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Abstract

The masters thesis describes a simulator for large parallel machines like BlueGene/L that

provides the ability to make performance predictions, based on actual execution of real

applications.

It is useful to evaluate the performance of many applications on such machines even

before they are built. In this thesis, we present an online parallel simulator which is based

on a parallel discrete event simulation scheme and also demonstrate sequential and parallel

post-mortem simulation schemes. The techniques for optimizing online parallel simulations

of machines with large number of processors on the ones with fewer number of processors are

also explored. Finally, a comparison of online and post-mortem approaches is also presented.
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Chapter 1

Introduction

1.1 Motivation

Many large parallel machines are now being designed. The BlueGene (BG/L) machine

being built by IBM will have 65536 dual-processor nodes with a peak performance of 360

teraFLOPS and is scheduled to be operational in the 2004-2005 timeframe. Other large

parallel machines will be also expected to be ready in near future. ASCI Purple will have

12k processors, ASCI Red Storm will have 10k-30k processors. A design by IBM called the

Cyclops may have over one million floating point units, fed by 8 million instruction streams

supported by individual thread units. In response to an initiative by the U.S. Department

of Defense, newer architectures are coming up for machines to be built within the next few

years 1.

It is essential to evaluate the performance of such machines for different target appli-

cations before they are built or before they are actually purchased. It is not sufficient to

multiply the peak floating point performance by the number of processors. Communica-

tion performance, application characteristics and the behavior of run-time support systems

contribute to the overall performance.

Even for existing large machines, our performance prediction approach is useful. Time

on large machines is hard to get and must be reserved well ahead. However, every time

1From news article at: http://www.hoise.com/primeur/01/articles/monthly/AE-PR-07-01-13.html
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a performance measurement run is carried out, application developers must spend time

visualizing and analyzing the performance data before the next set of optimizations are

decided upon. Waiting time for the next running slot is atleast a day. With a simulator,

this performance debugging cycle can be shortened considerably.

1.2 Thesis objectives

The new machines can be evaluated by running planned applications on full-fledged simu-

lators of such machines. The approach presented here is a step in the direction of accurate

simulations of extremely large parallel machines using currently available parallel machines.

The simulator builds on an already existing system that can emulate large parallel ma-

chines [7]. Based on the Charm++ [2] parallel programming system, the emulator has

successfully simulated several million threads (one for each target machine processor) on

clusters with only hundreds of processors. However, the emulator is useful only for studying

programming models and application development issues and does not provide performance

information.

To make performance predictions, we explore three alternative (and competing tech-

niques):

• Modify the emulator to carry out an online Parallel Discrete Event Simulation (PDES).

• Record traces during emulation and run a sequential trace-driven simulation.

• Record traces during emulation and run a parallel simulation based on the generated

traces

The thesis explores the above mentioned strategies and also identifies the advantages of

each of these schemes. In general, large traces and slower simulations make the sequential

approach infeasible. The other approach is a parallel post-mortem scheme also for which

the traces have to be recorded. The online parallel simulator lets the execution of the
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program proceed as usual. It concurrently runs a parallel algorithm to correct timestamps of

individual messages. We present the parallel approach in the context of a simple, evidently

deterministic, class of applications called linear-order programs and then generalize it for a

broader class of applications.

1.3 Thesis organization

We first give a description of the emulator and then the overview of the PDES approach that

is taken. Later in section 4 we describe the Structured Dagger coordination language that

can be used to capture event dependencies. Section 5 describes the online correction scheme.

We then present optimization techniques that speed up the parallel simulation, along with

some performance results. A few simple application benchmarks that illustrate the use of

the simulator, predicting performance on a BG/L like machine with 64K processors are

demonstrated. Section 7 explores both the parallel and sequential post-mortem methods.

Section 8 concludes by describing the directions of further research that emerge from the

thesis.
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Chapter 2

Description of the Simulator

Before exploring the various simulation strategies which is the main focus of this thesis, we

describe the components of the simulator.

In order to simulate a future machine with extremely large size on an existing parallel

machine with hundreds of processors, one physical processor has to simulate hundreds or even

thousands of processors of a simulated machine. Each simulated processor is represented as

a thread on a physical processor. The total memory requirement for the simulation is an

important consideration. Fortunately, some of the planned PetaFLOPs class machines have

low memory-to-processor ratio. For example, Blue Gene/C was originally designed to have

about half a terabyte of total memory. Thus, to emulate Blue Gene/C running an application

which uses the full machine will require 500 processors of a traditional parallel machine with

1G memory per processor. Also, many real world applications such as molecular dynamics

simulation do not require large amount of memory. For applications that do require large

amount of memory, it is still possible to use automatic out-of-core [6] execution to temporarily

move the data in memory to disk when it is not needed immediately. This swapping increases

the simulation time but the predicted running time on the target machine is unaffected.

The Parallel Simulator builds on an emulator for PetaFLOPs class machines [1]. We first

describe the emulator, and the component models for estimating costs of computation and

communication.
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Figure 2.1: Functional view of an emulated node

2.1 Emulator for parallel machines

The emulator [7] supports a low-level API. The emulator is implemented in Converse [4].

