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Abstract

The idea of a “Computational Grid” suggests that
high end computational power can be thought of as a
utility, similar to electricity or water. Making this
metaphor work requires a sophisticated “power distri-
bution” infrastructure. In this paper, we present the
Faucets framework that aims at providing (a) user-
friendly compute power distribution across the grid, (b)
market-driven selection of Compute Servers for each
job, resulting in effective utilization of resources across
the grid, and (c) improved utilization within individual
Compute Servers.

Utilization of individual Compute Servers is im-
proved by the notions of adaptive jobs and smarter job
schedulers. Server selection is facilitated by quality-of-
service (QoS) contracts for parallel jobs. Market effi-
ciencies are then attained by a bidding and evaluation
system that makes the Compute Servers compete for ev-
ery job by submitting bids, thus transforming the com-
putational grid into o free market. Job submission and
monitoring is simplified by several tools and databases
within the Faucets system.

We describe the overall architecture of the system.
All the essential components of the system have been
implemented, which are described in the paper. We

also discuss ongoing work and future research issues.
1

1 Introduction

Over the past decade there has been a dramatic in-
crease in the amount of available computing and stor-
age resources. The emergence of high performance
compute clusters has lead to compute power becoming
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relatively inexpensive and abundant. With high speed
networking many geographically distributed resources
can be coupled together, thus resulting in the raw in-
frastructure of the computational grid. The presence
of powerful parallel machines has fueled the develop-
ment of large scale and high performance applications.
Standardized programming systems such as MPI, col-
lections of libraries such as Linpack, Paramesh[20],
Global Array [12], domain specific frameworks|[2], and
advanced support for irregular and dynamic applica-
tions (such as Charm++ [14]) are facilitating devel-
opment of such applications. The Globus Tool Kit[8]
provides middleware to make these applications run on
geographically distributed resources.

There are two major hindrances that need to be
overcome to fully utilize the computational grid. The
first problem is that end users of massively paral-
lel applications have the tedious task of discovering
available and most suitable resources, uploading files
and babysitting their applications (i.e. monitoring
progress, restarting from the last checkpoint if the job
crashed, and when the machine is about to be taken
down, checkpointing the job and moving it to another
machine, if possible).

The second problem is that existing supercomput-
ers can remain underutilized because of the nature of
parallel applications and the mechanism available for
users to submit jobs. The utilization of resources in
an environment with multiple users and multiple Com-
pute Servers is affected by external fragmentation as
well as internal fragmentation. Ezternal fragmentation
occurs because individual users have access to only a
subset of parallel machines. Internal fragmentation oc-
curs when a Compute Server schedules existing jobs
in such a way that new jobs cannot be scheduled even
while many processor resources are idle within the same
Compute Server. The following two scenarios illustrate
these obstacles.



o Internal Fragmentation: Consider a single parallel
machine with 1000 processors. A user wants to run
an urgent and important job A which needs 600
processors. However, the machine happens to be
running a relatively unimportant but long job B
on 500 processors. So the important job languishes
while 500 processors remain idle.

o External Fragmentation: Now consider the follow-
ing scenario: when a user needs to run a paral-
lel application, all the parallel machines that they
have accounts on are busy running important jobs.
However, there are several other parallel machines
that are idle, but cannot be used since the user
does not have an account on them.

Such wastage is clearly undesirable, especially with
parallel systems becoming profit centers that sell com-
pute power.

In this paper we present the Faucets system which
is aimed at simplifying the process of submitting and
monitoring jobs for the end user and eliminating in-
efficiencies in resource utilization. The term Faucets
draws an analogy with the distribution of water as a
utility delivered via faucets.

We contend that the underutilization problem can
be solved by treating compute power as a commodity,
and by unleashing a market economy for the produc-
ers and consumers of compute power. The producers
would be the Compute Servers which would run appli-
cations for the users and charge the users for the runs.

In the scenario we envisage, users authenticated by a
central service submit jobs to the “grid”. A job runs on
some anonymous supercomputer, and may be moved
between supercomputers during its life. A few rare
large jobs may also run on multiple supercomputers
simultaneously. Users can monitor and interact with
their jobs via the Web, and input and output files can
be appropriately moved from and to the user’s com-
puter. Users pay for the compute power used via the
billing services, or barter the unused compute power
of their own Compute Server via an accounting service
that allows Compute Servers to pool their resources ef-
fectively. The basic architecture of the Faucets system
for supporting this scenario is described in Section 2.

