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Abstract

As both modern supercomputers and new generation scientific computing applications grow

in size and complexity, the probability of system failure rises commensurately. Making parallel

computing fault tolerant has become an increasingly important issue. Checkpoint/restart mech-

anism provides for fault tolerance capability as well as other benefits for parallel programmers.

This thesis describes the on-disk checkpoint/restart mechanism for Charm++ and Adaptive MPI

programming framework, its motivation, design, and implementation. This mechanism has proven

to be useful in practice and can also be extended to implement other fault tolerant techniques.
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Chapter 1

Introduction

Parallel computing has been playing an increasingly significant role in scientific and engineering

research. Some problems, for instance protein unfolding simulation, by themselves are too large to

be solved by any single machine. On the other hand, researchers keep increasing the size and/or

resolution of their applications in order to obtain results of higher research value. Challenged with

the need for higher computing capability, people created larger parallel machines to handle the

ever growing needs of parallel applications. Nowadays it is quite common for a parallel program

to run on a thousand-processor machine for weeks or months to solve a problem. Besides the

increasing scale, many applications consist of algorithms that are hard to parallelize in conventional

programming paradigms. There arises the necessity for new parallel model and supporting run-time

systems (RTS) to ease this difficulty. Charm++/AMPI[16, 18, 13] has addressed this issue with

its virtualization model. Its model has made an effective separation between the concerns of the

programmer and the RTS. With virtualization, the adaptive overlapping between computation and

communicationis enabled. In fact, the methodology is so successful that it has led to a Gordon Bell

Award for “difficult to parallelize” application in 2002[20].

As the size of new parallel machines multiplies, the probability of system failure increases

commensurately. As a result, methods to ensure that programs ”survive” infrastructure failures

become a hot topic. There are different types of survival. For example, the system may be able

to automatically recover from the problem without affecting the behavior of applications. In other

situations, the run-time system or the application itself are required to be involved in the recovery.

The checkpoint/restart mechanism described in this thesis is aimed at providing a reliable execution

of parallel programs in Charm++/AMPI at the run-time system level.
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1.1 Motivation

Checkpoint and restart mechanism is an important effort toward fault tolerance. It provides the

programmer with the capability to take snapshots of the application, periodically or on command.

The checkpoint mechanism does not necessarily log every single bit of the information in the system

at that moment; only the essential data are saved on more reliable storage. On occurrence of system

failure, these checkpointed data would be used to restore the application to the previous checkpoint,

and the forward progress of the application can resume from that point.

The checkpoint/restart mechanism in Charm++/AMPI has benefits beyond fault tolerance.

For example, if we can restart the parallel program on different number of processors, the system

can immediately work around the failure. This is ideal in the typical scenario where 1 processor

out of 1,000 has failed; the surviving 999 will not have to wait for the dead processor to come back;

the application can simply restart on the surviving processors.

In this thesis we present a checkpoint and restart mechanism that fully supports the above

described features.

1.2 Contributions

The contributions of this thesis include:

• A checkpoint/restart mechanism for Charm++ and Adaptive MPI run time system. This

mechanism can be used in any parallel program written in Charm++ or AMPI on all sup-

ported platforms.

• Part of the work of this thesis is used for further fault tolerance efforts in Charm++/AMPI.

Examples are two ongoing projects - in-memory checkpoint mechanism and message-logging

based fault tolerance mechanism.

1.3 Organization

This thesis is organized as follows. In the first chapter we provide the motivation for this thesis.

Chapter 2 includes an introduction to the checkpoint/restart mechanisms. Checkpoint/restart
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mechanisms for Charm++ and AMPI will be described in detail in Chapter 3 and 4 respectively.

In the last Chapter a conclusion will be drawn and the future work will be discussed.
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Chapter 2

Checkpoint and Restart Mechanism

2.1 Features of Checkpoint/Restart Mechanism

Checkpoint/restart is a mechanism to preserve the state of a running system and to restore the

system from the saved information. In parallel programming, checkpoint/restart mechanism must

record and reconstruct the states of all the involved processing elements.

The most important benefit that checkpoint/restart provides is fault tolerance. By taking

checkpoints periodically or on command, the system is capable of recovery after infrastructure

failures. Periodic checkpoint is a straightforward solution to regular system failures. In other cases,

especially for a system with fault monitoring mechanism, checkpoint schedule can be adjusted with

the frequency of system failures to save on the overhead of checkpointing in failure-free execution.

In the context of parallel programming, checkpoint/restart mechanism is usually more com-

plicated than in sequential programming. Part of the complexity is due to the communications

between processors. At the time of system failure, not only the machine states but also all the mes-

sages in flight are lost. Decisions must be made on whether and how to save the flying messages

in the wire. Some restrictions on when the checkpoint might be taken might be imposed for this

reason.

The capability to reorganize the load in the application on recovery is a significant optimiza-

tion. A parallel computing platform usually consists of a large quantity of nodes and components.

Typically, the system fails with only one or two of its components ceasing to function. In this case,

having all the nodes idle while waiting for the one or two components to be fixed is very inefficient.

If we are able to reorganize the load in the recovery phase, we have the flexibility of adapting the
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application to the new environment after recovery. The example of being able to restart on different

number of processors has been described in the previous chapter.

Besides fault tolerance, checkpoint/restart can also contribute to more efficient scheduling on

parallel platforms. With checkpoint/restart capability, a long running job that requires a large

amount of system resource can be saved to disk and suspended during busy periods and restarted

when the system is less busy. This technique is called Gang Scheduling[10] and is used in various

contexts such as operating system. With this flexibility in scheduling, the overall throughput and

usability of the supercomputing platforms can be improved.

2.2 Categories of Checkpoint/Restart Mechanism

In this section we discuss different categories of checkpoint/restart mechanism.