Though the API mimics the Bluegene API, it is fairly general to support other architectures.

API supports multiple instruction streams (hardware threads) that share memory in each

single node. An emulated node as shown in 2.1 has worker threads and communication

processors. The node has a global queue and an affinity queue for each worker thread. The

node design is general enough to encompass other architectures that may have different

number of processors and co-processors in each node. The emulator however cannot make

any performance predictions or give an estimate for the running time on the real machine.
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2.2 Component performance models

Converting the emulator to a simulator requires correct estimation of the time taken by

sequential code blocks and messaging. The simulator is capable of using various plug-in

strategies for estimation of the performance of these component models.

2.2.1 Predicting the time of sequential code

The walltime taken to run a section of code on traditional machines cannot be directly used

to estimate the compute time on the target machine. As we don’t know the time taken

for a given sequence of instructions on the target machines, we use a heuristic approach

to estimate the predicted computation time on the simulator. Many possible methods are

described below. They are listed in the increasing order of accuracy (and the complexity

involved).

• User supplied expression for every block of code estimating the time that it takes to

run on the target machine. This is a simple but highly flexible approach.

• Wallclock measurement of the time taken on the simulating machine can be used via

a suitable multiplier (scale factor), to obtain the predicted running time on the target

machine.

• A better approximation is to use hardware performance counters on the simulating

machine to count floating-point, integer and branch instructions (for example), and

then to use a simple heuristic using the time for each of these operations on the target

machine to give the predicted total computation time. Cache performance and the

memory footprint effects can be approximated by percentage of memory accesses and

cache hit/miss ratio.

• A much more accurate way to estimate the time for every instruction is to use a

hardware simulator that is cycle accurate model for the target machine.
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The simulator currently supports the first three of the above described methods.

2.2.2 Predicting performance messaging

It is also necessary to simulate the network environment of the target machine to get the

accurate performance prediction. The possible approaches are described below in the in-

creasing order of accuracy (and complexity).

• No contention modeling: The simplest approach ignores the network contention. The

predicted receive time of any message will be just based on topology, designed network

parameters and a per message overhead.

• Back-patching: Stretch communication times based on the communication activity

during each time period, using a network contention model.

• Network simulation: This approach uses detailed modeling of the network, imple-

mented as a parallel (or sequential) simulator.

The simulator currently supports only the first two approaches.
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Chapter 3

PDES for Simulating Linear Order
Applications

In general, simulation for performance predictions can be carried out as a Parallel Discrete

Event Simulation, or PDES. All entities have a state which changes over time. The changes

of state are known as events. The discrete point in time at which the event occurs is a

timestamp. A discrete event simulation models these state changes. Consider a simulation

of an application using a message passing or message driven system The entities include

emulated processors and all components in the emulated application such as processes in

MPI or parallel objects in Charm++. We map the physical target processors to logical

processors(LPs), each of which has a local virtual clock that keeps track of its progress. In

the simulation, user messages together with their subsequent computations, play the role of

events.

3.1 Timestamping of messages

A virtual processor time (curT) is maintained for each simulated processor (implemented as

a user level thread in the simulator). The message delivery is simulated using timestamped

events. Each message carries a predicted receive time that denotes when the message would

be delivered at its destination. The predicted time is the sum of the current thread time and

the expected communication latency. When the message receive statement for this message

8



Figure 3.1: Timestamping different events

is executed, the thread timer is updated to the maximum of the current thread timer and

the predicted receive time of the message. Figure 3.1 shows this timestamping of messages.

Every event has a recvTime which is the time when the message that triggers this event is

received. The start time of the event will always be greater than the recvTime.

3.2 Sequencing constraints

Discrete Event Simulations are difficult to parallelize efficiently because of the issues of

causality and sequencing. In the parallel simulation, each LP works on its own by selecting

the earliest event available to it and processing it. Doing this can result in sequencing errors

caused by out-of-order message delivery. Out-of-order message delivery occurs when the

messages are delivered in an order different from the one expected on that machine. If a

message M1 with an earlier timestamp T(M1) arrives later than another message M2 with

timestamp T(M2) with T(M1) < T(M2), then M1 will be executed in the context of the

future which is wrong.

Causality errors also have be handled. Suppose event E1 triggered by message M1 on
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LP1 and and event E2 by message M2 on LP2 proceed concurrently where T(M1) < T (M2).

And E1 sends a message M3 to LP2 triggering an event E3, with T(M3) < T(M2). Then M3

must be executed ahead of M2 to ensure the correct order of events. Timestamp correction

is needed to handle such errors, the details of which are described later in the thesis.

3.3 Possible strategies

The possible strategies for execution of events without violating sequencing can be broadly

classified as conservative and optimistic. For the conservative approach, one has to ensure the

safety of an event globally before processing it. Determining this safety is expensive and can

reduce potential parallelism. The optimistic approach allows the execution to go ahead and

correct the sequencing violations. This is performed by doing rollbacks and re-executing the

old events after correcting the order of arrival of messages. This approach can be expensive

when directly applied. We later present an optimized optimistic scheme that exploits the

inherent determinacy of the parallel programs avoiding rollbacks and checkpointing.