We plan to improve resource utilization in this sce-
nario by two interdependent classes of mechanisms:

1. Optimizing the usage of each individual parallel
machine with smart job schedulers, and

2. Providing automatic, scalable and market-efficient
matching between jobs and Compute Servers.

To this end, we develop the notion of quality of
service (QoS) contracts for parallel jobs (see Sec-
tion 2.1), which specify the job’s resource requirements,
its behavior over the range of processors it can use, as
well as its payoff, i.e. how much the client will pay for
running the job.

An important twist we add to this scenario is the
introduction of Adaptive Jobs: which can change
the number of processors allocated to them at run-
time on demand[15]. In a previous paper [15], we de-
scribed how the Charm++ load balancing framework
can be extended to create adaptive jobs. Traditional
MPI jobs can also be transformed into adaptive ones
via our adaptive implementation of MPI (AMPI [3]).

Resource utilization on individual parallel machines
can now be optimized by smart job schedulers that
shrink and expand the processors allocated to their jobs
as needed. In the example above, job B can be shrunk
to 400 processors to make the remaining 600 processors
available for the important job A, thus fully utilizing
the system.

While operating as profit centers in the market econ-
omy of parallel jobs, such smart schedulers can further
tune their processor allocation to maximize their profit
by taking complex payoff functions into account, which
may specify premiums for early completion and penal-
ties for delays beyond deadlines. Further, the sched-
ulers incorporate bid generation algorithms (Sec-
tion 5.2), which take into account the current commit-
ments and the grid job “weather” (analogous to the
network weather systems [25], and/or “futures” mar-
ket for perishable commodities) to generate bids for
jobs submitted by users. The faucets system must
scalably select machines that potentially match the re-
quirements of the jobs, and scalably evaluate and select
bids on behalf of users.

2 Architecture

In the near future the computational grid may con-
sist of tens of thousands of Compute Servers each with
its distinct way of functioning. Potentially, millions of
jobs, each with a QoS requirement, may be submitted
to the grid per day. Resource allocation in such a sce-
nario becomes the problem of matching between the
jobs with the available Compute Servers in an efficient
(both from the point of view of the client as well as the
Compute Servers) and scalable manner.

We have developed a prototype Faucets system to
experiment with the ideas mentioned earlier. Figure 2
shows a simplified overview of the architecture of our
Faucets system.

The main components of the system are Central
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Figure 1. System Components.

Faucets Server(FS), Faucets Daemon(FD), Adaptive
Queueing System aka Scheduler aka Cluster Manager
(CM), Faucets Client (FC), AppSpector Server(AS)
and Database(DB).

Each Scheduler (CM) represents an individual Com-
pute Server in the system. The Scheduler running on
the supercomputer can be a traditional queuing sys-
tem, or the Adaptive Job Scheduler in Section 4. Each
scheduler is associated with a Database(DB) to store
the current status of all the running and scheduled jobs
on the Compute Server. This Database will be queried
for determining the state of the scheduler, based on
which the Scheduler has to decide whether to accept
a new job or not. Each Scheduler is associated with a
Faucets Daemon process which listens on a well-known
port. The FD acts like an agent for the Scheduler to
communicate with the rest of the Faucets system. At
startup each FD registers itself with the Faucets Cen-
tral Server(FS). The client process sees the FD, but
not the actual CM. When FD receives a bid request
from a client, it queries the CM with that request and
receives an appropriate bid which it forwards to the
client. The client then chooses the least bid and sub-
mits its job to the corresponding FD which in turn
starts the job through the CM. In essence to the ex-
ternal world, FD is the representative of the Compute
Server to the faucets system.

The Faucets Central Server (FS) is at the heart of
the system. It maintains the list of available Compute
Servers and refreshes the list by periodically polling the
corresponding FDs. The FS also maintains the list of
applications clients can run. In addition the FS is also
responsible for authenticating the users of the system.
It uses a database to store the Users information. This
database also stores the directory of available Compute
Servers and some information about each one, such as
the maximum number of processors it has, the available

memory, CPU type, and the address and port num-
ber of the FD corresponding to each Compute Server.
When the client contacts FS for the list of available
Compute Servers, FS returns this directory of FDs.

