
FTC-Charm++: An In-Memory Checkpoint-Based Fault Tolerant Runtime
for Charm++ and MPI

Gengbin Zheng, Lixia Shi, Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign

E-mail: {gzheng, lixiashi, kale}@cs.uiuc.edu

Abstract

As high performance clusters continue to grow in size,
the mean time between failure shrinks. Thus, the issues
of fault tolerance and reliability are becoming one of the
challenging factors for application scalability. The tra-
ditional disk-based method of dealing with faults is to
checkpoint the state of the entire application periodically
to reliable storage and restart from the recent checkpoint.
The recovery of the application from faults involves (of-
ten manually) restarting applications on all processors
and having it read the data from disks on all processors.
The restart can therefore take minutes after it has been
initiated. Such a strategy requires that the failed pro-
cessor can be replaced so that the number of processors
at checkpoint-time and recovery-time are the same. We
present FTC-Charm++, a fault-tolerant runtime based on
a scheme for fast and scalable in-memory checkpoint and
restart. At restart, when there is no extra processor, the
program can continue to run on the remaining processors
while minimizing the performance penalty due to losing
processors. The method is useful for applications whose
memory footprint is small at the checkpoint state, while a
variation of this scheme — in-disk checkpoint/restart can
be applied to applications with large memory footprint.
The scheme does not require any individual component
to be fault-free. We have implemented this scheme for
Charm++ and AMPI (an adaptive version of MPI). This
paper describes the scheme and shows performance data
on a cluster using 128 processors.

1 Introduction

Parallel simulations in science and engineering often
run for several hours or even days at a time. If a pro-
cessor crashes during the run, all the computation until
then would be wasted. To guard against this possibil-
ity, application programmers often write code for peri-

odically checkpointing the state of the application to the
disk. In addition to tolerating failure of individual proces-
sors, such checkpointing to stable storage also serves the
purpose of saving the state of the application for planned
shutdowns.

In recent years, parallel machines with very large num-
bers of processors have been designed and the trend to-
ward massively parallel systems continues to increase.
Examples of such machines are Earth Simulator, System
X, ASCI-Q and BlueGene/L [?]. The size of the machines
in the largest systems is now on the order of 10,000 pro-
cessors. As the number of processors on present day su-
percomputers increases, the probability of one of the pro-
cessors crashing during simulation increases substantially.
This makes it more difficult to complete long-running jobs
without facing faults from both hardware and software.
For such failures, it is desirable to have the system auto-
matically recover from them and continue the execution
of the program without user intervention.

The requirements of fault-tolerant parallel applica-
tions have changed [10]. In the past, most applications
that needed fault tolerance were mission-critical applica-
tions. These applications’ primary concerns are continu-
ous availability as well as the ability to tolerate arbitrary
failures. The associated costs and the overhead induced
by the fault-tolerance techniques are often not the pri-
mary concern. However, most of the emerging parallel
applications are not necessarily mission-critical and thus
don’t require foolproof fault tolerance. They desire the
fault-tolerance techniques which impose minimal over-
head on failure-free execution and provide fast recovery
from common case failure scenarios.

In a disk-based checkpoint/restart scheme for fault tol-
erance, the state of an application is saved to reliable stor-
age periodically. Some traditional approaches let the en-
tire application be killed once a failure occurs. The user
has to experience a “down time” until he/she finds another
allocation of both time and machine (in a job schedul-
ing environment) to continue the execution from the latest

1



checkpoint. This prolonged running cycle is impractical
when the probability of failure is high.

Most of the traditional checkpoint-based fault tolerant
protocols assume the availability of a pool of extra pro-
cessors that can be used to replace the crashed ones at re-
covery. This is not practical especially in a job scheduling
environment. However, it is challenging to let the pro-
gram continue to run on the remaining processors with
sustained performance. Load imbalance due to losing one
processor may show great impact on the overall perfor-
mance.

The performance metrics for a desirable fault-tolerant
scheme include:

1. The run-time system does not rely on any fault-free
component such as stable storage.

2. Impact on fault-free run time: how much the appli-
cation slows down when there are no faults.

3. Recovery time: how long it takes for the system to
restart the application after a processor crashes.

4. Execution efficiency after restart: the speed at which
the application runs after it has lost one processor.

In this paper, we propose a fault tolerant protocol based
on double in-memory checkpoint/restart and the idea of
processor virtualization and migratable objects. The pro-
tocol does not assume any reliable storage for check-
points. The restart protocol supports both cases with and
without extra processors. When there is no extra proces-
sors to replace the crashed ones, the program can continue
to run on the surviving processors. The impact of losing
processors (load imbalance due to crash) is kept minimal
by the capability of automatic load balancing at run-time.
The scheme can be applied to a wide class of applica-
tions written in both message passing paradigms (MPI)
and message driven languages such as Charm++ [18].

We will demonstrate that the scheme we present does
very well on these criteria with some performance results
on a cluster using 128 processors. The rest of the paper
is organized as follows. Section 2 discusses some back-
ground and related work. The design of our system is
presented in Section 3 and details of its implementation in
Section 4. Performance results are provided in Section 5.
Finally, Section 6 summarizes the contribution of our ap-
proach and thoughts for future work.

2 Background

A range of possible solutions for fault-tolerance have
been extensively studied in the literature [12]. The two
major classes of solutions are checkpoint-based and log-
based rollback-recovery schemes.

