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Abstract

Charm++ is a message-driven parallel programming language designed with the goal of
enhancing programmer productivity by providing a high-level abstraction of a parallel com-
putation while at the same time providing good performance on platforms ranging from
traditional supercomputers to more recent commodity cluster environments. Charm-++ is
based on the C++ programming language and is backed by an adaptive runtime system
that provides features such as processor virtualization, load balancing, and communication
optimizations. Programs written in Charm++ consist of parallel objects called chares that
communicate with each other through asynchronous message passing. When a chare receives
a message, the message triggers a corresponding method within the chare object to handle
the message asynchronously. Charm++ is implemented on top of a software layer called
Converse which supports portability across multiple platforms and, in particular, provides
interprocess communication.

Virtual Machine Interface (VMI) is a high-bandwidth low-latency communication layer
designed with the primary goal of providing a single programming interface to the various
system area networks commonly used in modern commodity clusters. VMI is generally not
intended for direct use by application developers but rather to provide a low-overhead com-
munication layer to developers of higher level programming languages and message passing
libraries. A language or library implemented on VMI immediately gains access to all of the
network interconnects supported by VMI while paying a small overhead of only a few mi-
croseconds per message. Furthermore, the language or library can take advantage of other

VMI features such as the ability to stripe data across multiple network interfaces, auto-
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matic fail-over from one network transport to another, access to communication transports
for distributed grid-based computing, and the ability to monitor and dynamically tune the
communication layer.

This thesis describes an efficient implementation of Charm++ on Virtual Machine Interface
and discusses the various design trade-offs involved. Performance of the implementation
is evaluated for latency and bandwidth and compared to the performance of Charm-++

implementations running on other communication layers.

v



To my parents, who taught me that the most important

things in life cannot be learned from a book.



Acknowledgments

I would like to thank my adviser, Professor Laxmikant Kalé, who gave me a huge degree of
independence in working on this project. His patience and willingness to allow me to explore
various facets of the problem certainly contributed greatly to the value that I received from
doing this thesis and transformed the project from a mere item on an academic checklist
into a true learning experience.

I am also indebted to my colleagues in the Advanced Cluster Group at the National
Center for Supercomputing Applications. For the past several years they have not only
provided an environment of technical excellence that has challenged me intellectually but
they have also been good friends. I specifically thank Avneesh Pant who has taught me an
immense amount about writing efficient code and has given me guidance on many of the
difficult details in this thesis. I also thank Rob Pennington who originally encouraged me to
seek employment with NCSA and who has helped me navigate the terrain of the scientific
community several times.

Although T have only recently joined their ranks, I would like to thank the members
of the Parallel Programming Laboratory in the Department of Computer Science at the
University of Illinois at Urbana-Champaign for making me feel immediately welcome in the
group and for giving me the benefit of their years of experience with the Charm++ and
Converse systems. Among them, Orion Sky Lawlor answered countless questions in the early
stages of this project and saved me many hours of examining source code.

Finally, I give special thanks to my parents and sister who have always encouraged me

to pursue my goals in life.

vi



Table of Contents

List of Tables . . . . . . . . . . . e ix
List of Figures . . . . . . . . . e X
Chapter 1 Introduction . . . . . . . . . . . . . L 1
1.1 Charm++ . . . . . . . e e 2
1.2 Virtual Machine Interface . . . . ... .. .. ... ... ... ... .... 3
1.3 Thesis Contributions . . . . . . . . . . ... ... ... 4
1.4 Thesis Organization . . . . . . . . . . . . . e 5
Chapter 2 Related Work . . . . . . . . . . . .. ... ... .. 6
2.1 Internet Protocol . . . . . . . . . . . .. ... 6
2.2 Myrinet . . .. L e e 7
2.3 InfiniBand . . . . . . . .. 8
2.4 Message Passing Interface . . . . . . ... ... o o oL 9
2.5 Virtual Machine Interface 1.0 . . . . . . . .. . . .. ... ... ... ..., 10
2.6 Globus . . . . . . . e e e 11
Chapter 3 Charm-++ . . . . . . . . . . e 13
3.1 Chares . . . . . . . e 15
3.2 Message-Driven Execution . . . . . . .. ... L0000 15
3.3 COnverse . . . . . . . . e e e e e e 16
3.4 Charm++ Program Files . . . . . . . ... ... ... . L. 17
3.5 Additional Features . . . . . . . . . . .. ... 20
Chapter 4 Virtual Machine Interface . . . . ... .. .. ... ... . ........ 23
4.1 VMI Network Stack . . . . . . . . . . . ... ..o 25
42 I/ORequest Blocks . . . . . .. ... Lo 26
4.3 Message Streams . . . . . ..ol oo o e 29
4.4 Remote DMA . . . . . . . . . . e 32
4.5 Loadable Devices . . . . . . . . . . . . . 34
4.6 Monitoring and Management Framework . . . . . ... ... . ... ... .. 35

vii



Chapter 5 Implementation Details . . . . . . . ... ... ... ... . ........ 37

5.1 Program Startup . . . . . . . .o 37
5.2 Message Sends . . . . . ..o 39
5.3 Message Receives . . . . . . . . ..o 44
5.4 Memory Management . . . . . . . . ...l 45
Chapter 6 Performance . . . . . . . . ... .. oL 47
6.1 Test Environment . . . . . . . . ..o Lo 47
6.2 Gigabit Ethernet Performance . . . . . . . . . .. ... o0 49
6.3 Mpyrinet Performance . . . . . . . . ..o Lo 50
6.4 Interpretation of Results . . . . . .. .. .. ... L. o1
Chapter 7 Conclusion and Future Work . . . . . . .. .. ... ... ... ...... 54
References . . . . . . . . . L e 57

viii



List of Tables

4.1 IRB commands and their meanings . . . . . . .. ... ... .. 0L

4.2 VMI supported devices . .

4.3 VMI experimental devices

X



List of Figures

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1

6.1
6.2
6.3
6.4

Structure of a parallel application that uses Charm++ . . . . . .. ... .. 18
The “Hello World” program .cifile . . ... ... ... ... ... ...... 19
The “Hello World” program .hfile. . . . ... .. ... ... ... .. .. .. 20
The “Hello World” program .C file . . . ... .. .. ... .. ........ 21
Structure of an application that uses VMI . . . . . .. ... ... ... ... 27
Structure of an I/O Request Block (IRB) . . . . . . ... ... .. ...... 28
Structure of VMI Stream, Slab, Buffer Op, and Buffer [19] . . . ... .. .. 31
Structure of the efficient implementation of Charm++ on VMI . . . . . . .. 38
Performance of Converse on Gigabit Ethernet . . . . . . .. ... ... ... 49
Performance of Charm-++ on Gigabit Ethernet . . . . . .. ... ... ... 51
Performance of Converse on Myrinet . . . . . ... ... ... .. ...... 52
Performance of Charm++ on Myrinet . . . . . . ... ... ... ...... 52



Chapter 1

Introduction

High-performance parallel computing has emerged as a major field of computer science study
that attempts to coordinate the computational resources of multiple processors with the goal
of achieving fast execution times for computationally-intensive problems. Parallel computing
is interesting because it allows researchers to investigate problems that would otherwise be
infeasible, both in terms of the computational time required and in terms of the size of the
overall computation.