3.4 Classification of applications

Some parallel programs give a deterministic result even in the presence of the out-of-order

messages. Executing such a program any number of times will give the same result even

though messages maybe processed in different across those executions. With a few exceptions

(such as branch-and-bound and certain classes of truly asynchronous algorithms), parallel

programs are written to be deterministic. The results are same even though the execution

orders of some components may be allowed to differ as they carry out the same computations.

Non-deterministic programs are beyond the scope of this simulator as changing the order of

messages will change the result itself and will require a total re-execution of the program. For

the deterministic case, how the dependencies between events are captured and out-of-order
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messages are corrected is described in the later chapters. Linear order applications are those

that have all the messages processed in the same order in all of their executions and are

simplest to simulate of the deterministic applications. This strict determinacy condition is

easily exploited in the simulator. The class of non-linear order applications are those where

this condition is not necessarily true. This class subsumes the linear-order applications.

3.5 Simulating linear order applications

In linear-order applications the messages are guaranteed to be used in a fixed order by the

application. Across the multiple runs of the program that messages will be processed in the

same order. The communication runtime handles any out-of-order messages by buffering

them until the application asks for them. And the application always asks for the messages

in the same order. This case is the simplest because messages will always be executed in

their timestamp order. Simulating would only involve updating the current time based on the

timestamp of the message that is about to be processed. This class of applications guarantees

determinacy as it permits the messages to be processed in exactly one order. Examples of

these are MPI programs that dont use irecv-waitall pairs. This is taken advantage of in

performance simulation as no correction of timestamps or rollbacks are needed.
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Chapter 4

Simulating Broader Classes of
Applications Using Timestamp
Correction

Although linear order programs guarantee determinacy and make it possible to simulate

them without application-level rollbacks, they are limited in their expressiveness. For the

more general class of non-linear order parallel applications, the different orders in which

messages are received lead to different orders of execution.

4.1 Message driven programs and Charm++

Charm++ is an object-based portable parallel programming language that embodies message-

driven execution. Charm++ consists of parallel objects and object arrays. These objects

communicate via asynchronous method invocation. In Charm++, an entry method of one

parallel object is executed when there is a method invocation (message) directed to it. In

message driven programs, the execution of an event is ready to be scheduled when the corre-

sponding message that invokes it arrives. In most message-driven programs, the execution is

deterministic even when messages (method invocations) execute in different sequences on an

object. Due to the deterministic property in method invocation, the simulation for such type

of applications does not require rollback and checkpointing. However, timestamp correction
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is needed to handle out of order message delivery.

4.2 Timestamp correction

The recvT ime of a method-invocation event is defined as the time when the message invoking

that entry method is received on the destination processor. The terms startT ime, endT ime,

and execT ime describe the times when the method execution starts, ends and how long it

runs.

When an event is executed, its startT ime is computed by: max(recvT ime, currT ime),

where currT ime is the time on the executing processor. After an event is added to the

timeline the currT ime is updated to the endT ime of that event. An event in the waiting

queue can be scheduled as soon as the current event in the timeline is done and its invoking

message has arrived. If the message to invoke an event Ea arrives during the execution of

another event Eb, it has to be executed after Ea finishes, thus startT ime(Ea) = endT ime(Eb).

If the message arrives some time after Eb finishes, the currT ime is updated to the recvT ime

of the message which is also the startT ime(Ea).

In our timestamp correction scheme, the recvT ime of a method-invocation event is de-

fined as the time when the message invoking that entry method is received on the desti-

nation processor. The terms startT ime, endT ime, and execT ime describe the times when

the method execution starts, ends and how long it runs. In Charm++, the events are non-

preemptive, so the following always holds true: execT ime = endT ime− startT ime. When

an event is executed, its startT ime is computed by: max(recvT ime, currT ime), where

currT ime is the current thread time. After an event is added to the timeline the currT ime

is updated to the endT ime of that event. An event in the waiting queue can be scheduled

as soon as the current event in the timeline is done and its invoking message has arrived. If

the message to invoke an event Ea arrives during the execution of another event Eb, it has

to be executed after Ea finishes, thus startT ime(Ea) = endT ime(Eb). If the message arrives

13



some time after Eb finishes, the currT ime is updated to the recvT ime of the message which

is also the startT ime(Ea).

Figure 4.1: A simple case in timestamp correction

Timestamp correction scheme is needed to correct out-of-order delivery of messages. The

first correction will be triggered if a message M1 with an earlier timestamp arrives later than

message M2. In that case M1 will be executed later (that is in the context of the future) even

if its recvTime is earlier than M2. This will be corrected by reordering the events whenever

an insertion of an event breaks the recvTime order. Whenever an event startTime changes

due to such a rearrangement, it sends out a correction message informing of this change, for

every message that it sent during its execution. The proposed scheme reorders the events

in the timeline as their recvTime changes. Several cases can arise as the events are moved

along the timeline due to their updated receive times. In this approach the timeline will

always have all its events in the non-decreasing order of their receive times.