The user interacts with the system using a web
browser or a command-line client or a GUI client by
authenticating himself to the Faucets Central Server.
To submit a job, the client connects to the Central
Server and requests a list of matching supercomput-
ers. The client then connects to each FD and solic-
its a bid for the desired job. After some interaction
between the FD and the Scheduler, the FD either de-
clines the job or replies with a bid. Once the bids
are collected, the client chooses a satisfactory bid, and
informs the appropriate FD. At this point the client
uploads the input files to the chosen FD and the FD
takes over the job and starts it on the Scheduler. Once
the job starts, the FD registers the running job with
the AppSpector Server(AS). Figure 2 shows our GUI
client through which the user specifies the application
name, parameters such as minimum (minpe) and max-
imum (maxpe) number of processors, estimated time,
deadline and files to be uploaded to the parallel ma-
chine.

AppSpector is the Job Monitoring component of the
Faucets system. AppSpector server connects to the job
through a network connection and buffers the display
data so that multiple clients can monitor the job simul-
taneously. Any authenticated users using the faucets
client can connect to their running (or just completed)
parallel job using its job-ID via the AppSpector. The
AppSpector retrieves dynamic output from the paral-
lel program and provides a graphical representation of
the current status to the user, as shown in Figure 3.
One section of this display is application specific and
the other section generic, providing the processor uti-
lization/throughput of the application on the Compute
Server. At any point of the job execution the user can
download the output files generated by the job.

2.1 Specifying QOS Requirements

The Job requirements portion of the quality-of-
service contract must include, at a bare minimum:

e The software environment required by the job.
This could include the executable for the job, the
host operating system, and the required compilers
and libraries.

e The number of processors the job can run on (a
single number, a set of numbers, or a range.)

e The amount of time needed to complete the job,



and some notion of how this changes with the num-
ber of processors.

e The job’s payoff; and how this changes with the
completion time of the job. Thus a job with a
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detail in the specifications. For example, the comple-
tion time as a function of number of processors can be
specified by simple linear function (as used above) or
Figure 2. Faucets Client: Job Submission more sophisticated models.

Job requirements should also be made machine-
independent. So in a scientific application, for example,
one might specify the run time as the floating-point op-
eration count times the machine speed divided by the
parallel efficiency. An exact answer is, of course, nearly
impossible to obtain; but easy to estimate bounds on
these quantities are all that are needed.
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useful, such a phase must last for several minutes, to
justify the overhead of moving the job.

2.2 Security Model and Other Considerations

The client authenticates itself to the Faucets Server
through a userid, password pair. So every user should
obtain an account from the Faucets system. Also the
client embeds the userid, password information in any
communication with the FS or any FD. But since the
FD does not have any accounting information, it con-
tacts the Faucets Central Server again to verify the
user’s authenticity. In future,the single sign-on feature
of the Globus Security Framework(GSI) [10] can be
used to avoid these multiple authentication requests to
the Faucets Server for the same user.

In many scenarios envisaged in Faucets, the end-user
may not have an account with the particular Compute
Server that is to run their job. The Faucets system
runs the job with a temporary userid. This makes the
issue of Compute Server’s trust in the client’s job more
complicated. However, we resolve this issue by identi-
fying classes of secure applications, and allowing each
cluster to adopt a different policy and export a different
set of applications.

One proposed mechanism is Mobile Sandboxing, as
described in [17], to trap such untrusted calls and deny
service. Also, since each site may have different poli-
cies of trust, these Sandboxes have to be configured
differently for each Compute Server.

The emergence of JAVA into the realm of high per-
formance computing provides us another alternative
class of secure applications.

Further, many individual Compute Servers may
have their own applications that the administrators
trust based on their knowledge of those applications
(e.g. locally developed applications). They may in-
clude such applications in their list of supported ap-
plications. The Faucets Server can then keep track of
registered applications from each Compute Server to
avoid unnecessary broadcasts of request-for-bids.