2.2.1 Application vs. Run-time System Level

Checkpoint/restart mechanism can be implemented at different levels in the system. Some choose

to hard code the checkpoint mechanism in their application. The programmers write code to decide

which part of the data structures to save during a checkpoint as well as where and how to save

them. Smooth restarting is also a consideration. This approach can be very efficient, because the

programmers understand their applications’ needs the best. However, there are a few problems

with application level checkpoint/restart. First, it is usually prohibitively difficult to modify the

code of past applications to do checkpoint/restart. Second, this approach holds the programmers

responsible for the correctness and portability of the application’s checkpoint/restart mechanism,

while this job could be automated in a more generic way.

As an alternative, checkpoint/restart mechanism can also be implemented at Run-Time System

(RTS) level. The RTS has access to all kinds of data structures to be checkpointed. Another

main advantage is its generality. One does not have to make major changes to the code, especially

for hard-to-modify legacy code, to make it checkpointable. Generality could be a disadvantage

too, when the RTS saves more than necessary data, due to the lack of knowledge specific to an

application. This problem can be solved by allowing the programmers to give hints to the RTS as

to what is the essential data in their applications.
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2.2.2 Coordinated vs. Uncoordinated

Parallel checkpoint/restart has additional complexity of coordinating multiple nodes in the system.

In coordinated checkpointing, the processors exchange control messages to ensure a consistent global

state. It can be implemented as a blocking barrier on all involving processors. This approach is

simple to implement, with its obvious correctness and transparency. At restart phase, all the

processors just roll back to the latest global checkpoint and start the program. The other flavor

of coordinated checkpointing does not require the global barrier. Each processor continues after

their checkpointing without blocking. Chandy and Lamport[5] suggested an algorithm to ensure a

consistent global state without a global barrier. This method alleviates the cost of synchronization

but does not totally remove it.

The simplicity of coordinated checkpoint comes at the price of synchronization overhead, espe-

cially in large scale parallel systems. To eliminate the overhead and make checkpointing scalable,

uncoordinated checkpointing removes the requirement for control message exchange among pro-

cessors. Each processor decides when to checkpoint independently. The key is to ensure global

consistency at the restart phase because all the checkpoints are not necessarily consistent. In order

to do this, some processors might be rolled back more than once to reach a good global state, due

to the lack of coordination among the checkpoints. Potentially this type of mechanism may suffer

from rollback propagation or domino effect[22]. Another issue is garbage collection. Since all the

checkpoints are potentially necessary in a restart, the checkpoint files may grow infinitely in space.

The system has to figure out a way to reclaim checkpoint space[26] in such a system.

Other than the categories discussed above, there is the issue of form in which checkpoints

are recorded. Checkpoint files are usually saved to reliable storage such as hard disks. As the

price of reliability, hard disks have relatively higher I/O overhead, thus lowering the efficiency of

checkpoint/restart. Especially, when checkpoints are taken periodically, the life of a checkpoint can

be transient and does not deserve the high overhead. To meet the demand of lower overhead and

acceptable reliability, the memory of peer nodes in a parallel system can be used. With good design

of the algorithm, in-memory checkpointing or in-memory combined with on-disk checkpointing,

enjoys the advantage of low cost yet high reliability.
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2.3 Related Work

Checkpoint/restart mechanism in parallel computing has been a very popular research topic.

CoCheck[24] sits on top of message passing library and implements its functionality in its own

MPI library tuMPI. A special process is used to coordinate the checkpointing, triggering the pro-

cessors to save their states as well as incoming messages until all processors have finished doing

so. At restart phase, “receive” operations need to first look at the saved messages for any match.

This restricts when the checkpoint can be taken and sometimes may change MPI’s semantics of

synchronous communication.

CLIP[6] is another project implemented on top of message passing paradigm and it is specifi-

cally built for Intel Paragon. They claim to be a semi-transparent mechanism because the user is

expected to make minor changes to invoke the checkpoint procedure. Also it is the programmer’s

responsibility to make sure that it is invoked at an appropriate time. Because a totally transpar-

ent implementation usually involves the operating system and can be very difficult to implement,

this tradeoff does make sense in many cases. A notable point is that CLIP is built on top of a

compiler-based checkpointer libckpt[21].

An actively ongoing project called MPICH-V[7] features multiple fault tolerant protocols. Built

on MPICH core, MPICH-V[2] and MPICH-V2[3] based their protocols on uncoordinated check-

point. To ensure the consistency, messages are logged in both protocols. In the first version,

Channel Memory is devised to process the communication from one PE, reducing the bandwidth

by half. In the second version, a communication daemon is created for each computing node to

reduce this overhead. Another version of this project MPICH-V-CL take coordinated checkpoint

following Chandy-Lamport algorithm.

Similar to CLIP project, LAM/MPI team based their checkpoint/restart module on a kernel-

level checkpoint/restart mechanism called BLCR, or Berkeley Lab’s Linux Checkpoint/Restart[9].

It is on the kernel level, and therefore it is limited to Linux platforms. The low level implementa-

tion hides the checkpointing from the application developer, and the overhead introduced by the

LAM/MPI Checkpoint/Restart Framework[23] is shown to be very small.
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Chapter 3

Charm++ Checkpoint/Restart
Mechanism

3.1 Charm++

Charm++ is an object-based, data-driven parallel programming language. It provides a machine-

independent Run-Time System(RTS). A program written in Charm++ can be compiled and run on

many of the most powerful supercomputers without modification of the code. Some of the supported

platforms include Lemieux at Pittsburgh Supercomputing Center(PSC), Origin2000 at National

Center for Supercomputing Applications(NCSA), IBM SP supercomputer and the BlueGene/L, as

well as clusters of Linux workstations including SMPs and single processor nodes. Charm++ is built

on an underlying framework called Converse [15, 17]. Converse provides a machine-independent

layer for message passing, message handling and scheduling, as well as basic thread functionalities.