The simplest example is shown in Figure 4.1. The event M8 arrives after M7, but has a

timestamp before M4. Since the processor was idle between the processing of M3 and M4,

and the idle time was adequate to accommodate the simulated execution time of M8, it will

have its recvTime updated and will be inserted into the timeline accordingly. In this case

the other events are not affected. If there are any events that were triggered by the messages

sent by M8, they should be made aware of this change and should be updated. This is done

using the correction messages.

14



Figure 4.2: Initial timeline

Figure 4.3: Case I (a) (b): Timelines after updating event receive time and after complete
correction

Figure 4.2 shows an initial timeline. Figure 4.3(a) shows that event M4 has its receive

time updated to a smaller value. The modified timeline is shown in figure 4.3(b). Note that

the events that have their start time changed due to this shift send out correction messages

to update other events that have been triggered by them. The figures 4.4(a),(b) demonstrate

the case where the new receive time of event M4 is greater than its previous receive time.

Note that in this case, after M4 is corrected, not only the events after M4 but the ones

before M4 (M5,M6 in this case), send the correction messages. This is because if M4 were

not present ahead of events M5 and M6, they would have been scheduled earlier to process

at their recvTime as shown in figure 4.4(b). These corrections messages may cause some

other events to be rearranged.

But this scheme cannot be directly applied to all non-linear parallel applications where

the execution of a message is not atomic, for example, execution of an event depends on

the occurrence of another event. Inherent dependencies between the events limit the current

scheme as we demonstrate in the next section.
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Figure 4.4: Case II (a) (b): Timelines after updating event receive time and after complete
correction

4.3 Naive timing correction

Unexpected messages that arrive in Charm++ are buffered and executed when an entry

function associated with it becomes eligible for execution. Suppose event e3 is generated

only after events e1 and e2 are executed. By a naive correction scheme if the timestamp of

the message that triggers e1 is changed to T’(e1) such that T’(e1) > T(e1) then the event

e1 is also moved to a later point of time without updating e3 which is incorrect. This is

demonstrated in the Fig 4.5.

The fundamental problem here is that the dependency among events is handled implicitly

in user application. The dependency is determined by some states that are kept inside the

user application. The key to the solution is to let the application expose the dependency of

the events to the communication runtime instead of handling or hiding the dependency in the

user application itself. This allows the runtime to extract the event dependency information

from the application so that it knows how to deliver the events in the order that is expected.

4.4 Structured Dagger

Structured Dagger is developed as a coordination language built on top of Charm++. It

allows a programmer to express the control flow within an object naturally via certain con-
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Figure 4.5: Incorrect correction scheme

structs, while overcoming limitations of thread-based languages without losing the perfor-

mance benefits of adaptive message-driven execution. In other words, Structured-Dagger is a

structured notation for specifying intra-process control dependences in message-driven pro-

grams. It combines the efficiency of message-driven execution with the explicitness of control

specification. Structured Dagger allows easy expression of dependences among messages and

computations and also among computations within the same object using when-blocks and

various structured constructs. The Structured Dagger is adequate for expressing control-

dependencies that form a series-parallel control-flow graph [1].

In Structured Dagger, constructs like When-Blocks, Ordering Construct, Conditional and

Looping Constructs and Atomic Construct are provided. Use of these intuitive constructs

are illustrated in the Figure 4.6.

As an example, we have shown a simple Jacobi program with 1D decomposition. The

parallel Jacobi1D program uses a one-dimensional blocked distribution of data which is

17



entry void jacobiLifeCycle()
{
for (i=0; i<MAX_ITER; i++)
{
atomic{sendStripToLeft();sendStripToRight();}
overlap
{
when getStripFromLeft(Msg *leftMsg) {
atomic { copyStripFromLeft(leftMsg); }

}
when getStripFromRight(Msg *rightMsg){
atomic { copyStripFromRight(rightMsg); }

}
}
atomic{ doWork(); /* Jacobi Relaxation */ }

}
}

Figure 4.6: Sample structured dagger code

divided into chunks. Each Chunk can be implemented as a Charm++ parallel object. The

life cycle of this object jacobiLifeCycle can be written in structured-dagger program as

shown in Fig 4.6. Entry function jacobiLifeCycle() is defined as special remotely invocable

function of the Chunk object. Chares concurrent objects in Charm++ whose methods can

be remotely invoked. When the messages from chares possessing the neighboring strips

on the left and right arrive, the methods getStripFromLeft and getStripFromRight are

triggered respectively. Only when both these messages have arrived, the computation can be

performed by the doWork function. For the example in Figure 4.5, the dependency among

events e1, e2 and e3 can be expressed explicitly as: when e1 and e2 { e3 }.