2.1 Checkpoint-based methods

In checkpoint-based methods, the state of the compu-
tation as a checkpoint is periodically saved to stable stor-
age, which is not subject to failures. When a failure oc-
curs, the computation is restarted from one of these pre-
viously saved states. According to the type of coordi-
nation between different processes while taking check-
points, checkpoint-based methods can be broadly classi-
fied into three categories: uncoordinated checkpointing,
coordinated checkpointing and communication-induced
checkpointing.

In uncoordinated checkpointing, each process indepen-
dently saves its state. During restart, these processes
search the set of saved checkpoints for a consistent state
from which the execution can resume. The main advan-
tage of this scheme is that a checkpoint can take place
when it is most convenient. For efficiency, a process
may perform checkpoints when the state of the process is
small [25]. However uncoordinated checkpointing is sus-
ceptible to rollback propagation, the domino effect [21]
which could possibly cause the system to rollback to the
beginning of the computation resulting in the waste of a
large amount of useful work. Rollback propagations also
make it necessary for each processor to store multiple
checkpoints, potentially leading to a large storage over-
head. Due to the potentially unbounded cost of rollback,
we consider uncoordinated checkpointing unsuitable for
our requirements.

Coordinated checkpointing requires processes to co-
ordinate their checkpoints in order to form a consistent
global state. It can be blocking as in [24] and the hardware
blocking used to take system level checkpoints in IBM-
SP2, or non-blocking like Chandy-Lamport’s distributed
snapshot algorithm [8]. Coordinated checkpointing sim-
plifies recovery from failure because it does not suffer
from rollback propagations. It also minimizes storage
overhead since only one checkpoint is needed. CoCheck
[22], Starfish [1], Clip [9] and AMPI [18] use coordinated
checkpointing to provide fault tolerant versions of MPI.
A non-blocking coordinated checkpointing algorithm that
uses application level checkpointing is presented in [6].

The main disadvantage of coordinated checkpointing is
the large latency involved in saving the checkpoints since
a consistent checkpoint needs to be determined before the
checkpoints can be written to stable storage. However,
many scientific applications are iterative in nature, such as
molecular dynamics simulation and finite element method
simulation, and allow a consistent checkpoint to be taken
between the iterations. In addition, at the end of an itera-
tion the size of the global checkpoint state is often mini-
mal.

Communication-induced checkpointing allows pro-
cesses to take some of their checkpoints independently

2



while preventing the domino effect by forcing the pro-
cessors to take additional checkpoints based on protocol-
related information piggybacked on the application mes-
sages it receives from other processors [5]. However, the
forced checkpoint must be taken before the application
may process the contents of the message, possibly leading
to high latency and overhead. It does not scale well with
increasing number of processors [2] and a large number
of forced checkpoints nullify the benefit accrued from the
autonomous local checkpoints.

Diskless checkpointing is a technique for checkpoint-
ing the state of a program on a distributed system without
relying on stable storage. It replaces stable storage with
memory and processor redundancy. Diskless checkpoint-
ing is a desirable alternative to disk-based checkpointing
that can improve the performance of distributed applica-
tions in the face of failures. Diskless checkpointing often
requires high memory overhead for storing checkpoints.
The paper [20] presented a way to perform fast, incre-
mental checkpointing by using N + 1 parity to allevi-
ate this problem. The algorithm eliminates stable storage
and disk writing by using a combination of extra phys-
ical memory and N + 1 parity. However, the protocol
is difficult to scale to very large number of processors.
When checkpointing, each processor needs to checkpoint
its data (local address space) to the parity processor which
could become a communication bottleneck. The recovery
of one processor needs checkpoints from all other applica-
tion processors as well as parity/backup processors, which
prevents the protocol from applying to very large number
of processors. The protocol also requires a number of ex-
tra processors for storing parity as well as processors to
replace failed application processors.

The ability to checkpoint and restart applications has
a number of other uses in a parallel environment besides
fault tolerance. Process migration is one feature that is
made possible by the ability to save a process image. A
process can be moved from one node to another by writing
the process image directly to a remote node. The process
can then be resumed on the new node without having to
kill the entire application and start it over again.

However, there are a number of disadvantages for pro-
cess migration based fault-tolerance. First, saving the en-
tire process image often incurs significant memory or disk
space overhead and may be unnecessary since not all the
data in a process space, e.g. temporary variables, needs
to be saved. Second, in order to restore the process im-
age after a failure, a new processor has to be available
to replace the crashed processor. This requires a pool of
standby processors for multiple unexpected failures which
may not be practical. As an alternative, one may choose
to restore the process image of the crashed processor on a
running processor. This, however, may result in deterio-
rated parallel performance due to load imbalance created

by overloading the processor.

2.2 Log-based methods

Message logging protocols are built on the assumption
that the state of a process is determined by its initial state
and by the sequence of messages it delivers. In principle, a
crashed process can be recovered by restoring the process
to its initial state and rolling it forward by re-playing to
it messages in the same order they were delivered before
the crash. In practice, message logging protocols limit the
extent of roll-forward by having each process periodically
save its local state in a checkpoint. Examples of log-based
methods include MPICH-V [3], Manetho [11], [23], FT-
MPI [13] and FTL-Charm++ [7].

Log-based methods may incur a fault-free runtime cost
due to the logging of messages. It may also suffer from
complicated recovery.