The primary difficulty with parallel computing is coordinating the efforts of multiple
processors in an efficient manner. The problem to be solved must be divided into pieces
that can be solved simultaneously and then these pieces must be assigned to processors in
the system. Generally, during the course of the computation, the processors in the system
must communicate with each other to exchange intermediate results. Writing correct code
to carry out this communication can be quite difficult and tedious. Forcing the application
programmer to write code to coordinate communication requires the programmer to think
at two levels of abstraction: at the lower level of the communication routines, and at the
higher level of the domain-specific problem.

Another difficulty with parallel computing is dealing with rapidly-changing technology.
By definition, the users of parallel computers are on the leading edge of technology. This
technology tends to change at a fast pace, and it is not uncommon for high-performance

computers to become obsolete within only a few years. Because scientific applications often



tend to take months or years to write, programmers are reluctant to invest in technology
that may not be available for the foreseeable future.

The solution to these difficulties is to provide abstractions to the programmer that make
developing parallel applications simpler. Typically, these abstractions are in the form of par-
allel languages and libraries that encapsulate details of the underlying technology and present
a higher-level view of the parallel computation to the programmer. Because the program-
mer is given a more abstract view of the computation, more attention can be spent on the
domain-specific problem and less on the underlying communication involved. Furthermore,
when the underlying technology changes, the parallel languages and libraries can simply be
redeployed on new technology without requiring changes to the application software.

The fundamental challenge to using abstraction to solve the problems described above
is to make the abstractions low-overhead and the associated cost of using them negligible.

This is the focus of much of the current research in high-performance parallel computing.

1.1 Charm-+}+

Charm++ [16] is a message-driven parallel programming language designed with the goal
of enhancing programmer productivity by providing a high-level abstraction of a parallel
computation while at the same time providing good performance on platforms ranging from
traditional supercomputers to more recent commodity cluster environments. Charm-++ is
based on the C++ programming language and is backed by an adaptive runtime system
that provides features such as processor virtualization, load balancing, and communication
optimizations. Programs written in Charm++ consist of parallel objects called chares that
communicate with each other through asynchronous message passing. When a chare receives
a message, the message triggers a corresponding method within the chare object to handle
the message asynchronously. Charm++ is implemented on top of a software layer called

Converse which supports portability across multiple platforms and, in particular, provides



interprocess communication.

Charm++ presents a powerful abstraction to application developers. The programmer
simply invokes methods on objects, which may exist on the local processor or on a remote pro-
cessor, and Charm++ handles the details of the communication required for remote method
invocation. Furthermore, because the Charm++ system hides the details of the underlying
processors and communication from the programmer, the system is free to make dynamic
runtime optimizations to the computation by migrating processes from heavily-loaded pro-
cessors onto more lightly-loaded processors.

Charm++ is described in more detail in Chapter 3.

1.2 Virtual Machine Interface

Virtual Machine Interface (VMI) [21, 19] is a high-bandwidth low-latency communication layer
designed with the primary goal of providing a single programming interface to the various
system area networks commonly used in modern commodity clusters. VMI is generally not
intended for direct use by application developers but rather to provide a low-overhead com-
munication layer to developers of higher level programming languages and message passing
libraries. A language or library implemented on VMI immediately gains access to all of the
network interconnects supported by VMI while paying a small overhead of only a few mi-
croseconds per message. Furthermore, the language or library can take advantage of other
VMI features such as the ability to stripe data across multiple network interfaces, auto-
matic fail-over from one network transport to another, access to communication transports
for distributed grid-based computing, and the ability to monitor and dynamically tune the
communication layer.

By designing a parallel language or library as a layer on top of VMI instead of directly
on the underlying communication layers, the language or library is easily deployed on new

communication layers as technology changes. A VMI device driver for the new layer is simply



written and the language or library is redeployed with no changes necessary.

Virtual Machine Interface is described in more detail in Chapter 4.

1.3 Thesis Contributions

This thesis describes an efficient implementation of Charm++ on Virtual Machine Interface
and discusses the various design trade-offs involved. Performance of the implementation
is evaluated for latency and bandwidth and compared to the performance of Charm-++
implementations running on other communication layers.

This thesis makes several contributions. First, by implementing Charm++ on VMI, any
program written in the Charm++ language immediately gains access to all of the network
transports supported by VMI. Currently these transports include TCP/IP [25], VIA [4],
Myrinet [1], and InfiniBand [22]. While Charm++ already has support for some of these
transports, such as TCP/IP and Mpyrinet, the support that VMI provides for the these
transports appears to offer competitive performance while at the same time providing support
for transports such as InfiniBand that Charm++ does not support directly.

Second, the thesis offers contributions in the area of novel features provided by VMI that
programs written in Charm++ can now take advantage of automatically. These features
include the ability to stripe data across multiple network interfaces, automatic fail-over from
one network transport to another, access to communication transports for distributed grid-
based computing, and the ability to monitor and dynamically tune the communication layer.
Furthermore, as new features are added to VMI, these features are automatically available
to Charm++ programs without any modifications.

Due to the previous two contributions, Charm++ programs can see an improvement in
performance with little or no effort required on the part of the programmer other than
rebuilding the application with VMI support. This is perhaps the most important outcome

of this work.



Next, the thesis contributes a mechanism by which the developer can easily examine the
structure of communication operations performed by a Charm++ program. By using the VMI
monitoring facilities, the developer can match VMI communication protocols with patterns of
usage of the higher level Converse and Charm++ libraries. Such capabilities might be useful
in the context of distributed grid-based computations in which some communication takes
place over high-performance system area networks (i.e., the intra-cluster communication)
and other communication takes place over lower-performance local area networks or wide
area networks (i.e., the inter-cluster communication).

Finally, this thesis offers contributions in the area of estimating the relative performance
of one Charm++ messaging layer to another. For example, by comparing the performance of
Charm++ running on VMI with a TCP/IP transport device to the performance of Charm++
running directly on TCP/IP, one may gain insight about the efficiency of the TCP/IP im-

plementation of Charm++-.

1.4 Thesis Organization

This thesis contains seven chapters. Chapter 2 presents a survey of work related to this
thesis. Chapter 3 provides an overview of the Charm++ programming language and the
underlying Converse asynchronous messaging layer while Chapter 4 discusses the details of
Virtual Machine Interface. Details of the efficient implementation of Charm-++ on Virtual
Machine Interface are given in Chapter 5. Chapter 6 presents performance measurements of
the implementation for latency and bandwidth benchmarks and compares the performance
to that of Charm++ implementations on other communication layers. Finally, Chapter 7

gives concluding remarks and direction for future investigation.



Chapter 2
Related Work

Several projects exist which are related to the technology described in this thesis, either in
terms of providing building blocks to this thesis or in terms of presenting similar technologies.

This chapter describes such related technologies.