Before we introduce Charm++ programming model and its components, let’s first look at a

fundamental concept in Charm++: processor virtualization.

3.1.1 Processor Virtualization

The idea of processor virtualization is to let the programmer divide the work into chunks, and let

the system map these entities to physical processors. The number of chunks, or virtual processors,

is typically much larger than the number of physical processor, and is usually independent of the

latter.

Processor virtualization allows for a set of benefits. The first benefit is better software engi-

neering. Virtualization let the programmer focus on the logical interaction among the parallel jobs
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while neglecting the configuration of physical processors. This is in compliance with the principle

of good coupling in software engineering: program entities are coupled only when they are logi-

cally connected. In contrast, MPI’s processor-centric model often hinders the programmer from

following this principle. Secondly, efficiency and flexibility are improved for parallel programs. In

the object-oriented model, adaptive overlapping between communication and computation comes

naturally, while automatic load balancing and checkpointing/restarting can be done in an easier

way.

3.1.2 Programming Model

Charm++ is object-based and data-driven, meaning that control of the program is dictated by

messages sent from object to object. An object sends a message to another through the recipient’s

“entry point”, or a specially registered function invoked by remote messages. The remote invocation

is asynchronous: a function call returns immediately after sending out the message, without waiting

for the response to come back. This idea of asynchronous remote invocation makes adaptive

overlapping of computation and communication possible. For example, when an object needs some

User View

System Implementation

Figure 3.1: Charm++ maps objects onto processors

Charm++ allows computation to be divided among objects that are mapped to physical
processors at runtime. On the left, the programmers focus on designing the interactions
among parallel objects. To the right, Charm++ RTS maps the objects onto physical
processors and supports the interactions. The communication relationships, as illus-
trated by arrows between the objects, are preserved in the mapping. Charm++ can
automatically balance the load on the processors by moving objects between processors.
(Figure taken from [16])
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data from another object, it sends out a request and while the data is being prepared on the other

side or in flight in the internetwork, the object can make full use of the CPU time to perform some

useful computation.

The run-time system maps objects onto processors, so it is also responsible for routing message

from object to object. A mapping mechanism maintains a default mapping and records all changes

in object location. This means even after an object moves away from its default (or home) processor

to another processor, messages addressed to it will still be able to reach it. Object migration allows

for automatic load balancing, by which workloads can be dynamically balanced among processors

at run time. Taking this idea one step further, migrating objects onto and back from disk files is

the basic idea of checkpointing and restarting.

On the recipient’s processor, a message scheduler receives and buffers the message and deter-

mines which object the message is intended for. If the recipient has migrated off the processor

during load balancing, the message is forwarded to the correct location. One thing to note is that

in Charm++ the messages are not guaranteed to arrive and be scheduled in the same order as they

are sent.

3.1.3 Parallel Objects

There are several different kinds of parallel objects in Charm++. To checkpoint/restart a Charm++

program, we will have to take care of each type. Therefore in this section we give a brief introduction

of them. [8]

• Chare

Chares are concurrent objects with methods that can be invoked remotely. They are no

different than ordinary C++ object except for their special methods known as entry methods

or entry points. The entry methods are registered in an interface “.ci” file, where the object

class is also declared. Also a “proxy” can be created for this chare. A proxy’s role is just

as its name suggests. It is a delegation of its corresponding chare or other types of parallel

objects on all processors. So after a proxy is assigned for the chare, some entry methods

registered for it, Charm++ supports the invocation of these entry methods on the proxy

from any processor in the system.
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There is a special variant of chare called Mainchare. A mainchare’s default constructor is the

entry point to the user code in a Charm++ program. Mainchare is usually used as a general

control center, maintaining some global data. One limitation of this use is that a mainchare

has only one copy and it resides only on processor 0.

• Chare Array

Chare arrays are arbitrarily-sized collections of chares. The entire array has a globally unique

identifier, and the array ID can be used to derive a proxy for this chare array. Chare arrays are

different from regular C array, in that the elements are not necessarily sequentially ordered in

a linear space. Essentially the elements are a collection of objects, each with a unique index

of type which can be a single integer for 1D array, several integers for a multi-dimensional

array, or an arbitrary string of bytes for user defined index type (e.g. a binary tree index).

Array elements can be dynamically created and destroyed on any processor, and messages for

the elements will still arrive properly. Array elements can be migrated at any time, allowing

arrays to be efficiently load balanced. Array elements can also receive array broadcasts

and contribute to array reductions. To implement these functionalities in an efficient way,

Charm++ devised a special type of chare arrays called Groups which is described in detail

next. A system group Array Manager is created for each chare array and the array manager

maintains information such as which indices have objects created and where they are (resident

processor and object pointer) and controls the message routing, object migration and so on.

• Group and Nodegroup

Groups are a special kind of chare arrays: they have exactly one element on each physical

processor. Groups are useful in several ways. First, groups can maintain global data in a

distributed fashion. They do the same job that the mainchare does, but providing a local copy

to each processor improves the scalability of the program. For this reason, groups are also

called Branch Office Chares (BOC). For example, when an object on a random processor needs

some global data, it is able to fetch it on the local group element to save on communication

overhead. Groups are also used to hold processor specific data. The Charm++ programming

model alleviates the programmer’s responsibility of always thinking of physical processors,
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but the run-time system is fully aware of processor specific information. In the Charm++

RTS, groups manage the information like which chare array elements currently reside on a

local processor.

Nodegroups are a variant of groups, with one element on one node of SMP machines. The

same way that groups improve scalability at the processor level, node groups do the job on

the node level. As an example, the reduction tree in the SMP version of Charm++ is formed

on both processor level with group and on node level with nodegroup to further improve

scalability.

In the run-time system, two tables are maintained: one for all groups, system and user-

defined, and the other for all nodegroups. Each entry of the table includes information like

group name, group ID, its constructors and the object pointer. From these central tables, the

system has access to all groups and nodegroups, and via array managers, to all chare arrays.

