce, accumulator, monotonic variable (use-
ful in branch-and-bound, for example), and distributed tables (basically, read-
only or writeonce, with distributed storage and caching). However, unlike MSA,
it does not support the notion of phases, nor that of pages. Further, the original
version did not have threads, and so supported only a split phase interface to
distributed tables.

4.3 Global Arrays

The Global Arrays project[17], like ours, attempts to combine the portability
and efficiency of distributed memory programming with the programmability of
shared memory programming. It allows individual processes of an MIMD pro-
gram to “asynchronously access logical blocks of physically distributed matrices”
without requiring the application code on the other side to participate in the
transfer. GA typically uses RDMA[6] and one-sided communication primitives
to transfer data efficiently. GA coexists with MPI.

Each block is local to exactly one process, and each process can determine
which block is local. GA provides get, put, accumulate (float sum-reduction),
and int read-increment operations on individual elements of the array. The
GA synchronization operation completes all pending transfers. fence completes
all transfers this process initiated. Global Arrays does not implement coherence.
It is the user’s responsibility to guard shared access by using synchronization
operations.

In GA one-sided communication is used to access a block owned by a remote
processor: there is no automatic replication or caching of remote data. The user
explicitly fetches remote data for extended local access and then directly ac-
cesses the data. This mode of access reduces programming simplicity when using
GA’s, especially if accessing data irregularly across the entire GA. GA RDMA
operations are provided to access data remotely in such cases without fetching
a block of data, but at the cost of reduced performance, since every data access
is then checked (with an if) and redirected to a local or non-local version of the
operation.
Comparison: In shared-memory terminology, it appears that GA maintains a
single copy of each “page” and either requires the user to fetch the page for
efficient local access, or propagates updates to the remote page quickly using
RDMA. For the former case, MSA’s prefetch operation provides the same ben-
efits, and for amenable access patterns the strip-mining compiler optimization
allows the user to skip using prefetch; and for the latter case, MSA’s modes
allow optimizations that GA cannot support. Like MSA, GA does not tie the
“page” size to the VM page size. It allows the “page” to migrate to be closer
(i.e. local) to an accessing process. GA seems well-suited to certain access pat-
terns, but, for example, implementing write-many on GA would involve a lot
of unnecessary RDMA operations, and the lack of replication makes reading of
elements on a “page” by many threads inefficient. The GA accumulate does not
support variable-sized elements/pages.

4.4 HPF and others

Other approaches that deal with similar issues include implementation strategies
for HPF. For example, the inspector-executor idea [19, 16] allows one to prefetch
data sections that are needed by subsequent loop iterations.

Titanium[21] translates Java into C. It adds a global address space and multi-
dimensional titanium arrays to Java and is especially suited to grid-structured
computations. Each processor on a distributed memory machine maintains its
data in a local demesne, and variables can be declared to limit access to only
the local demesne of data, or to have unrestricted global access. Several compiler
analyses are performed, including identifying references to objects on the local
processor. Barriers and data exchange operations are used for global synchro-
nization.

5 Performance Study

As a preliminary performance study, we present results for the row-wise decom-
position matrix multiplication program shown in Section 3.1.

Figure 3 shows the speedup for a 2000x5000x300 matrix multiplication on
NCSA’s Tungsten cluster. When there are 8 threads per processor, the latency
of page misses by one thread is better hidden by overlapping with computations
for another thread. This effect (the benefit of processor virtualization) can be
clearly seen by comparing results for 1 and 8 threads per processor. With a
much larger number of threads per processor (32 or 64) the scheduling overhead
and fine-grained communication lead to worse performance, although a more
detailed study is needed to ascertain that. It should be noted that raw sequential
performance is currently unoptimized. With further optimizations, we expect the
times to decrease but possibly speedups may decrease.

Figure 4 shows the effect of limiting cache size: with a smaller cache, the time
is almost twice as large as that with an adequately large cache. Smaller caches
reduce the reuse of fetched data.

6 Summary and Future Work

We described a restricted shared address space programming model called multi-
phase shared arrays (MSA), its implementation and its use via examples. MSA
is not a complete model, and is intended to be used in conjunction with other
information-exchange paradigms such as message passing. It currently supports
only 3 modes: read-only, write-many and accumulate. One important idea in
MSA is that the modes for each array can change dynamically in different
phases of the program separated by synchronization points. The generalized
accumulate operation supported by MSA is powerful, and is especially use-
ful for accumulating sets, in addition to the more common use in summations.
MSA is implemented in Charm++ and AMPI, which support many light-weight
threads (virtual processors) per processor. As a result, the latency inherent in

Fig. 3. Scaling with varying number of threads per processor (thrdx).