In our current prototype, we assume that each paral-
lel machine exports certain “Known Applications” and
the user will be able to select one of these available
jobs through the Faucets Server. This scheme can be
generalized to an auditing-and-certification service for
applications. The recent developments and standard-
ization of WebServices provides us a better way of do-
ing this. On the lines of the Bayanihan Computing
.NET [7], each Compute Server can potentially provide
a WebService which allows the Computational Clients
to choose an application, execute it and retrieve the
results. Open Grid Services Architecture (OGSA)[26]

describes a standard way of integrating the Grid and
Web Technologies. GSI can enable web browsers to
single sign-on to multiple Web Servers and also to del-
egate capabilities to a web server so that the server
could act on the client’s behalf. Faucets system can
significantly leverage the new OGSA enabled Globus
Tool Kit components for integration of our system with
WebServices.

3 Improving Ease of Use

The Faucet systems also aims at simplifying and au-
tomating the process of running parallel applications
for the end user. For one, users don’t need to learn the
peculiarities of multiple queuing systems (and their in-
stallations) used by different Compute Servers. Input
files are uploaded and outputs downloaded automati-
cally. As discussed in the section on Architecture, the
web-based Appspector subsystem makes it easy to in-
teract with parallel jobs, irrespective of where they are
running. We are also implementing features that al-
low the system to restart users jobs from their last
checkpoint if the system had to stop the job or if the
machine had any transient hardware problem. We will
also make use of Data Grid [28] components of Globus
for managing files, for the purpose of storage and visu-
alizations.

4 Improving the Utility of a Server

Individual Compute Servers must be able to maxi-
mize their utilization (and profit, in the general case).
The job schedulers in Faucets system make use of adap-
tive jobs to this end.

An adaptive job is a parallel program that can
dynamically (i.e. at run-time) shrink or expand the
number of processors it is running on, in response to
an external command or an internal event. The num-
ber of processors can vary within the bounds speci-
fied when the job is started. Typically, the user will
specify the bounds taking into consideration memory
usage and efficiency of the job on a given number of
processors. We have developed adaptive jobs in both
Charm++ and MPI. The performance and implemen-
tation of adaptive jobs is presented in [15].

4.1 Smart Job Scheduling

Once adaptive jobs are feasible, with their charac-
teristics and payoff functions specified in the QoS, they
enable the design of intelligent job schedulers that aim
at maximizing system utility. Most current production



queuing systems are incapable of exploiting the oppor-
tunities created by adaptive jobs. We have developed
an adaptive job scheduler that can manage such adap-
tive jobs [15].

The scheduler is triggered when a new job arrives
in the system, and when a running job finishes (or re-
quests a change in the number of processors assigned
to it). On arrival, the scheduler analyzes the job’s re-
source requirements and deadlines to decide if it can
be accepted.

The scheduler would try to maximize a system util-
ity metric. This metric can be system utilization, job
response time, or a more complex profit metric, spec-
ifying the amount the user pays if his job is finished
before the deadline. Hence if a high profit job arrives
and has a tight deadline, the low priority jobs can be
shrunk and the freed processors can be allocated to the
high priority job. The communication topology also
needs to be considered because the shrunk jobs should
continue to have locality and a contiguous set of pro-
cessors need to be assigned to the new job. Jobs may
also have to be check-pointed and restarted at a later
point in time and possibly at another (subcontracted)
Compute Server with a different architecture.

Decisions on allocating processors to jobs is taken by
a strategy that can be plugged in to the adaptive job
scheduler. One of the earliest strategy we implemented
is presented in [15]. It is a simple strategy that tries
to maximize system utilization by using a variant of
equipartitioning: Each job gets a proportionate shared
of available processors, while respecting the specified
upper and lower bounds on the number of processors
for each job.

The utility metric can also be maximizing the payoff
function from running a job before its deadline: Such
jobs typically have a soft deadline, and a hard deadline.
The payoff for the job linearly decreases after the soft
deadline, and may have a significant penalty after the
hard deadline. In such a scenario, running a new job
may delay other jobs and lead to a loss in profit. So the
payoff from the new job must at least compensate for
the loss mentioned above or the job must be rejected.
The strategy must find time windows for the job in its
processor-time Gantt chart before the job’s deadline.
If enough time cannot be allocated for the job it must
be rejected. We are currently in the process of devel-
oping such a strategy. Our current prototype strategy
accepts a job if it is profitable and can be scheduled to
run now or at a finite lookahead in future.