3 Design

One of performance metrics described in Section 1 is
the impact of fault tolerance on normal run time. Since
message logging exhibits constant cost in terms of mes-
sage transmission latency, the checkpoint based protocol
was preferred. The checkpoint scheme we designed im-
poses almost no overhead on normal execution when there
is no fault. The coordinated checkpointing happens peri-
odically. The time cost of checkpointing is very small
as demonstrated in Section 5, and almost negligible for
applications with low memory usage. Therefore it po-
tentially allows more frequent checkpointings and hence
wastes a less amount of useful computation when rollback
occurs.

3.1 Double Checkpointing

Another design goal as described in Section 1 is that the
run-time system should not rely on any fault-free com-
ponent such as reliable storage. We adopted the idea of
diskless checkpointing. Since the design mainly targets
on the scientific applications with relatively small mem-
ory footprint on very large number of processors, we de-
cided to use a simple double checkpointing scheme which
is shown to be scalable (Section 5.1). In order to handle
a fault at a time, each checkpoint data would be stored to
two different locations. This double-checkpointing is to
ensure the availability of one checkpoint in case the other
is lost. In our scheme, we call the two processors that
have identical checkpoints buddy processors. It should
be noted that the double checkpointing scheme does not
provide foolproof fault tolerance. However, the reliability
can be substantially improved by our system as presented
in Section 4.3.

3



In double checkpointing, checkpoints can be stored ei-
ther in the memory or local disk of two processors. We
call these double in-memory checkpointing and double
in-disk checkpointing schemes. Unlike most protocols
that store checkpoints to a separate central storage server
across a network like MPICH-V2 [4], our schemes store
checkpoints in a distributed fashion to avoid both the net-
work bottleneck to the central server and the volatility of
the central server. Our experiments in Section 5.2 mani-
fest a very high cost of simultaneous checkpointing from
all the processors to a shared stable disk (via NFS).

3.1.1 Double In-memory Checkpointing

In the double in-memory checkpointing scheme, each
process stores its data to memory of two different pro-
cessors. Since memory accessing is much faster than
disk accessing, the potentially low checkpoint overhead
and faster restart should allow us to achieve better per-
formance than traditional disk-based checkpoint schemes.
Therefore, we mainly focus on the double in-memory
checkpoint scheme in this paper, although the implemen-
tation of the two schemes only differs in where to store
checkpoints. In Section 5.2 we will present performance
comparisons of both schemes.

Double in-memory checkpointing undoubtedly will in-
crease the memory overhead. Our scheme provides sev-
eral solutions for reducing the memory overhead: (a) in-
stead of storing everything in a process including unused
and/or temporary memory allocation, we allow a pro-
grammer to encapsulate the application data so that only
the useful data is checkpointed 1; (b) an application can
choose to initiate checkpointing at a time when the mem-
ory footprint is small in the application. This can be ap-
plied to many scientific and engineering applications such
as molecular dynamics simulations that are iterative; (c)
for applications with very large memory footprint, the
double in-disk checkpointing can be used.

3.1.2 Double In-disk Checkpointing

Double in-disk checkpointing scheme is another vari-
ation of the above in-memory checkpointing scheme in
which checkpoints are stored on local scratch disk instead
of in processor memory. Like the in-memory checkpoint-
ing scheme, it does not rely on any reliable storage due
to the duplicate copies of checkpoints. Although it incurs
much higher disk I/O overhead in checkpointing, it does
not suffer from the dramatic increase in memory usage
as in the double in-memory checkpointing scheme. It is
useful for applications with very big memory footprint.

1small memory footprint applications may still choose to checkpoint
the whole process image

Double in-disk scheme makes local disks useful for
fault tolerance, whereas most traditional checkpointing
schemes have to depend on a central reliable storage. Tak-
ing advantage of distributed local disks, the double in-disk
checkpointing avoids the I/O bottleneck to the central file
server. In fact, the experiments in Section 5.2 indicate
that the double in-disk checkpointing scheme outperforms
the traditional scheme that checkpoints to the central NFS
disk.

3.2 Load Balancing

Unlike most other fault-tolerance schemes, our scheme
does not assume the availability of processors to replace
the crashed ones. Having a pool of extra processors is a
convenient assumption for most fault-tolerance schemes.
This is impractical in current job scheduling environ-
ments. Further, the number of extra processors reserved
in the pool limits the maximum faults allowed during the
execution and may be a waste of resources if faults occur
rarely.

In our scheme, a program will continue to run on the re-
maining physical processors after a crash without coming
to a full stop. In this scenario, one of the crucial perfor-
mance issues is to minimize the impact of crashed proces-
sors on the execution so that the program continues to run
at a speed not much slower than the pre-crash speed. A
naive implementation could move all the work from the
crashed processor to a running processor. However, this
may result in unfavorable load imbalance and lead to poor
parallel performance. This is a challenging issue for tradi-
tional methods of checkpointing that use the process im-
age as checkpoint. Instead, we use finer-grained objects
to encapsulate application data. These make it easier to
perform load balancing by moving the objects around.

We decided to implement this scheme on Charm++
and Adaptive MPI, an MPI implementation based on
Charm++, since Charm++ already supports parallel mi-
gratable objects at user level. In the next section, we will
briefly describe the advantages of Charm++ run-time sys-
tem for implementing fault tolerance.

3.3 Charm++ and Adaptive MPI

The basic mechanism in process migration that per-
forms transparent migration of the internal and external
process state is to provide applications with a location in-
dependent view of the world. However, due to the com-
plex nature of the subject coupled with architecture de-
pendent issues, process migration is limited in its useful-
ness.