Individual chares, however, are not included in any system table, and thus are not accessible

to the system without an explicit object pointer.

• Readonly Data

Readonly data are not really parallel objects. Their values are assigned in user mainchare at

start-up and broadcast to all processor as read only. Proxies of the mainchare, other chares,

and chare arrays are typically declared as readonly data in the interface file.

3.1.4 Program Flow

A Charm++ program starts with initialization of various variables, data structures and modules

in the run-time system. For example, tables for groups and nodegroups are created and initialized

here. Some system modules such as the load balancing module and the Charm tracing module are

initialized too.

Following initialization is registration. In this phase, system modules and user modules are

registered with Charm++ on processor with rank 0 of each node. A module is a collection of

related objects, functions and data bundled together. One module may also include other modules

to complete its functionality. For instance, “CkArray”, the module for array managers, includes
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the definition of array manager and its entry methods, definitions of a few helper functions, and

also modules that implement reduction and location management.

After initialization and registration, a few things are done from processor 0 for the whole system.

First constructors of mainchares are invoked. There may be more than one mainchare in the system,

because many modules may want to set up their utilities before anything really happens, and a

mainchare’s constructor is their best choice. The checkpointing module uses this technique to create

a special group used by the checkpoint mechanism called checkpoint manager, with a branch on

each processor. Then readonly data are collected using a PUP’er (described in Section 3.1.5) and

broadcast to all processors. After all these are done, function initDone() is invoked to do some

clean-up work.

After the run-time system has initialized itself, the user mainchare’s constructor is invoked, and

thus the user code starts execution. Typically, user code creates a bunch of parallel objects like

chare arrays and groups. These objects interact with one another by communicating messages, and

messages drives the flow of the execution.

Let us take a stencil computation as an example. In this problem, we have a matrix of data, and

every time step we want to update each matrix element’s value to be the average of its old value with

its neighbors’ values. The problem simulates heat dissipation and other scientific computations. To

parallelize this problem, we divide the matrix into many small chunks, and the run-time system will

map these chunks onto physical processors available. Each chunk will need the border data from

its neighbors to do its computation. So a timestep starts with all chunks sending out border data

to their neighbors. Depending on the destination of the messages, the message passing can be as

simple as a message copy, or as complicated as data transfer across the interconnect. Consequently,

the border data do not arrive at the destinations at the same time. Some lucky chunks get the data

they need and starts computation early, while others are still idle waiting. When the late chunks

get their turn do the computation, the early chunks might be preparing for the next round of

communication. The example illustrates the typical control flow of a Charm++ program: message-

driven and asynchronous. Thereby, Charm++ is enabled to render the full power of processor

virtualization.

After all work is done, CkExit() is called and the program is terminated.
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3.1.5 PUP Framework and Object Migration

In order to implement object migration, the run-time system needs a way to collect all the data,

static and dynamic, and serialize them into a buffer before departure from the source processor, and

vice versa after arrival at the destination processor. The RTS of Charm++ provides a collection of

efficient and elegant classes that enable parallel objects to be serialized and deserialized. This col-

lection of classes is called Pack/UnPack or the PUP Framework. Other than to serialize/deserialize

an object, the PUP framework can also be used in any functionality that requires traversal of an

object’s data members.

With the PUP framework, object migration can be as simple as 3 steps: 1) packing the object’s

member data into a buffer, 2) shipping this buffer to the destination processor, and 3) reinitialize

the object with the data unpacked from the buffer on the new processor. Similarly, to checkpoint a

program, we need to pack up the states of all the parallel objects and ship them onto the disk, and

restarting is read the object states from the disk and migrate them back onto processors. Therefore,

checkpointing/restarting can be viewed as a variant of objection migration between the processors

and the disks.

The motivation behind PUP framework, a generic way to traverse an object’s data members

is to eliminate code duplication. Consider what one needs to do to migrate an object. First the

object needs to be sized, so that the total size of buffer can be decided. Second the actual data

items in the object should be packed one by one. We will have different operations depending on

the different destination: memory or disk. And this is also true to the procedure of restoring data

from the buffer. All these operations share the same essential form: traversal of data members,

and that is exactly what PUP classes are doing.

The PUP framework (namespace) consists of the following set of classes:

• PUP::able

This is the base class of all system-allocatable objects, which chares, chare array elements,

groups and nodegroups all belong to. This class declares an important function PUP::able::pup

that takes a PUP::er as parameter. What this call does is to use the PUP::er to traverse

its data members. To make use of PUP framework, a PUP::able subclass is expected to

implement its pup routine, which specifies how the class data are to be traversed. To make
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the format simpler, an operator “pipe(|)” is defined as calling the pup routine.

• PUP::er

PUP::er is the abstract superclass of all other traversing classes in this framework. When a

PUP::able object calls its pup function, a PUP::er object is passed in to do the desired job.

This class has methods for dealing with all basic C/C++ data types, expressed in terms of

a generic pure virtual method. Subclasses only need to provide the generic method. When

the programmer uses a PUP::er, he/she does not have to know what operation is applied on

the member data of the object. Polymorphism provides for the elegant format and versatile

functionalities of this framework.

• PUP::sizer

A subclass of PUP::er, PUP::sizer goes through the data members and finds the total

number of bytes to pack. For example, before the system preallocate the buffer to hold the

flatten data, the sizer is used to get the buffer size in bytes.

• PUP::mem

This is the abstract superclass of binary memory buffer packing/unpacking classes. It deals

with the interaction between object data and the binary memory buffer. It does not discrim-

inate which direction, i.e. packing or unpacking, is the interaction, but just implemented

several fundamental functions like seek for other memory operations. PUP::mem comes in two

flavors, PUP::toMem and PUP::fromMem. PUP::toMem packs the object it operates on into a

preallocated, presized memory buffer. The most general way to pack an object into memory

buffer is to invoke pup on the object using an instance of PUP::sizer to determine the size

of the object, then allocate a buffer of required size and invoke again with an instance of

PUP::toMem that has been initialized with the allocated buffer. PUP::fromMem unpacks the

state of the object it operates on from a given contiguous memory buffer.