2.1 Internet Protocol

Internet Protocol (IP) [24] along with User Datagram Protocol (UDP/IP) [23] and Transmis-
sion Control Protocol (TCP/IP) [25] represent a well-known and robust family of network
protocols used for over thirty years in developing both local area network and wide area
network applications. In the context of high-performance commodity cluster environments,
these protocols are especially important because they are often deployed on top of Ethernet
and Gigabit Ethernet [13] network mediums that are often used for both intra-cluster and
inter-cluster communication.

The Charm++ net-linux version provides direct support for UDP/IP and the net-linux-
tcp version provides direct support for TCP/IP. Generally, the net-linux version is more
optimized and offers more favorable performance. Finally, Virtual Machine Interface includes
a device driver for TCP/IP. The performance of these three versions of Charm+-+ are bench-

marked and compared in this thesis.



2.2 Myrinet

Myrinet [1] is a local area network technology created by Myricom, Inc. and based on the
packet switching network communication used in massively-parallel computers. Through
the use of custom VLSI chips, efficient routing techniques, and carefully-designed network
control software, Myrinet provides system area network technology capable of supporting
hundreds or thousands of nodes.

Myrinet includes several novel features:

e Zero-copy receives — When a Myrinet network adapter receives a packet destined for a
process on the local node, it uses DMA to deliver the message data directly into the
process’s address space without incurring the cost of a transition from user to kernel
mode on the processor. This allows the message to be delivered without first copying
the message in a temporary kernel-mode buffer as is necessary in traditional messaging

layers.

e High data rates — Each connection in a Myrinet system area network is a full-duplex

pair of 640 Megabit/second channels.

e Regular topologies and scalability — In contrast to traditional local area network tech-
nologies such as Ethernet, Myrinet system area networks are typically arranged in
mathematically regular topologies such as hypercubes, two-dimensional meshes, or
trees. The aggregate capacity of the network grows with the number of nodes because

several packets may be in transit concurrently along different paths.

e Very low error rate — Because Myrinet is designed for more self-contained system area
networks instead of larger local area networks, the designers made the assumption that
errors would be very rare. This assumption means that minimal overhead is spent on
error checking and as a result more of the raw bandwidth of the network is available

for message passing.



e Efficient routing — Myrinet uses cut-through routing with flow control on every link.
This means that packets are advanced into the outgoing network channel as soon
as the header is received and decoded rather than storing the entire packet on each

intermediate node.

e Remote DMA put — Myrinet supports RDMA put operations, allowing a sending pro-
cess to directly place message data into a receiving process’s address space. When
using RDMA to send a message from a sender to a receiver, the receiver first publishes
a buffer in its address space and then the sender writes the message data directly into
the buffer. This results in extremely low-latency data transfers for high performance

clustering environments.

Applications programmers interact with Myrinet through a message-based communica-
tion system called GM [14]. The goals of GM include low CPU overhead, portability, low
latency, and high bandwidth.

The Charm++4 net-linux-gm version provides direct support for Myrinet. Furthermore,
Virtual Machine Interface includes a device driver for Myrinet and therefore Myrinet is avail-
able to the efficient implementation of Charm++ on VMI described in this thesis. The
performance of these two versions of Charm++ are benchmarked and compared in this the-

sis.

2.3 InfiniBand

InfiniBand [22] is another network technology similar to Myrinet, based on an open standard
that is implemented by several vendors. InfiniBand is designed for use in system area network
environments as an interconnect for nodes in high-performance computational clusters and
for use in storage area networks providing a low-latency 1/0 fabric to disk storage.
InfiniBand shares many similar characteristics to Myrinet such as zero-copy receives of

message data directly into a process’s address space, regular topologies and scalability, very



low error rates, efficient routing, and Remote DMA put operations. Beyond these features,

InfiniBand includes some additional features:

e High data rates — InfiniBand hardware exists in three variations in increasing band-
width. Infiniband 1x provides bandwidths of 2.5 Gigabits/second. Infiniband 4x pro-
vides bandwidths of 10 Gigabits/second. Finally, InfiniBand 12x provides bandwidths

of 30 Gigabits/second.

e Remote DMA get — In addition to RDMA put operations, InfiniBand also supports
RDMA get operations. These operations allow a process to directly read message data
directly out of another process’s address space without intervention on the part of the

remote process.

Virtual Machine Interface includes a device driver for InfiniBand and therefore InfiniBand

is available to the efficient implementation of Charm+4 on VMI described in this thesis.

2.4 Message Passing Interface

Message Passing Interface (MPI) [7] is an open standard for parallel computing. MPI defines
primitives that allow a process to join and leave a computation, determine the size of a
computation and the process’s rank in the computation, and exchange messages with other
processes in the computation. Messages can be sent to a single process, to a user-defined
group of processes, or to all processes in a computation. Furthermore, all message send and
receive primitives are defined with both synchronous and asynchronous versions.

Charm++ and MPI are similar in that they both provide a more abstract view of a
parallel application to the developer. In both systems, the programmer thinks in terms of
an ordered set of processes that comprise a computation and communicate with each other

via messages. The systems differ in that MPI provides both synchronous and asynchronous



message passing primitives while Charm-++ is inherently asynchronous !. More importantly,
however, Charm++ provides a much more abstract view of a computation than MPI since
messages are typically created automatically by the Charm++ system as a result of an
invocation of a method on a remote object. That is, the programmer thinks in terms of
invoking a method on a remote object instead of thinking in terms of creating and sending
messages. In contrast, an MPI programmer thinks specifically in terms of the messages that
are sent and received by each process in the computation.

Several implementations of the MPI standard have been created. The two most notable
implementations are MPICH [12] and LAM [2].

A version of Charm++ exists which uses MPI as a means of passing messages between
processes. This mpi-linux version of Charm++ is commonly used on high-performance su-
percomputing platforms where the vendor has already provided an efficient MPT layer, thus
allowing Charm++ to be deployed on many platforms quickly and easily.

An implementation of MPI has been deployed on VMI. This implementation is based on
MPICH 1.2 and will be available as part of the MPICH software distribution in upcom-
ing releases. Furthermore, by using the implementation of MPI on VMI, VMI is available
indirectly to Charm++ applications. The efficient implementation of Charm++ on Virtual
Machine Interface described in this thesis is implemented directly on top of VMI and thus

eliminates the extra MPI layer.

2.5 Virtual Machine Interface 1.0

The efficient implementation of Charm++ on Virtual Machine Interface described in this
thesis is based on VMI version 2.0. The predecessor of this version, VMI version 1.0 [21],

was designed to enable binary portability of MPI applications across the various clusters at

! An asynchronous system can, of course, be extended to provide synchronous operations simply by having
the sender of an asynchronous message wait until the receiver responds with an asynchronous acknowledgment
message.
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the National Center for Supercomputing Applications by allowing applications to run atop
various network interconnects without being recompiled. VMI 1.0 defines a basic network
abstraction for point-to-point communication and uses dynamically loadable modules to
support each network interconnect. Each dynamically loadable module implements a simple
API that includes primitives for connect, disconnect, send, and receive in terms of whatever
a particular network interface provides.