4.5 Event dependencies

The Structured-Dagger as part of Charm++ programming system has been ported to our

emulator. The performance prediction study exploits Structured-Dagger’s ability for express-

ing control-dependencies in application. With Structured Dagger, the runtime can capture

the dependencies between events even when the object allows them to be processed in mul-
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tiple orders. This approach also applies to a large class of MPI programs that use MPI Irecv

and MPI Waitall as well: the waitall operation is simply recorded as having backward de-

pendencies on all the pending irecvs.

We use Structured Dagger coordination language to build the event dependencies, which

will be accounted for when the events are reordered. In the example of Jacobi1D, rela-

tion between getStripFromLeft, getStripFromRight and doWork events can be captured

using the overlap and when constructs as shown in Figure 4.6. As the structured dagger

code runs, a chain of logs preserving the event dependencies is created on the fly. In the

new strategy, every event E has a list of forward and backward dependents. The backward

dependents E will be those events which must complete before E can start. The forward

dependents of E will be the list of those events that have E as one of their backward de-

pendents. In the previous example, the event doWork has both getStripFromLeft and

getStripFromRight as its backward dependents. In order to preserve the order between the

dependents, an event can be added to the timeline only after all the events that it depends

on have been added. To capture this we define a new term effRecvTime (called effective

receive time) recursively as: max(mERT, recvT ime), where the term mERT is the max-

imum effRecvTime of all the backward dependents (zero if no backward dependents are

present). The effRecvTime is the time earlier to which the event cannot start to ensure that

we maintain the dependency relation between the events. The startTime of an event will

now be computed as max(effRecvTime, currT ime). A correct timeline should be sorted

based on the effRecvTime, instead of the recvTime. Simulations that use these dependen-

cies subsume linear-order applications because those applications do not cause any causality

violations or need any timestamp correction.
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Chapter 5

Online Parallel Simulation: Approach
and Optimizations

The online parallel timestamp correction scheme and results presented in the next chapter

were developed in collaboration with Gengbin Zheng [9] and are also a part of his ongoing

PhD. thesis research. The online parallel timestamp correction scheme is closer to the opti-

mistic approach of Parallel Discrete Event Simulation. The application is run and whenever

a late message with an earlier timestamp arrives, it has to be inserted in its correct place in

the timeline. This causes more corrections by the events which have already been executed.

5.1 Description of the scheme

The idea of the timestamp correction was described earlier in Chapter 4. The online simulator

uses event dependencies to overcome the limitations of the naive correction scheme. As

the program proceeds and timestamps corrections arrive, the effRecvTime of many events

change. This may cause reordering of the timeline. These events are rearranged in the order

of their effRecvTime. The following steps describe this scheme:

(1) Calculate the earliest affected event (EAE) in the timeline

(2) Remove all events from the earliest affected event into R

(3) Initialize effRecvTime of those events to infinity

(4) Recalculate effRecvTime for all events in R whose backwardDeps are in not R
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(5) While R is not empty

(6) Choose the least effRecvTime event from R

(7) Reinsert into timeline

(8) Update the effRecvTime of forward dependents of that event

When an event gets a new effRecvTime, the EAE in (1) is the earlier of its new position

in the timeline and the current position. The above sequence of operations is performed

whenever a correction message arrives. After processing it, the events from the EAE that

have their startTime changed, will send out correction messages.

5.2 Optimizations

The above mentioned timestamp correction is not very effective largely due to cascading

corrections and also because for every correction message the entire timeline has to rear-

ranged by removing many events and reinserting them. Several optimizations have been

implemented along with above scheme and are listed below:

• Overwrite timestamps of old messages: When a new correction message arrives, if

there is already a correction for the same destination that is not yet processed, the

old message’s predicted recvTime value is overwritten. Same scheme works when a

correction message arrives earlier than the message itself.

• Use multisend:Many messages destined to different simulated processors but to the

same real processor are sent collectively, using a library provided in Charm++.

• Prioritize messages based on the recvTime that they carry. This reduces the number

of out-of-order messages drastically.

• Lazy processing: Correction message are processed periodically after certain interval

of time. This delay in the processing causes many of the correction messages to be

21



overwritten. It also amortizes the cost of restructuring the entire timeline over several

corrections.

• Batch processing: Many correction messages will be processed collectively. This means

that the EAE can be computed for a batch of correction messages and the sequence

of operations described in the previous section are done only once for many correction

messages.

Even after these optimizations improved the simulation efficiency, simulations of the

BG/L were still found to be several times slower when timestamp correction was performed

compared to the time taken for simply emulating it. Effect of the cascading corrections and

too many out of order messages was still enormous. This can be reduced if execution is not

allowed to go far ahead of the correction wave. This is because a large difference between

them means there are many wrong events to be corrected. Closely following the execution

wave also may not help, as a delayed real message can cause the correction wave to go back.

Based on these observations a new gvt-like scheme was developed.

5.3 An approximate GVT scheme

The Global Virtual Time (GVT) is defined as the globally smallest timestamp of all pending

messages in the system. All the messages (real and correction) that are currently pending

in the system will have a timestamp of no earlier than the current GVT.

We use a heartbeat mechanism to periodically compute the estimated GVT. Every simu-

lated processor of the target machine reports its Simulated Processor Virtual Time (SPVT).