Charm++ takes a different approach called processor
virtualization [16]. Instead of taking the entire process as

4



migration subject, it implements parallel migratable ob-
jects. An application divides a problem into a large num-
ber of components (N ) (implemented as migratable ob-
jects) that will execute on P processors. N is independent
of P though ideally N>>P . The user’s view of the pro-
gram consists of these components and their interactions;
the user need not be concerned with how the components
map to processors. The underlying run-time system takes
care of this and any subsequent remapping (see Figure 1).

Figure 1. Virtualization in CHARM++

In Charm++, these components are known as chares.
Chares are C++ objects with methods that may be invoked
asynchronously from other chares. Since many chares can
be mapped to a single processor, Charm++ uses message-
driven execution to determine which chare executes at a
given time.

Objects or chares that carry application code are loca-
tion independent. Hence chares can migrate from proces-
sor to processor freely 2. One application of migratable
objects is load balancing. Objects can migrate from over-
loaded processors to underloaded processors to achieve
better load balance. In order to migrate an object, one
needs to pack the data of the object into a message. The
message is sent to another processor where the data is
unpacked and the object is restored. The Charm++ PUP
framework was designed to describe the in-memory lay-
out of an object [15]. The object migration based on the
PUP framework can be extended into broader usage, such
as migrating an object to disk at runtime for out-of-core
execution. In the checkpointing scenario, when an object
is checkpointed, it is simply packed and migrated to an-
other location (memory or disk).

Adaptive MPI(AMPI) [14] is an MPI implementation
and extension based on Charm++. AMPI implements vir-
tual MPI processes, or VPs, using migratable user-level
threads several of which may be mapped to a single phys-
ical processor. AMPI supports adaptive load balancing by
migrating MPI threads. A fault tolerant AMPI has been
implemented in traditional file-based checkpoint/restart
scheme. MPI is a special case of AMPI when exactly one
VP is mapped to a physical processor.

2Object migration does not have to deal with system kernel issues
like interprocess communication (IPC).

4 Protocol and Implementation Details

In this section, we describe the double in-memory
checkpoint/restart protocol we designed and briefly de-
scribe the implementation details. What we present
here also applies to the double in-disk checkpoint/restart
scheme. The same implementation works for both
Charm++ and AMPI. In fact, in AMPI each migratable
user-level MPI thread is simply treated as a Charm++ ob-
ject (chare).

4.1 Checkpoint Protocol

We adopt a coordinated checkpointing strategy. All
processors coordinate their checkpoints to form a consis-
tent global state. Global state includes run-time system
state (as virtual processor object) and user data which is
encapsulated in objects (as Chares in Charm++). On each
physical processor, there is one copy of the run-time sys-
tem state with an arbitrary number of objects and their
states. Each object has two buddy processors for check-
points. The checkpointing process involves two concur-
rent steps: (a) each processor packs up its system state and
sends it to two buddy processors. (b) each object packs up
its own user data and sends it to two buddy processors.

Figure 2 illustrates an example of checkpointing as
shown in the first row of processors before one processor
crashes. Each circle represents an object in an applica-
tion, while each square and triangle represent its first and
second checkpoints on two buddy processors. It should
be noted that one of the two checkpoints and the object
can reside on the same processor to reduce communica-
tion overhead at checkpointing. For example, object d
on processor 1 has two buddy processors 1 and 2. Dur-
ing checkpointing, object d only needs to sent its check-
point across network to buddy processor 2, while the other
checkpointing is done locally.

The checkpointing protocol has almost no overhead in
the normal fault-free execution unlike that found in the
message log-based scheme. The overhead only occurs
during the coordinated checkpointing. Our scheme breaks
down the whole process image into finer grained objects
which provides flexibility for fast recovery. However, the
checkpoint process in our scheme is communication in-
tensive. Its checkpoint overhead is dominated by the net-
work bandwidth. Since our scheme mainly targets scien-
tific applications with small memory usage, this should
not be a problem. In fact, our experiments in Section 5
show that even with an application that uses a total of
about 1GB of memory, it takes less than one second on
a Myrinet network and two seconds on 100Mbit network
to finish the double in-memory checkpointing on 32 pro-
cessors. Our scheme is also shown to be scalable 3 — the

3when application is decomposed in a load balanced fashion

5



Figure 2. In-Memory Double Check-
point/Restart Schemes

checkpoint overhead drops for an application when the
number of processors increases. This is because check-
point data size on each processor reduces when the num-
ber of processors increases.

4.2 Recovery Protocol

The recovery protocol is initiated by the crash of a
physical processor. Every processor starts to rollback to
the state preserved in the checkpoint. The recovery proto-
col is more complicated in our case because of the pres-
ence of multiple Chare objects on a crashed processor.

In this section, we only describe the recovery protocol
when there is no replacement processor and skip the sim-
pler case when there is replacement processor. The steps
involved in the recovery are discussed in chronological
order.

(1) A crash is detected when broken pipe errors occur
on sockets used in the communication across processors.
(2) The crash detector starts a “dummy” process on one
of the remaining processors. This new dummy process
does not carry any application data and checkpoint. It
does not participate in any computation in the program.
The only purpose of its existence is to replace the crashed
processor in the processor-level spanning tree 4 used by
Charm++ run-time. This dummy process can be elimi-
nated in future, which will be discussed in Section 6. Af-
ter the dummy process is started, it restores its runtime
system data by sending a request to the processor having
its checkpoint. The dummy process then broadcasts to in-
voke the parallel rollback protocol on every processor.