VMI 2.0 [19] is a complete rewrite of the Virtual Machine Interface and improves on the
design of VMI 1.0 by providing features such as the ability to stripe data across multiple
network interfaces, automatic fail-over from one network transport to another, access to
communication transports for distributed grid-based computing, and the ability to monitor
and dynamically tune the communication layer.

An implementation of MPI exists for VMI 1.0 and thus VMI 1.0 is available indirectly
to Charm++ applications through an mpi-linux-vmi version. The efficient implementation
of Charm++ on Virtual Machine Interface described in this thesis is implemented directly on

top of VMI and thus eliminates the extra MPI layer.

2.6 Globus

Globus [8] is a programming toolkit that allows a developer to easily create distributed
grid computing [9] applications. Using Globus, a programmer can construct applications
that utilize computational resources at multiple geographically-distributed locations. For
example, a Globus application could collect data from scientific devices at two different
sites, perform a computation with the data on a supercomputer at a third site, and display
the results of the computation with visualization tools and equipment at a fourth site. While
it is possible to create such applications without the use of Globus, the goal of the Globus
project is to provide abstractions that give a programmer a very high-level view of such

distributed resources and allow the programmer to treat them as a single resource called a

11



metacomputer, thus greatly simplifying the process of developing applications that use these
resources.

The Globus toolkit contains components to facilitate communication, authentication,
network information collection, and remote data access. Of these, the communication com-
ponents are probably the most similar to Charm++ technologies. One communication com-
ponent is the Nexus communication library [11, 10]. When a message is received by a Nexus
process, the message automatically triggers a handler function in the process’s address space
to deal with the message asynchronously. This mechanism allows for the overlapping of
waiting for messages with the execution of ready processes. In this way, the Nexus commu-
nication library is very similar to the Converse library used by Charm++.

The communication aspects of Globus are also similar to some of the grid computing
capabilities available in VMI 2.0. Globus includes a grid-aware implementation of MPI
called MPICH-G2 [17]. This version of MPI uses Globus services to coordinated processes
on distributed resources to create a single MPI computation. Similarly, VMI includes an
implementation of MPI that has the capability of coordinating distributed processes into a

single computation.
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Chapter 3

Charm-++4

Charm++ [16] is a parallel object-oriented language based on C++ [26]. The goal of
Charm++ is to reduce the complexity of developing parallel programs by addressing a few

key issues:

e Portability — The field of high-performance computing changes rapidly. It is not un-
common for parallel computers to become obsolete within only a few years. Because
scientific applications often tend to take months or years to write, programmers are
reluctant to invest in technology that may not be available for the foreseeable future.
Charm++ addresses this problem by providing a portable platform that programmers
can use to develop applications that can run unchanged on a wide variety of parallel

machines.

e Modularity — Modularity and code reuse are well understood concepts in sequential
software. Because parallel programs are inherently complex, modularity is even more
important in the realm of high-performance computing. Charm++ provides mecha-
nisms for allowing parallel algorithms to be encapsulated within reusable modules that

can be easily leveraged in multiple programs.

e Latency tolerance — In most parallel computers, accessing local data is typically much
faster than accessing remote data. A successful parallel programming environment

should, first, make it clear to the programmer when data being accessed is local or

13



remote, and, second, as much as possible allow the processor to continue doing useful
work while remote data are being accessed. Charm-++ addresses the first issue by only
allowing the programmer to access remote data by means of a method invocation on
a remote object, thus making it clear to the programmer when local data are being
accessed and when remote data are being accessed. Furthermore, Charm-++ addresses
the second issue by employing asynchronous method invocation mechanisms in which
a method invocation on a remote object does not cause the calling process to block.
Instead, the caller continues execution after the method invocation with the expectation
that the remote process will respond, via an asynchronous method invocation of its

own, when the result of the computation is available.

e Support for irregularly-structured problems — Several interesting scientific applications
involve irregular problem structures. Examples of such applications include adaptive
mesh refinement, irregular finite-element problems, and N-body simulations. Charm+-+
provides an attractive environment for developing software for these types of problems
because it provides the ability to dynamically create processes for solving portions of
a problem and the ability to dynamically load balance processes over the lifetime of a

computation.

e Performance — In addition to the design issues listed above, a successful parallel pro-
gramming system must provide good performance. The challenge, however, is that
the goal of providing good performance is often at odds with other design goals such
as portability and modularity. An ongoing concern for development of the Charm++

system is delivering good performance to the application layer.

This chapter describes some of the details of the Charm++ language and how they relate

to these design goals.
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3.1 Chares

Programs written in Charm++ consist of one or more parallel objects called chares. A chare
is similar to a C++ object except that public entry methods within a chare may be accessed
remotely from other processes. The only way to access the state of a chare is through its
public interface, therefore a programmer is acutely aware of which data accesses are local
and which are remote while at the same time having a simple and consistent mechanism for
accessing remote data.

Every Charm+-+ program contains a chare, called the main chare, in which execution
begins. The main chare is responsible for creating additional chares to carry out the work
of the parallel computation. Chare creation is considered a relatively low-cost operation
and is the primary mechanism by which Charm++ supports irregularly-structured computa-
tions. Furthermore, because chares can be mapped dynamically to different processors, the
Charm++ system can dynamically balance loads across all processors.

Collections of chares are also available to the programmer. A chare group is a collection of
chares in which exactly one chare is placed on each processor. A typical use of chare groups is
for system-related applications in which the programmer specifically needs to perform some
action on each processor in the system. In addition to chare groups, collections of chares
called chare arrays are also available to the programmer. With chare arrays, an arbitrary
number of chares is placed on each processor in the system. This distribution of chares across
processors is based on the Charm++ load balancer and the mapping may be dynamically
modified to optimize the computation during execution. Chare arrays are the typical way

that collections of chares are used in Charm-++ programs.

3.2 Message-Driven Execution

The Charm++ system automatically generates messages that are sent from the local chare

to a remote chare when a remote method invocation takes place. As messages arrive on the
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remote chare, they are placed in a queue of messages waiting to be processed. The Charm-++
scheduler removes a message from the chare’s message queue and invokes the appropriate
method on the chare to handle the message. The scheduler allows the method to run to
completion before selecting another message from the queue. In this way, program execution
within a chare is sequential while program execution across chares takes place in parallel.
Overall, the concept of executing software handlers in response to the availability of messages
is called message-driven execution.

After a local chare issues a remote method invocation on a remote chare, execution on the
local chare continues immediately. Stated in other words, execution on the local chare does
not block waiting for the method on the remote chare to complete. If the local chare needs
some result computed by the remote method invocation, that result will be communicated
back to the local chare by an additional remote method invocation from the remote chare
to the local chare. The fundamental benefit of making remote method invocations non-
blocking is that it allows the programmer to overlap computation with communication during
program execution. A traditional difficulty in message passing systems is that the time
spent communicating among processes is essentially wasted time. By using a message-
driven approach, Charm++ masks communication latency and allows useful computation to

continue.