This is computed as the minimum timestamp of all the messages in real and correction

message queues and messages sent in its timeline during that interval. The timestamp of a

message is the predicted recvTime that it carries. Every real processor computes the Real

Processor Virtual Time (RPVT) as the minimum of SPVTs of all simulated processors on

it. The minimum of the RPVTs is value of the estimated GVT (eGVT) to be used for that
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Figure 5.1: Use of eGVT and windowSize at every heartbeat selectively to process messages

interval. Due to the messages in transit that maybe arbitrarily delayed, the value of GVT

obtained is just an estimate. Therefore it is not necessary for the new eGVT to be larger

than the old value and the reverse may happen in rare cases. However the trend for the

eGVT shall always be increasing, thereby carrying the simulation forward. After the eGVT

is computed, it is broadcast in the system.

After a new eGVT is obtained, to take advantage of the lazy and batch processing

optimizations mentioned earlier, we use a time-window to restrain the advance of the program

execution beyond eGVT. The correction messages are buffered and processed periodically at

every heartbeat. Only those real messages with a timestamp within the window size from

eGVT are executed in the heartbeat interval. This is demonstrated in the Figure 5.1. The

time-window advances every time the new eGVT is obtained.

The number of real and correction messages processed is also recorded for every interval.

If the number of messages processed is very high, that denotes a high activity period in the

simulation. In such a situation eGVT must be updated more often and window advances

faster. The heartbeat interval is adaptive and the interval is shrunk in high activity period.

Similarly it is expanded when there is a low-activity period. A common deadlock problem

in this scheme occurs when the newly computed eGVT does not change when compared to

the previous value as no new messages are processed. If deadlock is detected, the window

size is increased to allow more messages to be processed.
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Chapter 6

Online Parallel Simulation: Results
and Case Studies

In his section we present the results of the online parallel simulation. Using our simulator,

performance issues of some real world applications on planned machines, specifically on

Blue Gene/L can be studied. We describe case studies show that our simulator as a useful

tool for performance prediction and performance analysis. It facilitates the development of

applications on machines with very large number of processors even before the machine is

available.

Furthermore, we are able to do performance analysis for application based on Projections

in postmortem fashion. Projections is a performance analysis tool associated with Charm++,

it provides the capabilities of detailed event tracing and interactive graphic analysis [3].

For the sake of performance analysis, during the run, events and their details are recorded

into applications level logs, one for each simulated processor. It is, however, infeasible to

record logs for all processors due to memory and file system constraints. Projections then

allows user to choose only a subset of simulated processors to be traced in detail, or trace

the whole simulation in less detailed mode - summarizing event data across all processors.
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Figure 6.1: Timelines before correction Figure 6.2: Timelines after correction

6.1 Jacobi1D

The previously described Jacobi1D program was used as a case-study to further analyze and

validate the behavior of the simulator. The network delay model uses a per-hop and per-

corner latency of 5ns and 75ns respectively. The network delay can be increased by scaling

both the per-hop and per-corner latency by the same factor.

The timelines of the events on different processors were visualized using Projections.

During the run, events and their details are recorded into logs and displayed in the timeline.

The timelines shown in figures 6.1 and 6.2 were generated before and after the timestamp

correction for a network latency factor of unity. The separation between the events in 6.1

is caused due to the direct or cascaded effect of the out-of-order delivery of messages. A

message with a later timestamp can arrive early and thread timer will be advanced to the

later timestamp which is wrong. This causes the gaps shown in 6.1. In figure 6.2, the

simulator corrects the problem of out-of-order delivery, and the thread timer is correctly

updated.

The performance prediction results that we obtained are summarized as follows:

• For a correct timestamp correction scheme we expect same predicted time for the same

problem independent of the number of real processors used for simulation. We can use

this to test the correctness of the scheme. Predicted performance was indeed found to
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Figure 6.3: Predicted time vs real processors Figure 6.4: Predicted time vs latency factor

be same across different runs and this result for Jacobi1D is shown in Figure 6.3 for

different network latencies.

• As we increase the network latency we expect the predicted time to remain constant

upto a limit and increase thereafter, due to overlap of computation and communication.

The predicted time was measured as function of the factor by which the per-hop and

per-corner latencies are increased. The result was as expected and is shown in Figure

6.4. Some amount of delay is tolerated after which, the computational work cannot

makeup for the communication delay. So, the predicted time then increases almost

linearly.

• The speedup was also measured based on the predicted time for different latency fac-

tors as shown in the Figure 6.6. For a very low network latency, the speedup was

found to be close to linear, and dropped as the latency factor was raised. For the

same amount of work, as the number of simulated processors increases, the work per

processor decreases. The computation cannot make up for communication delay in

this case and the speedup reduces.
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6.2 LeanMD

LeanMD is a molecular dynamics simulation application written in Charm++ and Struc-

tured Dagger that was developed at the Parallel Progamming Laboratory, UIUC. It is being

developed as the next generation of NAMD [5], a state-of-the-art parallel molecular dy-

namics applications that is also written in Charm++. However, it is not ready for large

parallel machines with hundreds of thousands or even millions of processors due to the lim-

ited parallelism exploited in the application. It is essential to develop and experiment new

parallelization strategies to effectively distribute work across the extremely large number of

processors.