5 Market-Efficient Server Selection

This section describes the components of the Faucets
system that decide which job runs on which Compute
Server. For each component, we describe its current
implementation and ongoing work. We then also com-
ment on research issues that will arise in scalable im-
plementations in future.

5.1 Scalable Identification of Potential Servers

In the current implementation, the client software
(but not the end users personally) gets a list of all Com-
pute Servers from the Central Faucets Server (FS) , and
broadcasts a request for bids, with QoS requirements,
to all of them. Ongoing work involves implementa-
tion of simple filtering services at the FS so that static
properties (such as number of processors and amount of
memory per processor) as well as dynamic properties
(e.g. current availability of the Compute Server) are
taken into account to eliminate Compute Servers from
the broadcast. In future, the broadcast itself will be
handled by a distributed Faucets system, making the
potential-server selection scale up, even in the presence
of millions of jobs submissions a day.

5.2 Bid Generation Algorithms

Probably the most research intensive task will be
development of algorithms for generating bids for jobs
submitted via the request-for-bids broadcasts. These
algorithms will run at individual Compute Servers, and
will reflect the characteristics of the Compute Server,
its orientation to risk and profit. The bidding deci-
sions can be potentially based on local factors, such
as how busy the Compute Server is during the time-
period covered by the job, and how far into the future
is the job’s deadline. For example, a simple strategy
may be to set a low bid if the job’s deadline is in the
very near future (e.g. next hour), and the machine is
relatively free.

The current strategies we have implemented include
a baseline strategy that always returns a multiplier of
“1.0” if it can run the job. (The bid is converted to
Dollar amount by multiplying the CPU-seconds needed
for the job with a normalized cost and the multiplier
returned by the bidding algorithm). Another imple-
mented strategy returns a multiplier linearly interpo-
lated between k(1 —a) and k(1+ /) depending on what
the average system utilization is likely to be between
the current time and the deadline of the proposed job.
k, o and 8 are parameters of this strategy (current val-
ues we use are 1, 0.5 and 2.0). We expect « and 3 to be



associated with the risk the Compute Server is willing
to take to maximize profit, and k with urgency of the
job for the cluster. (For the job in the example above,
with a near-by deadline, one expects to use a low value
of k).

In future versions, the bid may also depend on non-
local factors, such as “what is the average price of sim-
ilar contracts in the recent past, in the whole system?”
or “how busy is the entire computational grid likely
to be during the period covered by the deadline?”. For
this, bid generators need support from the Faucets sys-
tem.

5.2.1 Faucets Support for bidding

The Faucets system will provide such global informa-
tion to Compute Serversand/or their agents running
on faucets infrastructure. The particular mechanisms
we envisage supporting include: maintaining a history
of every individual contract over recent time periods,
summaries based on various histogram metrics (e.g.,
grouping jobs based on the minimum or maximum
number of processors they need), trends for future us-
age based on customer surveys, etc.

5.3 Scalable Bid Evaluation and QoS Contract

In the current implementation, each client receives
all the bids and selects one of the Compute Servers
for the job based on a simple criteria (such as least
cost, or earliest promised completion time). We ex-
pect this scheme to scale to reasonably large grids (con-
sisting of hundreds of Compute Servers). However, in
a larger grid of the future, a scalable mechanism is
needed for Compute Server selection for a couple of
reasons. Firstly, the large number of Compute Servers
will make it impractical for each client to deal with a
flood of bids. Secondly, since many bid-requests may
be in progress at the same time, a two phase proto-
col will be needed to get a firm commitment from the
selected Compute Server (which may have received a
more lucrative job in between).

An issue for future research here is a scalable asyn-
chronous system for bid evaluation and contract confir-
mation. We envisage a system in which each Compute
Server as well as client is represented by several agent
processes running on the distributed faucets frame-
work. The server agents communicate with their mas-
ter Faucet Daemons, as well as with bid commitment
algorithms of the Faucets system. The client agents
simply specify user-specific selection criteria to evalu-
ation.

We plan to publish a generic interface for the bid-
generation algorithm, allowing other researchers to test

their bid generation algorithms against each other.
5.4 Simulation System

To evaluate the scalability of the framework and to
compare the effectiveness of alternative bidding strate-
gies, we have built a simulation framework: each en-
tity in the Faucets system — clients, Compute Servers,
Faucets-Server (and its distributed servers in future),
job schedulers with their bid-generation algorithms,
and application programs — is represented by an ob-
ject, and discrete-event simulation is carried out over
patterns of job submissions under study.