3.3 Converse

The Charm++ language itself is implemented on top of a runtime library called Converse
[15]. The Converse framework is intended to serve as a portable foundation for higher-level
language and library writers and as such supports several different programming styles. Con-
verse provides features such as asynchronous message passing mechanisms, thread objects,
a generalized scheduler that coordinates both the delivery of messages and the efforts of

threads, and load balancing primitives. These features are implemented as modules, allow-
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ing the language or library designer to use only those features that are necessary and exclude
everything else.

Message passing in Converse adheres to Active Messages [27] semantics. Each Converse
process registers one or more handler functions designed to receive an incoming message and
perform some corresponding processing. When a sender sends a message to a receiver, it
first sets a handler on the message. The handler function is automatically invoked on the
receiver when the message arrives. It should be clear that these semantics are quite similar
to the remote method invocation used by the Charm++ system itself.

Figure 3.1 shows the structure of a parallel application that uses Charm++. The ap-
plication itself is written in terms of Charm++ chares that interact with each other via
asynchronous remote method invocations. These remote method invocations are translated
by the Charm++ compiler into calls to Converse handlers. Finally, Converse passes the mes-
sages to the remote processor by means of a network transport within the Converse Machine
Interface (CMI).

The CMI defines a minimal interface between the machine independent parts of Converse
and the parts that are unique to various target platforms. The CMI is responsible for process
creation and termination, sending and receiving messages, and low-level utility functions
such as wallclock timers and mutexes for accessing memory. CMI versions exist for target
architectures that pass messages via UDP/IP (the Net version), via Message Passing Interface

(the MPT version), and via Quadrics Elan (the Elan version), among others.

3.4 Charm++4 Program Files

This section examines a simple “Hello World” program written in Charm++. In this program,
chares arrange themselves into a ring structure. The main chare creates a chare array and
then invokes a method to display a message on the first element of the chare array. After

the first chare displays its message, it invokes a method on the second chare in the array to
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Figure 3.1: Structure of a parallel application that uses Charm++

display a message. This chain of method invocations continues until the last chare in the
ring displays its message, at which time it invokes a method on the main chare to signal that
the computation has completed.

Charm++ programs consist of three types of source code files [5]. Interface files are
designated by the extension “.ci” and describe the main chare and any other chares used in
the computation. Interface files also describe the public entry methods that may be invoked
remotely on a chare. In addition to interface files, Charm++ programs consist of standard
.h files and .C files used in traditional C++ programs.

Figure 3.2 shows the Hello.ci interface file for the Hello World example. The file defines
three readonly variables (lines 3-6), two that represent handles that are essentially global
pointers to the main chare and to the chare array, and one that maintains a count of the

number of chares in the chare array. Readonly variables are written once and then the

value written is available in all chares in the computation. Also defined within the Hello.ci
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mainmodule Hello

{
readonly CProxy_HelloMain mainProxy;
readonly CProxy_HelloArray a;

readonly int num;

mainchare HelloMain
{
entry HelloMain ();
entry void Finished (void);

};

array [1D] HelloArray
{
entry HelloArray (void);
entry void PrintHello (void);
3

Figure 3.2: The “Hello World” program .ci file

interface file is the main chare, HelloMain (lines 8-12), and the one-dimensional chare array,
HelloArray (lines 14-18). Entry methods which are callable via remote method invocation
are also defined within the main chare and the chare array.

Figure 3.3 shows the Hello.h header file for the Hello World example. This is a standard
header file as used in C++. The main chare, HelloMain, inherits from the class Chare.
Similarly, the chare array, HelloArray, inherits from the class ArrayElement1D.

Figure 3.4 shows the Hello.C source code file for the Hello World example. When
the Charm++ compiler compiles the interface file, it generates the files “Hello.decl.h” and
“Hello.def.h” to hold corresponding declarations and definitions for the chares used in the
program. The programmer must include these files into the source code as shown in this
example (lines 1 and 41).

The HelloMain constructor (lines 8-18) saves a handle to itself in a readonly variable

(line 10) so that the chares in the chare array may later use it to communicate with the
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class HelloMain : public Chare

{
public:
HelloMain (CkArgMsg *msg) ;
void Finished (void);
s
class HelloArray : public ArrayElementiD
{
public:
HelloArray (void);
HelloArray (CkMigrateMessage *msg);
void PrintHello (void);
+;

Figure 3.3: The “Hello World” program .h file

main chare. Next, it creates a chare array with a user-specified number of chares (line 16).
Finally, it invokes the PrintHello() method on the first chare in the array to display a
message (line 17). The first chare in the chare array displays a message (lines 31-33) and
then invokes the PrintHello () method on the chare with the next higher array index (line
35). This process continues until the last chare in the chare array is reached, at which time

the Finished () method is invoked on the main chare (line 37) and program execution ends.

3.5 Additional Features

In addition to the basic language features described in this chapter, Charm++ includes many
additional features that are beyond the scope of this introduction. Examples of these features
include chare arrays with two-dimensional, three-dimensional, and user-defined indexes; re-
duction operations, which perform a single operation such as add, max, or min over an
entire chare array; prioritized execution, in which messages are tagged with a priority and
then processed in priority-rank order; and a personalized collective communications library

which provides optimized routines for performing all-to-all communications operations. Fur-

20



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

#include "Hello.decl.h"
#include "Hello.h"

CProxy_HelloMain mainProxy;
CProxy_HelloArray a;
int num;

HelloMain: :HelloMain (CkArgMsg *msg)
{
mainProxy = thishandle;
if (msg—->argc != 2) {
ckout << "Usage: ./charmrun Hello <number of elements>" << endl;
CkExit ();
}
num = atoi (msg->argv[1]);
a = CProxy_HelloArray::ckNew (num);
al[0] .PrintHello ();
}

void HelloMain::Finished (void)

{
ckout << "Main Chare is finished." << endl;
CkExit ();

}

HelloArray::HelloArray (void) { }
HelloArray::HelloArray (CkMigrateMessage *msg) { }

void HelloArray::PrintHello (void)
{
ckout << "Hello World from array element " << thisIndex
<< " on processor " << CkMyPe ()
<< " of " << CkNumPes () << " processors." << endl;
if (thisIndex < (num-1)) {
a[thisIndex+1] .PrintHello ();
} else {
mainProxy.Finished ();
}
}

#include "Hello.def.h"

Figure 3.4: The “Hello World” program .C file
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thermore, companion tools provide features such as the ability to graphically analyze the
performance of Charm+-+ programs to allow the programmer to better understand and op-

timize Charm++ programs.
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Chapter 4

Virtual Machine Interface

As low-latency high-bandwidth networks such as Gigabit Ethernet [13], Myrinet [1], and
InfiniBand [22] have received increased usage in high-performance cluster environments,
the focus has switched from hardware performance to the performance of the underlying
messaging software. Delivering point-to-point communication performance near what is
achievable from the raw network hardware is now the primary goal to message layer designers.
Furthermore, messaging layers are now expected to address several secondary goals including
portability, monitoring and management, and support for applications running in distributed
grid-computing environments.