• PUP::disk

This subclass of PUP::er is much like PUP::mem other than it deals with different type of media

- disk file. While PUP::mem takes a preallocated memory buffer as parameter, a instance of
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this class does its job on an opened disk file. It is not responsible for opening or closing the

file. It also provides operations like start seek, seek and answer current position. As usual,

there are two variants: PUP::toDisk and PUP::fromDisk.

class HelloClass{
public:
int x;
char y;
double arr[4];
float *darr;
init(int x_) {

x=x_;
darr=new float[x];

}
void pup(PUP::er &p) {

p|x;
p|y;
p(arr,4);
if(p.isUnpacking())
darr=new float[x];

p(darr, x);
}

};

Figure 3.2: A simple class declaration showing the pup routine

In general, PUP::er is a collection of calls that represent the object data on different format and

on different media. Now here we show an example of how PUP framework is used in Charm++

programming. Assume in the program we have class named HelloClass, and it has several data

members. Here in Figure 3.2 how to write a typical pup routine for it.

As you can see, the pup routine goes through all the data members with different type. The

programmer does not have to worry about the problem of alignment like how many bytes of padding

should be placed after the char to correctly align the following double array. The PUP framework

will do it automatically. Also the issue of endianness is taken care of. The programmer does not

even have to think about the direction of packing or unpacking, except for the case of dynamically

allocated data. If the PUP::er is unpacking, a new array should be dynamically allocated on the

destination processor, just as on the original processor by the constructor.

In Charm++, when the object migrates, the pup routine on the object is automatically invoked
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int main(void){
/* create and initialize object hello */
HelloClass hello;
hello.init(8);
hello.y = ’a’;
hello.arr[0] = 0.1;
hello.arr[1] = 0.2;
hello.arr[2] = 0.3;
hello.arr[3] = 0.4;
for(int i=0;i<8;i++)
hello.darr[i] = (double) i;

/* flatten hello into a memory buffer.
first size it */

PUP::sizer s;
hello.pup(s);
void *buf = malloc(s.size());
/* then pack hello into buffer */
PUP::toMem mto(buf);
hello.pup(mto);

/* create an empty object hello2,
then restore it from the memory buffer */

HelloClass hello2;
PUP::fromMem mfrom(buf);
hello2.pup(mfrom);

}

Figure 3.3: A program illustrating the use of PUP::toMem/fromMem routines
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so that all data items are sized and flattened on source processor, and then on arrival, the object

data is restored from the flattened format. This procedure is done in Charm++’s Array Manager,

the system group that manages an array including its migration. Here Figure 3.3 shows how an

instance “hello” of HelloClass is created, initialized, and packed into preallocated memory buffer,

and then another uninitialized instance “hello2” get restored directly from the buffer. So afterwards

hello2 should have exactly the same data as hello.

For checkpoint/restart purposes, the subclasses PUP::toDisk/fromDisk will be used. The

programmer opens a file and pass the file pointer into the PUP::er’s constructor to initialize it. In

Figure 3.4 is an example of such code.

FILE* fGroups = fopen("Groups.dat","wb");
PUP::toDisk pGroups(fGroups);
CkPupGroupData(pGroups);
fclose(fGroups);

Figure 3.4: Example of PUP::toDisk used in checkpointing

3.2 Charm++ Checkpointing

To checkpoint a Charm++ program, we need to save the state of the whole program. As described

in Section 3.1.2, a Charm++ program relies on the following object states: Readonly data, chares,

mainchares, groups, nodegroups and chare arrays. Other than the state of parallel objects, we also

need to take care of the control flow; we want to be able gain control of the program as well as

yield control when checkpointing is done.

Now let’s take a closer look at the first requirement: saving the state of objects. Readonly

data exists on all processors, but all copies are the same, so one copy of all readonly data should

suffice. Chares can be created anywhere and do not register themselves on any system table.

There is currently no way to find all the chares in the system and save them. This is acceptable

because in typical Charm++ programming, Chares are created to hold temporary data and do

not require persistent existence. Mainchare is an exception. Especially, user mainchare usually

holds important control data like the number of timesteps, current counts of objects, so there is a

necessity to checkpoint/restart mainchares. On the other hand, mainchares reside only on processor
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0 and has a mainchare table, so that all these operations can be done locally on processor 0.

Groups (and nodegroups)1 have a branch on each processor or node. However a local copy of

each branch is not necessarily required. Due to the different uses of groups, there are different

ways to checkpoint/restart them. Sometimes groups are used to hold same data in a distributed

way, and thus all branches are the same. Obviously only one copy on disk file is enough. Groups

may also hold processor-specific data, which then may or may not be easy to reconstruct. If the

processor-specific data is difficult to recompute, a local copy of each branch is on demand.

Chare arrays are even more complicated than groups. They are accessible only through their

array managers, which will be identified hopefully during the processing of the groups. Then each

branch of the array manager will take care of their local array elements.

The procedure of checkpointing a Charm++ program has the four steps.

1. Synchronization

Since our approach is blocking coordinated checkpointing, the concurrent processes need to

reach a global barrier before a checkpoint can be taken. This requires the programmer is

expected to decide the point where nothing important (e.g. computation of timestep results)

is going on and no message is flying in the wire. Before the interface function is called on one

processor (the “master processor”) to invoke the following steps, the programmer prepares a

“callback” function so that the control of program can re-enter user code after checkpoint or

restart is done. This callback function in Charm++ is an object and passed into the interface

function CkStartCheckpoint.