4This spanning tree is used for broadcast and reduction operations

As a response to the broadcast, all processors except
the dummy processor start to perform the following sub-
steps to rollback states to the recent checkpoints: (3) All
Chare objects on the processors are removed which will
be reconstructed from the checkpoints; (4) Restore dou-
ble checkpoints. The lost checkpoints on the crashed pro-
cessor are restored on other processors using the survived
copies; and (5) Chare objects are restored from check-
points. This is done by one of the buddy processors for
each Chare object.

One issue in the recovery protocol is how to handle ob-
solete messages. These messages may be sent before the
crash, in flight on the network, or buffered in a queue in
the system. If they eventually show up, they will confuse
the newly restored objects in the old states. Therefore,
these messages need to be identified and ignored. In our
scheme, we use an epoch number to denote the period of
execution between consecutive faults. When a fault oc-
curs, a new epoch begins and the epoch number is ad-
vanced by one. The sender processor timestamps each
message with its current epoch number. On the receiver,
only those messages with an epoch number that is not less
than the current epoch number on the processor will be
delivered.

The second row in Figure 2 illustrates a snapshot of ob-
jects on processors after a recovery is complete. After re-
covery, an object does not have to live on the same proces-
sor as the one before the crash. In fact, it does not matter
where a Chare object lives in Charm++ because the mes-
sages directed to it can be automatically forwarded by the
object manager efficiently [19]. Thus, an object is always
locally restored by one of two buddy processors to avoid
communication overhead. For example, object d in Fig-
ure 2 originally on crashed processor 1 has its new buddy
processors 2 and 3 at restart, and object d is chosen to be
restored by processor 3 locally.

Since both the buddy processors can be used to restore
an object, some protocol needs to be established to avoid
double restorations and at the same time create a balanced
assignment of objects to processors. In our protocol, we
use the rule that only the higher number buddy processor
is responsible for performing the task. To avoid overload-
ing the highest number processor, we use a wrap-around
scheme so that processor number 0 is considered higher
than processor P − 1 if there are P processors.

After recovery, load imbalance is very likely to oc-
cur since the restoration of objects to processors is deter-
mined without considering the load of each object. There-
fore, some processors may have too many heavy objects
and become overloaded which could dramatically slow
down the entire execution. Load balancing is then de-
sirable to migrate objects away from overloaded proces-
sors. Charm++ implements an automatic measurement-
based load balancing framework [17] which dynamically

6



monitors the load of the objects and performs load balanc-
ing based on load statistics. In our fault-tolerant protocol,
the load balancer can be configured to automatically start
shortly after a crash. The integration of fault-tolerance
and load balancing in our system helps sustain the paral-
lel performance even after a crash. The benefits of this
post-crash load balancing is demonstrated in Section 5.3.

Our recovery scheme is very efficient and is not com-
munication intensive. Steps (3) and (5) are performed
locally on every processor. The only steps that involve
communication across network are steps (2) and (4). In
step (2), the communication overhead is low because the
system data checkpoint is small (typically in the order of
10KB). In step (4), the recovery process of the lost check-
points (belonging to the crashed processor) is also effi-
cient because every processor holding the survived check-
point can work individually to find a new buddy processor
for the second checkpoint.

4.3 Reliability Analysis

In our fault-tolerance protocol, the only case in which
our protocol might fail occurs when both an object’s
buddy processors crash during the time period between
two consecutive checkpoints. In this section, we provide
a calculation based on a simple model similar to [7] to
show that our protocol increases the reliability of a sys-
tem, in spite of being fallible.

Consider a parallel system with n processors. Let each
single processor have a failure rate of λ and let λ be the
same on all processors. Let the mean time between failure
(MTBF) be M and let M be the same on all processors.
The mean time between failure (MTBF) M = 1

λ . Let the
total execution time of an application without faults be R
units. Thus, the probability that the application will fail is
1− (1− λR)n (1).

Now, consider the case when the application is running
with our fault-tolerance protocol. Let the total run time
of the application in this case be R

′
units, where R

′
>

R. Let C be the time difference between two consecutive
checkpoints. For simplicity, ignore the probabilities of the
cases when unrecoverable failures occur due to crashes of
more than two processors. Let two buddy processors form
a group giving a total of n/2 groups of buddies.

The probability of an unrecoverable error during C,
given that a processor in a buddy group has already failed,
is λC. So the probability that two processors in a buddy
group crash during C is (λR

′
)(λC) = λ2R

′
C. There-

fore, the probability of an unrecoverable error during the
execution is 1− (1− λ2R′

C)n/2 (2).
To get a better idea of the huge different between (1)

and (2), we evaluate these two equations with some plau-
sible system parameters.

To be optimistic, let the MTBF(M ) for any node be 20

years. Let n be 5000, andR be 400 hours. So λ = 1/M =
5.71×10−6 per hour. Plugging these values into (1) yields
a probability of failure of 99.9989%, which means almost
certain failure for the application.

We assume that our protocol increases the running time
of an application by a factor of 3, i.e. R

′
= 1200 hours.

Let each processor checkpoint every 6 minutes, C =
0.1 hour. Therefore, the probability of the unrecoverable
failure with our fault tolerant protocol using (2) is only
0.000977%. Thus, our protocol, although not foolproof,
decreases the probability of failure for an application from
near certainty to a very unlikely chance.