The Virtual Machine Interface (VMI) [21, 19] project at the National Center for Super-
computing Applications was created to address these primary and secondary goals within
the context of NCSA high-performance computation clusters. At the time of this writing,
VMI is currently in beta testing for its second major release, VMI 2.0. This version of the

software provides several compelling features:

e Multiple interconnects — VMI is designed to provide a single programming interface
to the various system area networks commonly used in high-performance commodity
clusters. Software implemented on VMI immediately gains access to all of the net-
work interconnects supported by VMI while paying a small overhead of only a few
microseconds per message. Furthermore, the underlying network interconnect may be

switched simply by changing the contents of a file that describes the devices used for
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the computation; no recompilation or relinking of the application software is necessary.

Data striping and automatic fail-over — Because VMI operates as a software layer
directly above the native network interconnect layer, it can stripe data across multi-
ple network interconnects, even if these network interconnects are heterogeneous. By
striping data across multiple network interconnects, VMI can deliver the aggregate
bandwidth available from all interconnects to the application. Furthermore, if one in-

terconnect fails, VMI can simply continue operating with any remaining interconnects.

Portability — VMI is designed to be portable in two ways. First, VMI is designed to be
portable to a wide variety of network interconnects. The challenge to this goal is the
difficulty in designing a single Application Program Interface that can encompass all
of the lower-level network APIs currently available while simultaneously providing ex-
cellent performance by giving the programmer access to some of the unique features of
individual interfaces. Second, VMI is designed to be portable to a wide variety of plat-
forms. Currently, VMI is available on both IA-32 and [A-64 architectures. Additional

architectures such as Alpha and Power4 are currently being considered.

Scalability — As high-performance commodity clusters increase in popularity, there is
also a trend toward an increase in the number of nodes in a single cluster. Clusters
with hundreds or thousands of nodes are now common. To this end, VMI is designed to
scale to upward of several thousand nodes. The most critical way this is accomplished
is by ensuring that none of the algorithms used within VMI have linear complexities

with regards to the number of nodes in a computation.

Support for distributed grid-based computing — As high-performance commodity clus-
ters increase in popularity, there is a growing desire to connect multiple clusters to-
gether in order to harness the aggregate power of all machines. The challenges to this

goal are twofold. First, the messaging layer must scale to hundreds or thousands of
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nodes, just like in the case of building independent clusters that each contain a large
number of nodes. Second, the messaging layer must not only provide good perfor-
mance for the variety of system area networks used within each cluster but must also
provide good performance for the local area networks and wide area networks used to
connect the clusters themselves together. Design decisions regarding bandwidth and
latency, for example, may be applicable to system area networks but not to the wide
area. Because VMI is designed to be scalable to upward of several thousand nodes and
because it readily supports various types of interconnects, it is a favorable platform for
distributed grid-based computing. Furthermore, algorithms within VMI are designed to

be latency tolerant in order to allow VMI to function correctly over wide area networks.

Dynamic monitoring and management — Adding features to a messaging layer such
as support for data striping and automatic fail-over, support for upward of thousands
of nodes, and support for distributed grid-based computing adds complexity to the
messaging layer. In order to deal with this added complexity, the messaging layer
needs to support capabilities for dynamic monitoring and management. VMI includes
capabilities for monitoring the state of the messaging layer in real time and dynamically

managing the state of the stack.

This chapter provides an in-depth description of the Virtual Machine Interface design and

a discussion of how the VMI design achieves the goals outlined above.

4.1 VMI Network Stack

Figure 4.1 shows the structure of a VMI application. The application is typically written in

terms of an intermediate language or library rather than directly on top of VMI itself since

VMI provides only simple point-to-point communication primitives which are an ideal target

for language or library developers but generally too low level to be appropriate for application
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developers. An example of such an intermediate language or library is the Message Passing
Interface described in Chapter 2.

Below the VMI core is a set of dynamically-loaded device driver modules that can filter
data or pass it to the network. These modules are organized into device chains. At a
minimum, each VMI process must contain two chains: a send chain, which processes data
sent to the network, and a receive chain, which processes data received from the network.
An alert chain may also may be defined, and the VMI core will use this chain to signal error
conditions. Finally, additional device chains may be defined for use by the intermediate
language or library as desired.

The send chain shown in the example in Figure 4.1 defines devices that filter the data
by encrypting and compressing it and then finally send the data over a TCP/IP network.
The corresponding receive chain receives data from the TCP/IP network and filters it by
decompressing and decrypting it before finally delivering the data to the process.

A specification file written in XML [3] describes the device drivers and chains used for
a VMI program. For each chain, the devices on the chain and the order of these devices is
described. The devices used for a program can be changed easily by modifying the specifica-
tion file; no recompiling or relinking of the application is required. For example, simply by
editing a few lines of XML, a VMI program could be changed from using a TCP /IP network

transport to using Myrinet.

4.2 1/0 Request Blocks

Data and control messages are passed between devices on a chain using I/O Request Blocks
(IRBs). Each IRB contains a pointer to a stack, a status field, a pointer to the connection
that the IRB is associated with, and other miscellaneous pieces of state. The stack, in turn,
encapsulates the state of each device on the chain that the IRB is sent on, with one entry

on the stack per device on the chain. Figure 4.2 provides a diagram showing the structure
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Figure 4.1: Structure of an application that uses VMI
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Figure 4.2: Structure of an I/O Request Block (IRB)

of an IRB.

Each element on the stack contains a structure consisting of several fields. The command
field specifies the command corresponding to the IRB. Table 4.1 provides a list of possible
commands and their meanings. The slab field is used to hold the message data that is passed
to the network. The input args and output args fields are used to hold argument data to
and from the device. Finally, the completion function and completion context fields are used
when the last device on a chain completes processing of the IRB. When the last device on
a chain finishes with an IRB, it invokes the completion function and passes the completion
context, an arbitrary pointer to user data, to the function as an argument.

The last device on a send chain is known as a sink device. When an IRB reaches a sink
device, the device has two options for handling the IRB. If the command contained in the
IRB can be completed immediately, the device completes the IRB, causing each device on the
IRB stack to be popped and the completion functions called in order. On the other hand, if
the command contained in the IRB cannot be completed immediately, the device pends the

IRB. A connection to a remote peer, for example, is likely to involve processing delay while
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‘ Command ‘ Meaning

Attach Attach a device to the specified chain

Detach Detach a device from the specified chain

Connect Open a connection to the specified peer

Disconnect Close a connection to the specified peer

Connect Request The specified peer is attempting to open a connection
Disconnect Request | The specified peer is attempting to close a connection
Send Send data on the specified connection

Receive Data has been received on the specified connection
Alert An error condition is present on the device

Table 4.1: IRB commands and their meanings

the connection is opened. When a pended IRB finally completes, the IRB stack is popped
and the device completion functions are invoked. In this way, all data in VMI is treated
asynchronously and the intermediate language or library can readily allow the application

to continue to make progress even when some communication channels are stalled.

4.3 Message Streams

Messages are transmitted between VMI peers as datagrams on a unidirectional path called
a stream. Each stream is associated with a bidirectional connection between two peers. At
most, one connection binds each pair of peers while any number of streams may be associated
with each connection.

