Code Optimization

Orion Sky Lawlor olawlor@uiuc.edu 2003/9/17

Roadmap

- Introduction
- gprof
- Timer calls
- Understanding Performance

Introduction

- Scientific Performance Method:
 - Measure (don't assume!)
 - Find the bottlenecks in the code
 - They aren't where you expect!
 - Fix the worst problems first
 - Consider stopping-- is it good enough?
 - Fix
 - Improve algorithms first
 - Improve implementations second
 - Repeat (indefinitely)

gprof- UNIX performance tool

- Compile and link with "-pg" flag
 - Adds instrumentation to code
- Run serial program normally
 - Instrumentation runs automatically
- Run gprof to analyze trace
 - gprof pgm gmon.out`
- Shows a function-level view of execution time
- Heisenberg measurement error! 4

Timer Calls

- CPU time (virtual time)
 - Time spent running your code
 - CmiCpuTimer() 10ms resolution
- Wall clock time (real time)
 - Includes OS interference, network delays, context-switching overhead
 - CmiWallTimer() to 1ns resolution
 - This is what really counts

How to call the timer: one time

- What's wrong with this?
 - double s=CmiWallTimer();
 - foo();
 - double e=CmiWallTimer()-s;
 - CkPrintf("foo took %fs\n",e);
- If CmiWallTimer takes 100ns, and foo takes 50ns, this may print 150ns!
 - Only a problem for very fast functions (or slow timers!)

How to call the timer: repeat

- Repetition can decrease apparent timer overhead and increase resolution:
 - const int n=1000;
 - double s=CmiWallTimer();
 - for (i=0;i<n;i++) foo();</pre>
 - double e=(CmiWallTimer()-s)/n;
 - CkPrintf("foo took %fs\n",e);
- Problem: what if foo's performance is cache-sensitive?

Understanding Performance: CPU

Understanding Performance: OS

Understanding Performance: Net

Conclusions

- Performance is the whole point of parallel programming
 - painful but necessary
- Asymptotics matter- find O(n)
- Constants matter- count mallocs
- Scientific Performance Method:
 - Measure
 - Fix
 - Repeat