5 Performance

We examine the overhead introduced by the protocol as
well as its performance in restarting after failures.

Two major applications are used to perform the evalua-
tions. One is a simple 7-point stencil computation with a
3-D decomposition (Jacobi3D) written in MPI; the other
is a real world application — LeanMD, a molecular dy-
namics simulation program written in Charm++.

The cluster we used is NCSA Platinum IA-32 Linux
Cluster. The cluster is comprised of 512 dual 1Ghz In-
tel Pentium III processors with 1.5GB of RAM connected
by both Myrinet 2000 interconnect network and 100 Mbit
Ethernet.

5.1 Checkpoint Overhead of Fault-tolerance

Some experiments were conducted to measure the
overhead of adding the checkpoint/restart capability to
Charm++ and AMPI. We expected the overhead in our
protocol due to the fault-tolerance extension would be
very small. In fact, for each message delivered in our
protocol only an IF statement is introduced to check the
epoch number (Section 4.2) of the message in order to fil-
ter those sent from pre-crash time.

We have run the Jacobi3D AMPI program under three
scenarios: (i) with normal Charm++/AMPI without fault-
tolerance extension; (ii) with fault-tolerant extension to
Charm++/AMPI, but without actual doing checkpointing
and (iii) with fault tolerant Charm++/AMPI and with 8
checkpointing steps. These runs were carried out on both
Myrinet and 100Mbit networks from 4 to 128 processors.
For all these runs, the problem size was fixed at 200MB,
therefore the total checkpointed application data size in
the entire program is also fixed at about 400MB (double
checkpointing). The program ran with 100 steps.

Figure 3(a) shows the comparisons of total execution
time for the runs on 100Mbit Ethernet. Figure 3(b) re-
peated the same execution on the faster Myrinet network.
It is evident that the overhead of fault-tolerance alone

7



(a) Jacobi3D MPI on 100Mbit Ethernet (b) Jacobi3D MPI on Myrinet

Figure 3. Checkpoint overhead on up to 128 processors

without doing checkpointing is minimal because of ver-
tical bars of almost equal height in (i) and (ii). The time
cost for 8 checkpointings in 100 steps was also reason-
ably small even on the slow 100Mbit network. To mani-
fest the cost of the checkpointing, Figure 4 shows the time
cost of a single checkpointing for the same run in (iii).
Specifically, it took only 0.32 second for checkpointing
with 100Mbit network and 0.089 second with Myrinet on
128 processors. Further, it can be seen that the check-
point overhead decreases linearly when number of pro-
cessors increases. This is because the application data to
be checkpointed on each processor are reduced linearly 5.
Thus our checkpoint protocol is scalable.

5.2 Performance Comparisons with Traditional
Disk-based Checkpointing

We have compared our protocol with the traditional
disk-based checkpointing protocols under the follow-
ing five scenarios: (a) checkpointing to a shared NFS
drive, (b) checkpointing to each processor’s locally
mounted drive, (c) double in-memory checkpointing via
fast Myrinet, (d) double in-memory checkpointing via
100Mbit Ethernet, and (e) double in-disk checkpointing
via fast Myrinet.

Cases (a) and (b) are the traditional checkpointing
schemes which store checkpoints to reliable disk storage
and only one copy of checkpoint is saved. Note that (b)
assumes every local disk in the system is reliable which it-
self may be difficult to fulfill in practice. Cases (c), (d) and
(e) use our double checkpointing protocol. Cases (c) and
(d) stores checkpoints in memory while (e) stores them in
local disk.

5due to the fact that the global application data size remains the same

Figure 4. Overhead of one checkpointing
(Jacobi3D MPI)

Figure 5 shows the time cost in checkpointing when
problem size increases. We used the same jacobi program
because it is easy to control the checkpoint size. The tests
were carried out on 32 processors of NCSA Platinum clus-
ter with 1.5GB memory each.

It can easily be seen that the checkpoint overhead in-
creased almost linearly with the problem size (or check-
point size) in all five cases except (a) up to at least about
6GB of total checkpoint data.

Among these runs, checkpointing to NFS drive (case
(a)) incurred dramatically higher overhead due to the com-
munication bottleneck to the file server. Checkpointing to
local disk with traditional method (case (b)) performed
much better than (a) however with the assumption that all

8



Figure 5. Performance comparison of in-
memory vs. disk checkpointing

local scratch disks are reliable. Otherwise, the reliabil-
ity of the system is determined by the disk failure rate
since any single disk failure will result in an unrecover-
able crash. This apparently cannot scale to massive paral-
lel machines when the number of local disks in the parallel
system is large.

As to the three test cases of our fault tolerant proto-
col ((c), (d) and (e)), the two in-memory checkpointing
schemes (c) and (d) performed the best. When taking
advantage of a fast network like Myrinet, the checkpoint
overhead is almost negligible in these tests. Specifically,
in case (c) it only took about 4 seconds to perform the
double in-memory checkpointing of total 6 gigabytes of
application data on 32 processors. The protocol running
with much slower 100Mbit network in case (d) also per-
forms reasonably well. The checkpoint overhead was
even less than the traditional disk checkpointing in (b). As
expected, double in-disk checkpointing in (e) took about
twice as much time as traditional local disk checkpointing
in (b) since twice as much checkpoint data was written to
disks.