Figure 6.5: Speedup for LeanMD Figure 6.6: Speedup for Jacobi1D

In NAMD, atoms are divided spatially into cells. Interactions between them are calcu-

lated every timestep. If the interaction are computed between only the neighboring cells

then they are called “one away” interactions. All atoms within a cut-off distance will be

accounted for. But this strategy produces a division that is coarsely grained for planned ma-

chines such as Blue Gene/C. For example, with a cutoff radius of 15 Å, a 150 x 150 x 150 Å

simulation space would give only 1,000 cells and 13,0001 cell-to-cell interactions to compute.

11,000*27/2, since cell-to-cell forces are symmetric.
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The division would lead nodes idle on large machines like BG/L even if each interaction is

delegated to a single node.

For creating finer-grained parallelism for cutoff interactions, LeanMD was developed as

an experimental code. In LeanMD, the “one-away” strategy is replaced with a “k-away”

strategy. Instead of one cell representing the cutoff distance, in LeanMD three cells would

span the cutoff distance as shown in Figure 6.7. Therefore, in order to do the cutoff calcula-

tion, a cell must compute its interactions with every cell that is “three-away” in this scenario.

Given the simulation example above, a three-away strategy would produce 27,000 cells and

more than 4 million cell-to-cell interactions, a number of objects that is easily distributed

across the 64,000 nodes of the Blue Gene/L.

We have been able to run the LeanMD on our simulator on Lemieux as a real benchmark.

We have run 3 sway ER-GRE benchmark which consists of 36573 atoms, with a cutoff of

12 Å, the cell size thus is 4x4x4 and the simulation space is 23x23x23 cells. The number of

cell-to-cell interactions is more than 1.6 million. We simulate the Blue Gene/L nodes of size

from 1K to 64K of full machine size. The predicted speedup is shown in figure 6.5 by the

bottom curve.

The simulation data can be used to carry out more detailed performance analysis. The

average processor utilization as it varies with time is shown in Figure 6.8 for 32k simulated

processors. The utilization stabilizes at about 50%, but rises and falls within each timestep.
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Figure 6.9: Distribution of processors based on
load in ms

Figure 6.10: Simulation Speedup

This corresponds to the speedup saturation seen in Figure 6.5. To understand the saturation

of the speedup we used the performance logs to calculate the load on individual processors.

Figure 6.9 shows histogram of this data in the case of 8k and 16k simulated processors.

Although about 6000 out of 16000 processors have a load of about 2ms, a few are seen to

have as high a load as 8ms. This suggests load balance as a major performance issue. To

understand what portion of performance loss is explained by load imbalance alone, we plot

the estimated speedup(P ∗avgLoad/maxLoad) based on load imbalance loss alone(top curve

in Figure 6.5) and compare it with simulated speedup. The closeness of both curves confirms

that load imbalance is the primary cause of performance loss. Only at 64K processors do

the curves deviate, indicating influence of other factors such as communication overhead or

critical paths.

For these simulations we used a no-contention communication model, with possibly too

optimistic communication parameters. We plan to get realistic network parameters from
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IBM for the case of BlueGene/L. Preliminary case-studies demonstrate that the simulator

can be used to identify performance issues for scaling individual applications.

6.3 Performance of the simulation

We measured the performance of the simulator also using leanMD as a sample application.

We demonstrate the scalability of the parallel simulator in Figure 6.10. The simulation

was found to scale reasonably over hundreds of processors. The efficiency of the simulation

depends on the number of correction messages sent. In one simulation, correction and real

messages sent were compared for different simulated processors as shown in Table 6.1. The

low ratio of correction messages to real messages was encouraging. This typically leads to

only about 50% overhead for simulation compared with emulation alone.

Processors 8k 16K 32k 64k
Real Msgs 20,040,000 20,180,000 20,420,000 20,930,000
Corr. Msgs 357,351 305,487 126,629 59,762

Table 6.1: Proportion of correction messages
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Chapter 7

Performance Prediction Using
Post-Mortem Analysis

This section explores the post-mortem analysis for performance prediction. In this case,

there is no timestamp correction during the actual run of the parallel program and hence no

correction messages have to be handled. This approach however uses the event dependencies

created using Structured Dagger to determine the causality of the events when the timeline

is corrected after the simulation finishes. The simplicity of this approach compared to an

online correction makes it attractive.

7.1 Sequential approach

An alternative to doing parallel discrete event simulation is to let the program run without

any corrections in the message delivery order. We record traces during emulation, and then

run a sequential trace-driven simulation. The simulation checks that the messages are always

processed in the order of their timestamps. This is possible because the least timestamp to

be processed is always globally available from the traces.

In this approach, first the program is run on the emulator without any modifications.

Event logs are created for every entry method and Structured Dagger atomic executions.