2. Saving Readonly Data

Because readonly data is spread on all processors and they are all same, we can take a

snapshot of readonly data from the master processor. The readonly data items are accessed

from a global system table readonlyTable[ numReadonlies].

3. Saving Mainchares

There are 2 things expected from the programmer when the he/she wishes to save the main-
1Groups and nodegroups have little difference except for their locations. For the sake of simplicity, groups refers

to both groups and nodegroups hereafter.
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chare. 1) The master processor must be processor 0; 2) The programmer should write a PUP

routine for the mainchare and declare it as [migratable] in the .ci file.

From processor 0, the system has access to the table holding the mainchare list. Object is

taken out one by one from the list, pup routine executed with the PUP::toDisk PUP’er, and

all mainchares are saved.

4. Saving Groups and Nodegroups

From this step on, the control is passed to all branches of the system group that is devoted

to checkpointing sysChkptMgr with a broadcast from its proxy. On each processor, the local

branches of groups are saved, in the similar fashion that mainchares were saved. First the

number of groups and number of nodegroups are saved, then a loop iterates over all groups.

For each group, its globally unique group ID, name, and constructor’s handlers are all packed

in, and then the object pointer is grabbed and finally the object’s member data are packed

in.

5. Saving Chare Arrays

Again we iterate over all groups, to identify the location manager, the helper group keeping

track of array elements’ locations. On a location manager, an iterator is created to go through

every location of each element. Here we use location of array element because Charm++

allows user to bind two arrays together, meaning they have same size and their corresponding

elements always migrate together, i.e. always have the same location. This is implemented by

treating the bound elements as one “location”, and the locations are managed by the separate

location manager, not any single array manager. Therefore, it makes more sense to iterate

through all locations and pack corresponding array elements into disk file.

6. Callback

After the above steps, all the significant program states are saved. Another global barrier is

reached to make sure all the checkpoint manager branches have finished their job, and then

the callback is invoked to return the control to user code.
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3.3 Charm++ Restarting

Simply put, restarting is the reverse process of checkpointing. Readonly data and parallel objects

in the program are restored from disk files one by one, and the callback is invoked to restart the

user code. However, there are a few issues to deal with to make restarting possible.

First issue is the control flow. Unlike checkpointing, where user code is paused and checkpoint

code kicks in, restarting a Charm++ program is actually a modified way of starting a brand new

program. In fact, to restart a program from a previous checkpoint, the user simply adds a “+restart

DIR” option onto the command line, with DIR pointing to the checkpoint directory. There is no

need for another system group like checkpoint manager, however, because right after initialization

and registration (refer to Section 3.1.4), the function CkRestartMain() takes over the startup on

all processors. Readonly data are restored locally, therefore the broadcast is saved. Mainchares are

restored on processor 0, with whatever data they had at the moment of checkpointing. And last

groups, nodegroups and chare arrays are restored on their original processor.

Secondly, Charm++ checkpoint/restart mechanism provides the programmer with the flexibility

of restarting on different number of processors from checkpointing. This flexibility is important

when the failed processor is not expected to recover very soon. The program can restart on N-1

surviving processors and continue its job.

This flexibility also gives rise to potential problems for parallel object restoring. Groups, for

example, will not have the same number of branches, and their data might become inconsistent.

To remedy this, there are two alternatives: 1) the copy from processor 0’s branch could be restored

on all processors; or 2) each branch recomputes their data. Chare arrays also suffer from this, since

some element’s home processor might be gone in a system failure. An easy cure is to redistribute

the elements on surviving processors, or simply to transfer the workload of the dead processor(s)

to some random surviving processor(s).

Last but not least, the process of “restoring” a parallel object is worth some explanation.

Restoring is more complicated than checkpointing since we have to create an object before we can

fill the saved data back in. For this special purpose, we use a special type of constructor called

a Migration Constructor. A migration constructor is typically used to create an empty object

ready for unpacking. Initially it is meant for when the object just arrived at a new processor
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after migration. In other words, migration constructors and pup’er routines are required for object

migration as well as checkpoint/restarting.

The programmer can decide if a certain array or group is checkpointed or not. For example, if

the migration constructor is not provided, there is no way to restore this object, so this object will

be skipped in checkpoint/restart. This enables helpful optimization to programmers. During the

execution of a typically parallel program, especially scientific computation, there will be multiple

arrays and groups created to do the computation. Many objects compute the interim results only

to pass to the next phase. This kind of objects are not worth the space when the data set they are

working on is huge. In Charm++ checkpoint/restart framework, the programmer can choose not

to save them by not providing the migration constructor and pup’er routine.

3.4 Performance Analysis

Because checkpoint/restart for parallel programming involves more than one processor in the par-

allel system, to evaluate the efficiency of checkpointing/restart we have to consider two aspects:

size of data checkpointed/restored and the number of processors involved in the procedure. For

both checkpoint and restart, the total overhead consists of two parts: parallel disk I/O and syn-

chronization overhead. The first factor is related to the total size of data, and the second is affected

by the number of processors in the system.

We now demonstrate the performance of checkpoint/restart mechanism on a stencil calculation

(Jacobi) problem. The program updates elements in a matrix with the average value of the element

and its immediate neighbors. The version we use does 1D decomposition on 2D data. The platform

for experiments is NCSA Platinum IA-32 Linux cluster, which is comprised of 512 dual 1GHz Intel

Pentium-III processors, with 1.5GB of RAM on each node, connected with 100Mbit Ethernet. For

the sake of simplicity, we measure only the checkpoint time.

Here we show two series of data from our experiments. Figure 3.5 is the average (over 10

runs) checkpoint overhead against the total data size (ranging from 10MB to 320MB) for different

number of processors (N = 8,16,32). For each fixed number of processors N , the amount of data to

checkpoint is equal to the total data size divided by N . As demonstrated in the figure, the average

overhead is linear to the total data size, which also implies that the synchronization overhead is
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Figure 3.5: Checkpoint Overhead against Total Data Size

not a dominant factor in the checkpoint overhead.