This comparison of our schemes with traditional disk
checkpointing schemes demonstrates that our double in-
memory checkpoint protocol performs very well and is
able to take advantage of fast network hardware. Even
the double in-disk checkpointing scheme outperforms the
traditional checkpointing scheme (a) that uses a central
reliable file server. While our protocol is not infallible,
it increases the reliability of a system dramatically (Sec-
tion 4.3) and does not rely on any foolproof hardware
which is either impractical or expensive.

5.3 Recovery Performance

This section shows the performance of our in-memory
fault-tolerant protocol in the face of failures. Failures
were simulated by killing one of the processes randomly.

The application used in the following tests was
LeanMD, a molecular dynamics simulation program.
Simulations were conducted using Apoa1, a 92,224 atom
system benchmark. LeanMD generates 8498 parallel ob-
jects including 700 Cells (atoms cubes) and 7798 Cell-
Pairs (for force calculations). In each timestep of simu-
lation, a Cell sends up to 14 messages to CellPairs. Cell-
Pairs perform force calculations and send the forces back.
After each Cell receives up to 14 messages back from
CellPairs, the Cell integrates the forces received and ad-
vances to the next step of the simulation. The checkpoint-
ing step is inserted after a timestep has finished. Due to
the nature of molecular dynamics simulations, the mem-
ory footprint is very small 6 at this point. For this simula-
tion, the checkpoint size for each processor is only about
400KB on each processor. We ran the simulation on 128
processors of NCSA Platinum cluster and the simulation
consists of 600 timesteps.

Figure 6. Time taken for each substep in a
recovery

Figure 6 shows the time spent for each substep (de-
scribed in Section 4.2) in a recovery. It is clear that a big
portion of recovery time was spent in (1) and (2) in which
the failure was detected and a new dummy process was
started. The time cost of these steps depends on the op-
erating system and tends to be a constant overhead for all
applications. The time cost in (3), (4) and (5) are shown to
be very efficient. This experiment shows that our recov-
ery protocol is able to restart an application from a crash
within a few seconds.

Figure 7 demonstrates the impact of crashes on the to-
tal execution time of LeanMD on 128 processors. In these
runs, checkpointing happened for every 10 steps, and an
automatic load balancing step was performed 5 timesteps
after each crash. “Crashes” occurred randomly. Each
point in the figure shows the total run time during which a
number of processors “crashed”. As illustrated in the fig-
ure, the total execution time was almost unaffected when

6CellPairs contain transient data used only when doing force calcu-
lations which does not need to be checkpointed.

9



one or two processors failed. Even in the test case when
losing 10 physical processors (118 processors in the end),
which was about one crash in every 40 seconds, the total
execution time was not increased by more than 50%.

Figure 7. Run time with multiple crashes on
128 processors (in 10-crash case, one crash
in about every 40 seconds)

To better understand how the performance was dramat-
ically improved by load balancing in the multiple failure
scenario, we plotted Figure 8 with simulation time per
step over each timestep for the same simulation that had
10 crashes on 128 processors. Due to rollback, the actual
number of timesteps performed by this simulation is about
640 steps. Load balancing is triggered 5 timesteps after
each crash. It is clear that after each crash and recovery,
due to load imbalance, the simulation time per step in-
creased dramatically (seen as a spike in the figure). After
load balancing, however, the simulation time per step was
brought down to a reasonable one. It also shows that with
smaller number of processors left available, the simulation
speed was affected very little and the simulation time per
step increased very slowly. It demonstrates that our pro-
tocol integrated with load balancing capability provides
a good solution for maintaining the execution efficiency
even after losing physical processors in crashes.

6 Summary and Future Work

We presented a scalable protocol for fault-tolerance
based on double in-memory checkpoint and restart for
parallel applications. The protocol builds upon well-
studied checkpoint/restart techniques in this area, but un-
like some other approaches does not assume any com-
pletely reliable component. It implements a novel ap-

Figure 8. Simulation speed over timestep
with 10 crashes and load balancing on 128
processors (crashes occur at spikes)

proach of automatically restarting an application from
checkpoints without “down time”. In addition, the scheme
is designed for both cases with and without replacement
processors. It allows a program to continue its execu-
tion after crashes on a smaller number of physical proces-
sors, without the unrealistic assumption of the availability
of extra replacement processors. Most importantly, our
scheme provides a solution for retaining the execution ef-
ficiency on the remaining processors after a crash. Our
scheme is implemented in Charm++ and Adaptive MPI
which allows fault-tolerance features to be available for a
wide collection of applications, especially for scientific
applications with relatively small memory footprint. It
takes advantage of the idea of processor virtualization in
migratable objects and automatic adaptive dynamic load
balancing.

One extension of our scheme is double in-disk check-
point/restart. It is useful for applications with very big
memory footprint when the memory is not enough to
hold both the application memory and checkpoint mem-
ory. Our performance data in Section 5.2 suggests that the
time cost in writing checkpoints to local disk is reasonably
low and is affordable.

Future work includes completely eliminating the
dummy process created at recovery time. Since the only
purpose of this process is to replace the crashed proces-
sor in forming the processor-level spanning tree used by
Charm++ run-time, we should be able to reconstruct the
spanning tree by skipping the crashed processor.

We aim to use our system on some extremely large par-
allel machines such as IBM Blue Gene/L. We will first test

10



our system using a simulator [26] for large machines that
we are developing, even before such a machine is built.

Acknowledgements

This work was supported in part by the National Sci-
ence Foundation (NGS 0103645) and National Institutes
of Health (PHS 5 P41 RR05969-04).