Message data are encapsulated into one or more slabs which travel along a stream. In
the event that message data must be fragmented, for example in the case of an underlying
network with a smaller Maximum Transmission Unit (MTU) size than the message data size,
the extra data are put into an additional slab. Data within a single slab arrive in-order at
the receiving process, but slabs may arrive out-of-order relative to one another.

When a slab arrives at a receiving process, the process has two options for handling the
slab. If the receiving process has enough resources to process the slab data immediately, it

handles the message data and then tells VMI that it is done with the slab. This enables
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VMI to release memory resources consumed by the slab. If, on the other hand, the receiving
process cannot handle the slab data immediately, it tells VMI that it wishes to grab the slab.
VMI then transfers ownership of the slab to the process. At such time when the process
has sufficient resources to handle the data contained within the slab, it does so and then
tells VMI to release the slab, freeing its memory. The benefit of such functionality is that it
allows the process to avoid copying the data to a temporary buffer when it cannot process
the data immediately.

Most high-performance messaging layers require data to be registered before being used in
a communication operation. The registration operation typically pins the data into physical
memory, and this implies that the data must be in a contiguous block of memory. VMI uses
buffers to represent contiguous blocks of memory that are suitable for registration with a
lower-level messaging layer. Buffer registration is considered a relatively expensive operation.
Furthermore, most messaging layers require that registered memory be page-aligned and of
a size that is a multiple of the operating system page size. Thus, it is inefficient to register
each piece of communication data independently. VMI provides a structure called a buffer op
which represents a contiguous block of memory within a buffer. When a VMI program starts,
VMI registers several buffers with the underlying messaging layer. As data are sent over the
network, these buffers are divided into buffer ops to hold message data. When buffer ops
are no longer needed, they are returned to the pool of pinned buffer memory.

The data in a slab are contained within one or more buffer ops that may each be dis-
contiguous from one another. To optimize performance, VMI provides the ability to send and
receive data from dis-contiguous regions with gather/scatter operations. These operations
are implemented efficiently by simply adding or removing buffer ops from a slab.

Figure 4.3 shows the organization of streams, slabs, buffers, and buffer ops.

The VMI API provides two ways for the programmer to send messages on a stream.
First, programmers may use the function VMI_Stream_Send_Inline() to perform an inline

send of message data on a stream. In an inline send, the message data are copied into an

30



PROCESS A

Connection

Stream Sab Sab Sab Sab Sab Sab
Slab Slab Slab Stream Slab Stream
\\\
Buffer
Slab JE4
BufferOp  F4-_______ -
Buffer Op S T e-
Buffer Op  F1 "=~
TN KN
Buffer

Figure 4.3: Structure of VMI Stream, Slab, Buffer Op, and Buffer [19]

31

8 SS3004d



inlined data area in the IRB associated with the message (recall Figure 4.2). The inlined
send function is synchronous, causing the caller to block while message data are copied into
the IRB and the IRB is dispatched onto the network. For small messages, it is more efficient
to copy the message data and wait for them to be dispatched to the network. As the size
of message data increases, it becomes less efficient to copy the message data. To this end,
the VMI API provides a second mechanism for programmers to send messages on streams.
Using this second method, the programmer first obtains a pinned region of memory for the
message data either by calling VMI_Buffer_Allocate(), which obtains the pinned region
by registering it dynamically, or by calling VMI_Cache_Register(), which obtains a pinned
region from a large pool of pre-registered memory maintained by VMI. Next, the programmer
calls VMI_Stream_Send() to send the message data held in the pinned buffer on a stream.
In this call, the programmer may request that a completion function be invoked with a
completion context, an arbitrary pointer to user memory, passed to the completion function.
The stream send is dispatched asynchronously and control returns immediately to the caller.
When the send completes, VMI automatically invokes the completion function to enable the

programmer to deallocate the pinned memory used for the send.

4.4 Remote DMA

In addition to supporting message sends via streams, VMI supports message sends via Remote
DMA (RDMA). When using RDMA to send messages, processes access the address spaces
of other processes directly to write or read message data. No interaction by the remote
process is necessary. Furthermore, by accessing the remote process’s address space directly,
no buffering is required for transferring the message data from the network adapter’s memory
to the process’s memory. These zero-copy receives greatly improve the latency of message
passing operations.

The VMI implementation of RDMA supports only put operations for writing data into
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a remote process’s memory. VMI drivers for network transports that have direct support
for RDMA, such as Myrinet or InfiniBand, utilize the underlying network’s RDMA mecha-
nisms. For network transports that do not directly support RDMA, VMI emulates RDMA
by using stream sends. In either case, the programmer uses a common API for accessing
VMI RDMA functionality regardless of whether RDMA is directly supported or emulated on
the underlying network hardware.

To use RDMA, the sending process first calls VMI_RDMA_Set_Publish_Callback() to
register a publish callback function for a given connection. When the receiving process on
that connection publishes a region of memory for the sender to put message data into, VMI
automatically invokes the publish callback function and passes a pointer into the receiving
process’s address space. The sending process uses this pointer in a call to VMI_RDMA_Put ()
to write the message data directly into the receiving process’s memory space. In the call to
VMI_RDMA_Put (), the programmer can specify a put completion function along with a put
completion context. When the RDMA put operation completes, VMI automatically invokes
the put completion function and passes in the put completion context. The sending process
can then deallocate any state that was used during the put operation.

The receiving process performs a similar set of operations to use RDMA. First, the
receiving process calls VMI_RDMA_Set_Notification_Callback() to register a notification
callback function for a given connection. When an RDMA put from the remote process
completes, VM| automatically invokes the notification callback function to inform the receiver
that new message data are available. Next, the receiving process must pin down a registered
region of memory by calling either VMI_Allocate_Buffer() to dynamically register the
memory region or VMI_Cache_Register() to obtain the memory region from a large pool
of pre-registered memory maintained by VMI. The receiver then publishes the address of
the pinned region of memory for the sender to put message data into by calling the function
VMI_RDMA_Publish_Buffer(). As previously described, when a put from the sending process

completes, VMI invokes the notification callback function, passing the address of the memory
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Device Name | Description |

hdralert attaches a header consisting of machine name and date to alert messages
loopback delivers message data to the underlying messaging hardware’s loopback
mst-vapi provides support for InfiniBand hardware

myrinet provides support for Myrinet hardware

passthru simply passes data through untouched

selfdev handles message data where the source and destination are the same
shmem sends message via shared memory to a process within same SMP node
syslog logs an alert message to the Unix system log

tcpdev sends messages via TCP /IP

Table 4.2: VMI supported devices

region holding the message data just received.

4.5 Loadable Devices

The VMI 2.0 release! includes several device modules classified as supported devices. These
devices, along with a short description of each device, are listed in Table 4.2. Among these,
the devices that support communication on TCP/IP, Myrinet, and InfiniBand are perhaps
the most important.