Figure 3.6 visualizes the average checkpoint overhead against the number of processors (N =

4 - 128) for different size of data (total size = 10MB, 20MB, 100MB). In this figure, it can be

observed that the overhead almost decreases linearly with the number of processors. This indicates

the checkpoint mechanism scales very well. There are some exceptions in the figure too, especially

when the checkpoint data is small. For example, when total checkpoint size is 10MB and N=64 and

128. In that case, the checkpoint size on each processor is too small to compare with the increased

synchronization overhead. The conclusion can be drawn that the size of checkpoint should be

reasonably large, especially when the total number of processor is large.

If we take a look at the bandwidth of the checkpoint, the trend is a slight decrease with increasing

number of processor. For 4 nodes, the average checkpoint bandwidth is as high as 41.1 MB/s, and

this metric drops to 30.3 MB/s in the case of 32 nodes. The increasing synchronization overhead

for larger system contributes to this result.

For restart, the overhead is similar to the checkpoint overhead, because basically it is the re-

verse procedure. When the data is approximately evenly distributed on the processors, the check-

point/restart mechanism scales well with the total data size as well as the number of processors.
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Chapter 4

AMPI Checkpoint/Restart
Mechanism

4.1 Adaptive MPI

Adaptive MPI(AMPI)[13] is an adaptive implementation of the MPI Standard on top of Charm++.

The underlying Charm++ empowers AMPI of the same collection of benefits including adaptive

overlapping, automatic load balancing, as well as automatic checkpoint/restart capability.

4.1.1 MPI Standard

Message Passing Interface[11, 12] is the de facto standard of message passing programming. The

standard specifies a set of APIs for parallel processors to communicate through message passing.

It includes topics such as point-to-point communications, collective operations, one-sided commu-

nications, parallel I/O. The standard also specifies language bindings of the APIs for C, C++

and Fortran. It is important to note that MPI is the specification of a set of standard APIs, not

a parallel programming language or a parallel library. There are many implementations of MPI

Standard from both the industry and academia.

The MPI Standard covers a wide range of topics in parallel programming in the message passing

paradigm. The Standard, however, explicitly states that a collection of topics are not included, for

example, explicit shared-memory operations. Also, MPI Standard avoids anything that requires

more operating system and underlying framework support, which includes checkpoint/restart mech-

anisms.

According to MPI Standard, MPI programmers have to take the responsibility of checkpoint-
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ing/restarting their own programs if the platform does not support this feature. When the program

has clear data structures holding important results, it is easy to tell what to save and how to restart.

MPI programs often contain complicated structures so that it would be difficult to decide what

exactly to save and how to save them. Thanks to the run-time support from underlying Charm++

system, AMPI provides automatic on-disk checkpoint/restart capability.

4.1.2 AMPI Implementation

AMPI is built on Charm++, and uses its communication facilities and threading model. As il-

lustrated in Figure 4.1, AMPI takes advantage of the concept of virtualization introduced by

Charm++. An AMPI program is based on Virtual Processors (VPs), several of which can be

mapped onto one physical processor. Virtualization enables the same powerful features as Charm++,

including automatic load balancing and adaptive overlapping.

Figure 4.1: AMPI Implementation

An MPI process is implemented as a user-level thread, several of which can be mapped
onto one single physical processor. This virtualization enables several powerful features
including automatic load balancing and adaptive overlapping. (Figure taken from [13])

AMPI implements its MPI “processors” as Charm++ “user-level” threads bound to Charm++

communicating objects. Message passing between AMPI virtual processors is implemented as

communication among these Charm++ objects, and the underlying messages are handled by the

Charm++ run-time system. The threads used by AMPI are light-weight user-level threads in

26



Charm++, and this thread module is called TCharm.

Threaded Charm(TCharm)[19] was created to support several frameworks that are based on

Charm++ run-time and share the common feature of using load-balanced, migratable threads. It

provides threads facilities including suspending, resuming, and migrating a thread. For example, if

a VP blocks with a receive operation, the corresponding TCharm thread in AMPI would suspend

itself. As the CPU is yielded to other threads while this one is suspended waiting, the overall

efficiency is improved. These threads are light-weight, with a context switch time of less than 1

microsecond[13].

The migratability of TCharm threads is the key feature that makes checkpointing AMPI pro-

grams possible. When a thread migrates, its states and data in the stack and heap are brought

along. There arises the problem of pointer reference. Because most of the pointer references use

absolute virtual memory address rather than relative displacement, the application would lose

the correct information after being migrated to a new processor as the memory locations are all

changed. This is solved by a technique called “isomalloc”[1]. The basic idea is to preserve a range

of virtual address for all the processors, so that after migration, the threads will have exactly the

same address.

In practice, an MPI program starts with a specified number of TCharm threads, and then two

chare arrays of the same size are created: ampiParent and ampi. The array ampiParent has one

element for each AMPI VP to hold the VP-specific data, while the array ampi is responsible for

the communications. Obviously, ampi is playing the role of communicator in the MPI Standard.

Therefore, when the program creates new communicators, new arrays of the same class ampi are

created. No matter how many arrays are created, they are all bound together, meaning the corre-

sponding elements always migrate together. Typically in an AMPI program, there will be elements

of multiple ampi arrays corresponding to one location, but to one location there is always only one

element of ampiParent array and one element of TCharm array. For this reason, ampiParent is

responsible for the overall control of the bound elements of the location.
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4.2 Checkpoint/Restart for AMPI

Since an AMPI program is in essence a Charm++ program, checkpointing an AMPI program is no

more difficult than checkpointing a Charm++ program. The only issue is the threads. Currently,

a TCharm thread can be saved only when it is suspended. How can a thread suspend itself and

then checkpoint itself? The answer is asynchronous remote invocation. The extension function

MPI Checkpoint starts with ampiParent. Every element of ampiParent will suspend its bounded

thread, but right before it does that, a callback is sent out like a homing pigeon. Due to the

atomicity of Charm++ entry methods, the callback will not be invoked until the thread is sus-

pended. After the threads are suspended and program control flow is paused, the callback invokes

the ampiParent::Checkpoint entry method in which another callback devised for the program to

re-enter to user-code after checkpoint/restart is passed into the CkStartCheckpoint call, and the

program is checkpointed like a Charm++ program.