The dependencies between different methods is captured creating a sequence of backward

and forward dependents for each event and written into the log. Each message sent by an
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Figure 7.1: Sequential post-mortem times for different chares on 8000 simulated processors

event is also logged as the receive time of that message may have to be corrected when the

events starting time is changed. The links to the forward and backward dependents are also

logged.

When the logs are read, the timelines are reconstructed in the correct order. Every

time the event with the globally least effRecvTime event is selected to be added to its

corresponding timeline. The very first event that starts the program is always inserted first

as it has a zero effRecvTime. From then on for every event E that is added to the timeline,

all the events that received messages from E recvTimes updated. Also, if the recvTime of

an event changes, the effRecvTime of the forward dependents is recomputed.

7.1.1 Results of the sequential approach

The correctness of the sequential approach was confirmed by comparing the resulting time-

lines with the online correction scheme. The time for the sequential post-mortem simulation

was measured for different problem sizes. A simple jacobi 1D program with only 1 itera-

tion was run for only 8000 simulated bluegene processors. However, the number of Chares
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(concurrent Charm++ objects) each carrying equal amount of work was varied. The result

is of the sequential times is shown in 7.1. The large simulation times make it impossible

to simulate a large problem for a full size BG/L. For larger simulations, the memory con-

sumption is expected to increase and the performance may worsen due to swapping of data

from memory to disk. This shows that it is necessary to develop a parallel approach for

the same. Sequential approach for post-mortem correction though simple, is useful only for

smaller sized problems and simulated machines.

7.2 Parallel approach using POSE

POSE [8] is a parallel discrete event simulation environment developed at the Parallel Pro-

gramming Laboratory, UIUC. It is built on top of Charm++ and is broadly applicable as it

supports many synchronization protocols and speculation strategies. POSE was designed for

scalability of parallel and distributed simulations. It has an object oriented language built

over Charm++ for modeling complex discrete event systems.

For the use of POSE, the logs are to be read and processed in parallel. For every simulated

processor, the index of the file containing the logs of its timeline is computed. The files have

headers for describing the offsets of various timelines that they contain. This simultaneous

reading of the logs reduces the initialization overhead.

The events are triggered using the message-sent information and the dependency just as

in the sequential method. But in this approach each simulated processor is represented by a

Poser. Posers are objects similar to Chares in Charm++ and execute events in timestamp

order without violating the causality order. The number of physical processors used for the

processing of logs can be different from the number used for running the simulation that

generated those traces.

The logs are read from the traces. Each simulated processor has the list of all the tasks

that it executed. The events are invoked using a POSE invoke construct that takes an event
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Figure 7.2: Speedup using adaptive strategy in POSE, for 8000 simulated BG/L processors

method and a time-offset after which it has to be invoked. For events triggered by messages

the time-offset would by the predicted network latency. For a Structured Dagger event when

all of its backward dependents are ready, it is invoked at the end of the current event. The

execution time can be elapsed using the elapse construct in POSE.

7.2.1 Results using POSE

The parallel post-mortem analysis was performed for a Jacobi1D on 40000 chares simu-

lated over 8000 simulated processors using adaptive strategy in POSE. The speedup of the

simulation is presented in Figure 7.2.

7.3 Post-mortem vs online approach

In both the post-mortem approaches described above, the logs files have to be generated and

written to the disk. In the actual implementation a log file is created for every physical pro-

cessor that holds the details about the events in all the timelines of all the logical processors
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on that physical machine. An online correction scheme however does not require that the

simulation details be recorded and the predicted time can be obtained immediately at the

end of the simulation.

The post mortem approach however offers features that the online approach cannot pro-

vide. In the post-mortem approach it is possible to rerun the simulation from the same

traces with varying network parameters (by changing the recvTimes of the messages) or try

different data processing speeds (by varying the execution times). A more detailed analysis

can be performed if the data recorded in the traces is made more fine-grained, for example

by describing the number of floating-point or integer operations for the execution of every

log. In this case predicted performance can be measured as function of the performance of

floating-point units.
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Chapter 8

Conclusion

We have implemented a simulator that can make predictions of the performance of any

application on parallel machines that are yet to be built. We have also demonstrated its

use on application benchmarks for the specific case of Bluegene/L. The ideas presented in

this thesis are steps in the direction of developing an accurate and low-overhead simulator

for large parallel machines. It can be used for identifying applications that suit the certain

architectures and evaluating their performance on several target machines.

8.1 Future work

The future work would involve making the simulator more closer to the real target machine

itself. This work involves improving the estimates of the network overhead and the execution

time of code blocks. Instead of using a heuristic value as in the current simulator, realistic

network effects can be studied by building an exact network simulation using POSE. This

would model network-link contention, queuing delays and get a more real estimate of the

network latency. A cycle accurate simulator for the machine depending on its architecture

can provide better estimates of the sequential code blocks than using user-defined estimates

as in the current simulator. The post-mortem analysis can be made more flexible by changing

the execution times and receive times of different events after the traces are read, so that

the effect of different design parameters of the machine can be studied.
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