5.5 Alternative Contexts for use of the Faucets

The Faucets system can be used in a variety of pos-
sibly overlapping contexts, as described below.

5.5.1 Pay-for-use system

Clearly, the primary aim of the Faucets system will be
in a context in which users will pay for running each
job. The bids in this context will be Dollar amounts.
It may be necessary to have regulatory mechanisms in
place to avoid misuse of markets: limits on how far the
bids can be from some notion of “normal” price can
be one such mechanism. It may also be necessary to
have additional priority to jobs of national importance
to prevent denial-of-service attacks on such systems.

5.5.2 Academic Applications

How can the current practices in the Science and Engi-
neering academic research transition to a market based
economy? This research suggests that management of
cycle-providing centers be decoupled from users and
handed over to private (for-profit) producers. Users
can then be allocated quota in terms of Service-Units
(SUs) as before. However, the bids generated by the
Compute Servers will now be multipliers to SUs rather
than Dollar amounts. (“I will run your job that needs
1000 SUs, but I will charge 1400 SUs for it.”, or “I will
only charge 750 SUs for it”). This will lead to bringing
market efficiency to such centers. Traditional super-
computing centers supported by NSF can still be in
the business of providing expert services and consult-
ing for effective parallelization of parallel jobs.

5.5.3 Bartering

The Faucets architecture is equally suitable to create
cooperative computing environments where a commu-
nity of individuals share each others’ resources. Those



who are contributing to a common pool can get ac-
cess to that pool [23]. We have a reasonably sophis-
ticated accounting system in place for deciding how
much resources each contributor can get. Each con-
tributor earns credit for sharing his/her resource and
can use up the credit when needed. In our architecture
the Faucets Central Server keeps track of the credits
of all the collaborating clusters. Each user belongs to
a single Home Cluster and normally whenever he tries
to submit a job, the system tries to submit the job to
the user’s Home Cluster. But if the resources on the
Home Cluster are not available and the Home Cluster
has enough credits the system tries to submit the job
to any of the collaborating Compute Servers and the
appropriate number of credits are added to the Com-
pute Server that executed the job and equal amount is
deducted from the Home Cluster’s account. The cred-
its can be amount of the computational units the job
has taken to execute or any other function of it. This
mode of bartering of computational units is very useful
when the participating entities in the Grid have to be
both service provides and consumers.

5.5.4 Intranets

When a company or a laboratory wishes its Compute
Server’s resources to be pooled among its users, the
Faucets system can be used with some small modifi-
cations. Different jobs may have priorities assigned by
management. Pre-emption of low priority jobs may
be allowed (with automatic restart from a checkpoint
later). Further, some elements of the bartering scheme
may be incorporated in order to allow individual de-
partments or users from getting “fair usage” from re-
sources, so that high priority jobs do not forever starve
a subset of user, who may own some of the resources.

6 Related Work

Several projects have studied resource allocation and
job management on the Computational Grid. Condor-
G [11], Legion [1], SETI@home, Entropia’s PC Grid
Computing, Parabon’s Pioneer, NetSolve [9], Appli-
cation Level Scheduling (AppLeS)[6], and Bayanihan
[16] are distributed and ubiquitous resource allocation
frameworks.

Condor-G [11] gives end-users a unified view of all
the dispersed resources they are authorized to use. It
gathers information about the Grid resources and the
job requests from the users in the form of ClassAds
and with the help of the Matchmaking framework [24]
it tries to determine where to execute user jobs. The
ClassAds are similar to the QoS contracts and the Bids

generated by the Faucets system. With ClassAds, the
system matches jobs to resources; in contrast, with
Faucets, choosing the appropriate “bid” (and hence the
Compute Server) is up to the client (or Client’s Agent).
The Condor-G match making algorithms are applicable
in our context at the stage of screening the Compute
Servers to get a list of potential Compute Servers.

