Orion Sky Lawlor
olawlor@uiuc.edu
2003/9/17

m Introduction

m gprof
= Timer calls
= Understanding Performance

m Scientific Performance Method:

s Measure (don’t assume!)

e Find the bottlenecks in the code
e They aren’t where you expect!

e Fix the worst problems first

e Consider stopping-- is it good enough?
m Fix

e Improve algorithms first

e Improve implementations second

= Repeat (indefinitely)

gnrof- UNIK performance tool
= Compile and link with “-pg” flag

s Adds instrumentation to code
= Run serial program normally

= Instrumentation runs automatically
= Run gprof to analyze trace

= gprof pgm gmon.out’

m Shows a function-level view of
execution time

= Heisenberg measurement error!-

= CPU time (virtual time)

= Time spent running your code
s CmiCpuTimer()- 10ms resolution

= Wall clock time (real time)

m Includes OS interference, network
delays, context-switching overhead

s CmiWallTimer()- to 1ns resolution
= This is what really counts

= What's wrong with this?

m double s=CmiWallTimer();
m foo();
m double e=CmiWallTimer()-s;
m CkPrintf(“foo took %fs\n",e);
m If CmiWallTimer takes 100ns,

and foo takes 50ns, this may
print 150ns!

m Only a problem for very fast
functions (or slow timers!)

= Repetition can decrease

apparent timer overhead and
Increase resolution:

m const int n=1000;

s double s=CmiWallTimer();

m for (i=0;i<n;i++) foo();

m double e=(CmiWallTimer()-s)/n;
s CkPrintf(“'foo took %fs\n",e);

= Problem: what if foo’s
performance is cache-sensitive?

GHz 1ns™) Integer Floatin
Arithmetic Pointg Branches Cache
10ns -
/ Subroutine
/ or % (int)x f Memory
100ns 4 /
/ f “inline”
MHz 1us 1 {
Bitshifts F(int *)&x /
and masks

10us /

100us Cache-friendly
algorithms

KHz 1ms

GHz 1ns
10ns—]
100ns | | sin, tan,...
Timer f Malloc Syscall
MHz 1us— / B
10us— f
Tables, Rell.lse
identities buffers
100us
_Avoid ..
KHz 1ms /

Disk Timeslice

GHz 1ns

10ns
Message

Loone_COMbining Rethink

MHz 1us ¢/ / Probe

v

RDMA

10us—
Message _
Barrier

100us—

KHz 1ms
10

= Performance is the whole point
of parallel programming

= painful but necessary

s Asymptotics matter- find O(n)

m Constants matter- count mallocs
m Scientific Performance Method:

= Measure

m Fix

= Repeat 11