At restart, the reverse procedure is taken. The arrays are restored and the threads resumed,

and the program is restarted from the saved callback.

A TCharm thread’s PUP’er routine writes out the thread’s whole stack and its heap allocated

data, and therefore the checkpoint data size is usually larger than the amount of data allocated in

AMPI programs. To minimize the overhead, the programmer can set the stack size by a run-time

option +stacksize SIZE to fit the actual size of data used in the application.

4.3 Performance Analysis

The performance of AMPI checkpoint/restart should also be similar to that of Charm++’s. The

only difference is due to the complication of AMPI implementation. As described in the previous

section, before an AMPI Virtual Processor can be checkpointed, the underlying user-level thread

has to be suspended. This added overhead might decrease the efficiency.

Here we show the performance of AMPI checkpoint/restart mechanism on an MPI version of

the same stencil calculation (Jacobi) problem. This program performs 3D decomposition on 3D

data, and naturally it needs k-cubed number of processors. Thanks to the virtualization in AMPI,

we are able to run the experiments on any desired number of processors. The experiment was
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carried out on the same platform: NCSA Platinum IA-32 Linux cluster with 512 dual 1GHz Intel

Pentium-III processors and with 1.5GB of RAM on each node, connected with 100Mbit Ethernet.
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Figure 4.2: Checkpoint Overhead against Total Data Size for AMPI

Data shown in Figure 4.2 is the average checkpoint overhead against the total data size (from

8 - 512 MB) for different number of processors (N = 4,8). For each fixed number of processors N ,

the amount of data to checkpoint is equal to the total data size divided by N . Similar to that of

Charm++, the average overhead of AMPI checkpointing is approximately proportional to the size

of data to checkpoint. The average bandwidth, on the other hand, is lower than that of Charm++.

As a comparison, on 4 processors, the average I/O bandwidth for Charm++ is 41.1 MB/s and

AMPI 35.2 MB/s. On 8 processors Charm++ hits 36.7 MB/s and AMPI scores 30.8 MB/s. On

average, AMPI checkpoint/restart has a 10% to 15% lower average I/O bandwidth.
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Chapter 5

Conclusions and Future Work

We have demonstrated the On-Disk Checkpoint/Restart mechanism for the Charm++/AMPI par-

allel run-time system, its motivation, design and implementation. This approach is advantageous

in its high reliability and versatility. It not only is a fault-tolerant effort, but also can be used for

improving parallel job scheduling.

This piece of work is the first step in the effort to improve the fault tolerance of parallel

programs. It has been proven useful in practice, and more importantly, it has been and will be

helpful to new projects on this subject. The disk file based checkpoint/restart mechanism, along

with other fault-tolerance mechanisms, will eventually form a versatile fault-tolerance framework

for parallel programming in Charm++/AMPI.

5.1 Discussion and Future Work

The checkpoint/restart mechanism described in this thesis makes it possible for the parallel program

to restart after an infrastructure failure. The system can further avoid any down-time by detecting

the failed node and resurrect it without restarting the whole program. This requires more work

on detecting failures and maintaining consistent state among processors. Although this approach

is subject to potential problems like cascading rollback as described in Chapter 2, it improves effe-

ciency by restoring only those nodes that really need to be restored. There are many such protocol

developed in the parallel programming area, and one is under investigation for Charm++/AMPI

framework. Research work on this topic is underway, and the preliminary results are presented in

[4].
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In this thesis, our checkpoint is based on disk files. There are choices of disks in a parallel

system. Local disk might be the fastest, but as the node fails, it is very probable that the local

disk on the failed node becomes inaccessible, rendering the checkpoint effort useless. Network file

systems, on the other hand, can be considerably slower than local disks. For instance, experiments

show that using NFS in Charm++ checkpointing is 5 to 10 times slower than writing local disks.

Another concern is the reliability of the NFS server. Distributed file systems like RAID can be used

to improve the storage reliability and I/O throughput, especially when the optimization techniques

such as striping and staggering [14, 25] are adopted.

As discussed in the first Chapter, an alternative can be to write checkpoint into memory instead

of disk files. This is especially feasible in parallel programming because we have access to multiple

nodes in the system. Peer relationships can be formed and checkpoints deposited to peer’s memory.

Memory bandwidth is usually much larger than disk I/O bandwidth, and the possibility of a failed

disk module can be removed from our consideration of system reliability. Recent work of [27] has

proven this an effective and efficient approach.

Finally, checkpoint/restart mechanism should be flexible enough to suit the user’s needs. For

instance, the user should have better control of what portion of data and states are to be check-

pointed and which part of the system is worth more frequent checkpointing. This not only improves

the usability of the programming tool, but also boosts the performance and efficiency while saving

resources. Another improvement can be automatic detection of failure and automatic restart of the

program. The project described in this thesis includes some preliminary efforts, and more work on

this direction is necessary in the future.
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[16] Laxmikant V. Kalé. The virtualization model of parallel programming : Runtime optimizations

and the state of art. In LACSI 2002, Albuquerque, October 2002.

[17] Robert Brunner L. V. Kale, Milind Bhandarkar and Joshua Yelon. Multiparadigm, Multilin-

gual Interoperability: Experience with Converse. In Proceedings of 2nd Workshop on Runtime

Systems for Parallel Programming (RTSPP) Orlando, Florida - USA, Lecture Notes in Com-

puter Science, March 1998.

33
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