 0

 20

 40

 60

 80

 100

 120

 0.5 1 2 4 8 16 32 64 128

Ti
m

e
(s

)

Cache Size (MB)

Matrix Mul 2000*5000*300 on 4 cpus (2 nodes) of tungsten

Fig. 4. Effect of MSA software cache size.

page misses is better tolerated. Further, we provide a prefetch operation and
correspondingly specialized versions of array accesses, which attains efficiency of
sequential code in case of prefetched data.

We plan to search for additional applications where this model is useful.
Further, we will explore and support additional access modes beyond the three
supported currently. Performance optimization, and detailed performance stud-
ies are also planned. We hope that a mixed mode model such as MSA will lead
to substantial improvement in programmer productivity, and bridge the current
divide between SAS and distributed memory programming styles. Further, com-
piler support is crucial to simplifying use of MSA, which we plan to explore in
the context of the ongoing Jade programming language.

7 Acknowledgements

The authors wish to acknowledge the work of Rahul Joshi on implementing
an initial version of MSA, and Orion Lawlor for improving the MSA API and
performance.

References

1. S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Computer, 29(12):66–76, 1996.

2. J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed shared mem-
ory based on type-specific memory coherence. In Proc. of the Second ACM SIG-
PLAN Symp. on Principles and Practice of Parallel Programming (PPOPP’90),
pages 168–177, 1990.

3. J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive software cache man-
agement for distributed shared memory architectures. In I. Tartalja and V. Mi-
lutinovic, editors, The cache coherence problem in shared memory multiprocessors:
software solutions. IEEE Computer Society Press, 1995.

4. W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,
B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris: Improving
the effectiveness of parallelizing compilers. In Proceedings of 7th International
Workshop on Languages and Compilers for Parallel Computing, number 892 in
Lecture Notes in Computer Science, pages 141–154, Ithaca, NY, USA, August
1994. Springer-Verlag.

5. J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Techniques for reducing
consistency-related communications in distributed shared memory systems. ACM
Transactions on Computers, 13(3):205–243, Aug. 1995.

6. A. Cohen. RDMA offers low overhead, high speed. Network World, March 2003.
URL http://www.nwfusion.com/news/tech/2003/0324tech.html.

7. J. DeSouza and L. V. Kalé. Jade: A parallel message-driven Java. In Proc. Work-
shop on Java in Computational Science, held in conjunction with the Interna-
tional Conference on Computational Science (ICCS 2003), Melbourne, Australia
and Saint Petersburg, Russian Federation, June 2003.

8. W. Fenton, B. Ramkumar, V. Saletore, A. Sinha, and L. Kale. Supporting machine
independent programming on diverse parallel architectures. In Proceedings of the
International Conference on Parallel Processing, pages 193–201, St. Charles, IL,
Aug. 1991.

9. C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI. In Proceedings of the
16th International Workshop on Languages and Compilers for Parallel Computing
(LCPC 03), College Station, Texas, October 2003.

10. Y.-S. Hwang, R. Das, J. Saltz, M. Hodoscek, and B. Brooks. Parallelizing Molec-
ular Dynamics Programs for Distributed Memory Machines. IEEE Computational
Science & Engineering, 2(2):18–29, Summer 1995.

11. L. Iftode and J. P. Singh. Shared virtual memory: Progress and challenges. Proc.
of the IEEE, Special Issue on Distributed Shared Memory, 87(3):498–507, 1999.

12. R. Jyothi, O. S. Lawlor, and L. V. Kale. Debugging support for Charm++. In
PADTAD Workshop for IPDPS 2004, page 294. IEEE Press, 2004.

13. L. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented
System Based on C++. In A. Paepcke, editor, Proceedings of OOPSLA’93, pages
91–108. ACM Press, September 1993.

14. L. V. Kale and S. Krishnan. Charm++: Parallel Programming with Message-
Driven Objects. In G. V. Wilson and P. Lu, editors, Parallel Programming using
C++, pages 175–213. MIT Press, 1996.

15. P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Treadmarks: Distributed
shared memory on standard workstations and operating systems. In Proc. of the
Winter 1994 USENIX Conference, pages 115–131, 1994.

16. C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for dis-
tributed execution. IEEE Trans. on Parallel and Distributed systems, 2(4):440–451,
1991.

17. J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A non-uniform-
memory-access programming model for high-performance computers. In Journal
of Supercomputing, volume 10, pages 169–189, 1996.

18. S. J. Plimpton and B. A. Hendrickson. A new parallel method for molecular-
dynamics simulation of macromolecular systems. J Comp Chem, 17:326–337, 1996.

19. J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling
and execution of loops on message passing machines. Journal of Parallel and
Distributed Computing, 8:303–312, 1990.

20. A. Sinha and L. Kalé. Information Sharing Mechanisms in Parallel Programs. In
H. Siegel, editor, Proceedings of the 8th International Parallel Processing Sympo-
sium, pages 461–468, Cancun, Mexico, April 1994.

21. K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A
high-performance Java dialect. Concurrency: Practice and Experience, 10(11–13),
September – November 1998.

