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m Introduction

m gprof
= Timer calls
= Understanding Performance




m Scientific Performance Method:

s Measure (don’t assume!)

e Find the bottlenecks in the code
e They aren’t where you expect!

e Fix the worst problems first

e Consider stopping-- is it good enough?
m Fix

e Improve algorithms first

e Improve implementations second

= Repeat (indefinitely)




gnrof- UNIK performance tool
= Compile and link with “-pg” flag

s Adds instrumentation to code
= Run serial program normally

= Instrumentation runs automatically
= Run gprof to analyze trace

=  gprof pgm gmon.out’

m Shows a function-level view of
execution time

= Heisenberg measurement error!-




= CPU time (virtual time)

= Time spent running your code
s CmiCpuTimer()- 10ms resolution

= Wall clock time (real time)

m Includes OS interference, network
delays, context-switching overhead

s CmiWallTimer()- to 1ns resolution
= This is what really counts




= What's wrong with this?

m double s=CmiWallTimer();
m foo();
m double e=CmiWallTimer()-s;
m CkPrintf(“foo took %fs\n",e);
m If CmiWallTimer takes 100ns,

and foo takes 50ns, this may
print 150ns!

m Only a problem for very fast
functions (or slow timers!)




= Repetition can decrease

apparent timer overhead and
Increase resolution:

m const int n=1000;

s double s=CmiWallTimer();

m for (i=0;i<n;i++) foo();

m double e=(CmiWallTimer()-s)/n;
s CkPrintf(“'foo took %fs\n",e);

= Problem: what if foo’s
performance is cache-sensitive?
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= Performance is the whole point
of parallel programming

= painful but necessary

s Asymptotics matter- find O(n)

m Constants matter- count mallocs
m Scientific Performance Method:

= Measure

m Fix

= Repeat 11