Legion [1] takes an object oriented approach to
the problem of resource scheduling by formulating
an object placement process model. The Coordina-
tor/Mapper(CM) is responsible for making the map-
ping decision. Legion concentrates more on pro-
viding basic infrastructure for the grid similar to
Globus[8]. SETI@home, Entropia’s PC Grid Comput-
ing, Parabon’s Pioneer and Bayanihan [16, 7] employ
a master-slave paradigm where a single master server
controls the distribution of available work among dif-
ferent worker agents sitting on the users desktops. Net-
Solve [9] is a client-agent-server RPC-based system to
solve computational problems. Its middleware system
provides a computational framework for “task farm-
ing” applications with load balancing and scheduling
strategies to distribute tasks evenly. NetSolve schedul-
ing strategies do not have the economy model built
into them. Both NetSolve and Nimrod concentrate on
scheduling master-slave based loosely coupled indepen-
dent tasks. Faucets, on the other hand, focuses on par-
allel jobs. AppLeS (Application Level Scheduling)[6]
on the other hand takes the approach of developing
individual scheduling agents for each application, thus
adapting them to the execution-time characteristics of
dynamic, distributed environments. The user must
provide an application-specific performance model, de-
scribing its structure and execution activities, and the
application performance criteria.

Many resource allocation frameworks have also stud-
ied and incorporated computational economics and
computational markets [18, 19, 22, 4, 27, 5, 13, 21]. En-
terprise [27] is one of the earliest decentralized market-
like schedulers for load sharing in distributed computa-
tional environments. The protocol has announcement,
bid, and award stages. In the announcement stage, a
client broadcasts a request for bids which includes a
description of the task to be run, an estimate of re-
quired processing time, and a numeric task priority.
Idle contractors reply with bids containing estimated
completion times for the client’s announced task. The
client collects bids from responding contractors, evalu-
ates all the bids, and awards its task to the best bidder
(with the earliest estimated completion time). Since
Enterprise has no concept of market price, the flex-
ibility of the system is inhibited by constraining the
criteria by which contractors and clients could make



decisions. Also, it is limited to the execution of inde-
pendent tasks on compatible workstations. Spawn [5]
takes a slightly different approach, where a seller exe-
cutes an auction (sealed, second-price auctions) process
to manage the sale of his workstation’s processing re-
sources, and a buyer executes an application that bids
for time on nearby auctions. Nimrod/G [22] has a com-
putational economy based distributed scheduling com-
ponent that tries to select the resources that meet the
deadline and minimize the cost of computation. In ad-
dition to addressing these issues, Faucets system aids
resource providers in their price decision process (and
hence scheduling), to maximize their profit and to at-
tract more customers.

7 Summary and Future Work

We described Faucets, a system that supports the
notion of compute power as a utility. Faucets is de-
signed for parallel jobs, although it can also be used for
sequential jobs. Users submit jobs with their Quality-
of-Service requirements to the Faucets system, via
clients (command-line, GUI, or Browser based clients
are supported and provided). The Faucets system iden-
tifies the Compute Servers that may be able to run the
job and sends the QoS requirements to them. The
Compute Servers themselves run a daemon that in-
terfaces with the Faucets system, and mediates with
the local scheduler. The local scheduler may submit a
bid for the job. The Faucets system, taking the users-
specified selection criteria into account, selects the best
bid. User’s job files are then uploaded to the system.
Although the user doesn’t explicitly know which Com-
pute Server is running his job, he can connect to it
and examine its output and current status via a web-
based server called AppSpector. The output files can
be downloaded to the user computer (or other storage
on the network).

One unique aspect of the Faucets system is its use of
adaptive jobs, which can change the number of proces-
sors they use on command. Adaptive Queuing Systems
(Schedulers) that take advantage of such jobs have been
designed for use within the Compute Servers of the
Faucets system. Such Schedulers have a competitive
advantage over normal schedulers in the free-market
economy of compute power unleashed by the grid via
Faucets.

The Faucets system is in operation at the University
of Illinois, with two research clusters. Soon, it will be
extended to several other clusters, some via a bartering
subsystem of Faucets.

We described architecture of the Faucets system,
and its components. We also identified research

issues for future, which involve more sophisticated
bid-generation algorithms and scalable bid-evaluation
framework. Further, improvements that simplify par-
allel job administration for the user are being imple-
mented in the system. As a result, we expect Faucets
to be a widely used system for utilizing resources on
the computational grid.
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