References

[1] A. Agbaria and R. Friedman. StarFish: Fault-tolerant dy-
namic MPI programs on clusters of workstations. In 8th
IEEE International Symposium on High Performance Dis-
tributed Computing, pages 167–176. IEEE, 1999.

[2] L. Alvisi, E. N. Elnozahy, S. Rao, S. A. Husain, and A. D.
Mel. An analysis of communication induced checkpoint-
ing. In Symposium on Fault-Tolerant Computing, pages
242–249, 1999.

[3] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak,
C. Germain, T. Herault, P. Lemarinier, O. Lodygensky,
F. Magniette, V. Neri, and A. Selikhov. Toward a scal-
able fault tolerant mpi for volatile nodes. In Proceedings
of SC 2002. IEEE, 2002.

[4] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik,
P. Lemarinier, and F. Magniette. MPICH-V2: a fault tol-
erant MPI for volatile nodes based on pessimistic sender
based message logging. In SC 2003, 2003.

[5] D. Briatico, A. Ciuffoletti, and L. Simoncini. A distributed
domino-effect free recovery algorithm. In IEEE Inter-
national Symposium on Reliability, Distributed Software,
and Databases, pages 207–215, December 1984.

[6] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill.
Automated application-level checkpointing of mpi pro-
grams. In Principles and Practice of Parallel Program-
ming, June 2003.

[7] S. Chakravorty and L. V. Kale. A fault tolerant protocol
for massively parallel machines. In FTPDS Workshop for
IPDPS 2004. IEEE Press, 2004.

[8] K. Chandy and L. Lamport. Distributed snapshots: Deter-
mining global states of distributed systems. In ACM Trans-
actions on Computer Systems, pages 3(1):63–75, February
1985.

[9] Y. Chen, K. Li, and J. S. Plank. CLIP: A Checkpointing
Tool for Message-passing Parallel Programs. 1997.

[10] Egida - lightweight fault-tolerance
for distributed systems, 2003.
http://www.cs.utexas.edu/users/vin/research/egida.shtml.

[11] E. N. Elnozahy. Manetho: Fault-Tolerance in Distributed
Systems Using Rollback-Recovery and Process Replica-
tion. PhD thesis, Rice University, October 1993.

[12] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message pass-
ing systems. Technical Report CMU-CS-96-181, School
of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, USA, Oct. 1996.

[13] G. Fagg and J. Dongarra. FT-MPI: Fault Tolerant MPI,
Supporting Dynamic Applications in Dynamic World. In
S. Verlag, editor, Euro PVM/MPI User’s Group Meeting,
pages 346–353, Berlin, Germany, 2000.

[14] C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI.
In Proceedings of the 16th International Workshop on
Languages and Compilers for Parallel Computing (LCPC
2003), LNCS 2958, pages 306–322, College Station,
Texas, October 2003.

[15] R. Jyothi, O. S. Lawlor, and L. V. Kale. Debugging sup-
port for Charm++. In PADTAD Workshop for IPDPS 2004,
page 294. IEEE Press, 2004.

[16] L. V. Kalé. The virtualization model of parallel program-
ming : Runtime optimizations and the state of art. In
LACSI 2002, Albuquerque, October 2002.

[17] L. V. Kale, M. Bhandarkar, and R. Brunner. Run-time Sup-
port for Adaptive Load Balancing. In J. Rolim, editor, Lec-
ture Notes in Computer Science, Proceedings of 4th Work-
shop on Runtime Systems for Parallel Programming (RT-
SPP) Cancun - Mexico, volume 1800, pages 1152–1159,
March 2000.

[18] L. V. Kale and S. Krishnan. Charm++: Parallel Program-
ming with Message-Driven Objects. In G. V. Wilson and
P. Lu, editors, Parallel Programming using C++, pages
175–213. MIT Press, 1996.

[19] O. S. Lawlor and L. V. Kalé. Supporting dynamic parallel
object arrays. Concurrency and Computation: Practice
and Experience, 15:371–393, 2003.

[20] J. S. Plank and K. Li. Faster Checkpointing with N+1
Parity. In 24th Annual International Symposium on Fault-
Tolerant Computing, June 1994.

[21] B. Randell. System structure for software fault-tolerance.
In IEEE Trans. on Software on Software Engineering, vol-
ume SE-1 (2), pages 226–232, June 1975.

[22] G. Stellner. CoCheck: Checkpointing and Process Mi-
gration for MPI. In Proceedings of the 10th Interna-
tional Parallel Processing Symposium (IPPS ’96), Hon-
olulu, Hawaii, 1996.

[23] R. Strom and S. Yemini. Optimistic recovery in distributed
systems. ACM Trans. Comput. Syst., 3(3):204–226, 1985.

[24] Y. Tamir and C. Equin. Error recovery in multicomputers
using global checkpoints. In 13th International Confer-
ence on Parallel Processing, pages 32–41, August 1984.

[25] Y. M. Wang. Space reclamation for uncoordinated check-
pointing in message-passing systems. PhD thesis, Univer-
sity of Illinois Urbana-Champaign, Aug 1993.

[26] G. Zheng, G. Kakulapati, and L. V. Kalé. Bigsim: A par-
allel simulator for performance prediction of extremely
large parallel machines. In 18th International Parallel
and Distributed Processing Symposium (IPDPS), page 78,
Santa Fe, New Mexico, April 2004.

11