In addition to the supported devices, the software distribution includes several experi-
mental devices. Due to the modular nature of VMI, developing new devices can be readily
done by individuals working independently from the main VMI development team. Exam-
ples of such efforts are the compression device and the encryption device described in [20].
Experimental devices that are determined to address a need with a broad scope will be
incorporated into the supported devices of the VMI distribution after passing through exten-
sive regression testing. Table 4.3 lists the current experimental devices included in the VMI

software distribution.

LAt the time of this writing, the current release is VMI 2.0 Beta2, released July 2, 2003.
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Device Name ‘ Description

aadev plays audio as various types of IRBs travel down the send chain
compdev compresses and uncompresses message data

cryptdev encrypts and decrypts message data

fsdev sends messages via files on a shared filesystem

profiledev creates a profile of all message data sent by a process

reorder reorders data received by a process so it appears to arrive in-order
skel an example skeleton device useful to developers of new devices

via provides support for VIA [?] transport

xfer branches the send chain to allow attachment of multiple sink devices

Table 4.3: VMI experimental devices

4.6 Monitoring and Management Framework

The VMI remote monitoring and management facilities enable the state of the messaging
layer to be monitored in real time. Based on the information gathered from monitoring,
the messaging layer may also be managed dynamically. The granularity of this management
capability ranges from the ability to modify individual parameters for lower-level network
devices to the ability to terminate entire processes running within the computation. VMI
includes a modular library that provides a simple Application Program Interface to this
functionality.

In addition to the library that provides access to the monitoring and management frame-
work to application software, the monitoring and management framework uses three daemon
processes. Because VMI is designed with the intent of scaling to distributed grid-computing
environments, these daemon processes are organized as a hierarchy. At the base of the hi-
erarchy is the VMIeyes daemon. One VMlIeyes daemon exists per node, and the purpose
of this daemon is to track each VMI process running on the node and the devices used by
each process. VMlIeyes passes this information to the Reaper daemon at the next level of
the hierarchy. One Reaper daemon exists per cluster. The Reaper keeps track of the state
of all nodes in the cluster. Additionally, any management messages sent to a node originate

from the Reaper and are communicated to the VMleyes daemon running on an individual

35



node. Finally, at the highest level of the hierarchy is the Nark daemon. One Nark exists per
grid, and the purpose of this daemon is to keep track of all Reaper daemons across an entire

distributed grid-computing environment.
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Chapter 5

Implementation Details

The efficient implementation of Charm++4 on Virtual Machine Interface is deployed as a soft-
ware module at the Converse Machine Interface (CMI) layer. The implementation is com-
posed of some 4,000 lines of source code. Due to the highly modular design of Converse, only
minor modifications to software outside the CMI layer are necessary. These modifications
total approximately ten lines of code and are contained within the Converse core memory
allocation routines. No modifications to the Charm-+-+ source code are necessary. Figure 5.1
illustrates the relationship of the software required for the implementation with regard to
the other software in a Charm++ application.

The remainder of this chapter presents details of the implementation and describes the
optimizations used to provide good performance. Very broadly, these optimizations fall
into the categories of optimizations to the message send path, optimizations to the message

receive path, and the efficient management of memory resources.

5.1 Program Startup

Program startup in a parallel computing environment is often a very involved process. This
is particularly true in the case of the efficient implementation of Charm++ on VMI. Starting
Charm++ on VMl involves three primary operations. First, ranks are assigned to each process

in the computation. Second, the VMI runtime system is initialized. Third, connections are

37



Parallel
Application

CHARM++

Converse

Machine Interface
VMI

Figure 5.1: Structure of the efficient implementation of Charm++ on VMI

established among all of the processes in the computation. This section describes details of
these three startup steps.

The implementation of Charm++ on VMI makes the assumption that each process allo-
cated to a parallel job executes the Converse startup function ConverselInit(). The first
thing that this function does is to establish the rank of each process in the computation. To
do this, each process opens a network connection to a process called the CRM running on an
arbitrary network-accessible machine. Each process belonging to a given job registers with
the CRM, providing a job-specific key and an expected count of the number of processes for
the job. The CRM groups each registration request that specifies the same key into a single
job. After the specified number of processes for the job register with the CRM, it returns an
ordered list of the processes in the job to each process. By examining this list, each process
can determine its rank in the job along with the ranks of all other processes.

After establishing ranks, the ConverseInit() function must next initialize the VMI run-
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time system within each process. To do this, each process examines its environment variable
space to determine whether any VMI default behaviors are being overridden through values
specified in runtime environment variables. Taking both default values and overridden values
into account, the function VMI_Init() is invoked to initialize VMI. Immediately after VMI
is initialized, various VMI-related dependencies are performed, such as the registration of
buffer pools and a stream receive function.

Finally, in the third phase of program startup, connections are opened among all processes
in the computation. Because VMI is a connection-oriented communication layer, each pair
of processes must have a connection in order to communicate with each other. However,
a connection is bi-directional, so each pair of processes requires only a single connection
to communicate with each other. To open all required connections efficiently and without
race conditions, each Charm++ on VMI process issues connection requests to all processes
with a rank lower that that process’s rank and waits for incoming connection requests from
processes with a higher rank.

After the program is successfully initialized in each process in the computation, the

Converse scheduler is started in each process and execution of the user’s program code begins.

5.2 Message Sends

The Converse Machine Interface provides three low-level functions for sending data. Each
function accepts the destination process that is to receive the message, the size of the mes-
sage, and a pointer to the message data. The CmiSyncSend() function sends the message
synchronously and returns to the caller only after the message data have been dispatched to
the network. The CmiAsyncSend() function sends the message asynchronously and returns
to the caller immediately. Additionally, this function returns a CmiCommHandle to the
caller which the caller can use to determine when the asynchronous send completes. The

contract between the caller and the CMI restricts the caller from modifying the message data
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until an asynchronous message has been successfully dispatched to the network. Finally, the
CmiFreeSend () function transfers ownership of the message data to the CMI. Sometime
after the send completes, the CMI is expected to deallocate the memory consumed by the
message buffer.

The CMI also provides message broadcast functions that provide functionality congruent
to the send functions. The CmiSyncBroadcast() function broadcasts the message syn-
chronously and returns to the caller only after the message data have been dispatched to all
processes. The CmiAsyncBroadcast() function broadcasts the message asynchronously and
returns immediately to the caller, passing back a CmiCommHandle that the caller can use
to determine when all sends within the process complete. Finally, the CmiFreeBroadcast ()
function is used to pass ownership of the message data to the CMI and the memory consumed
by the message buffer is deallocated after the broadcast completes. For each broadcast func-
tion, data are delivered to all processes in the computation except the sending process. If
the caller wishes also to deliver the broadcast message to itself, variations of the broadcast
functions exist.

The wide variety of send and broadcast functions provides a rich space for optimization
to the machine layer developer. For example, any of the asynchronous send or broadcast
functions can be implemented in terms of synchronous operations. Typically, synchronous
operations provide less performance to the calling software layer because they cause the
caller to block until the operation completes. The trade-off, however, is that synchronous
operations are typically much easier to implement. Fortunately, VMI offers a framework that
makes implementing asynchronous operations easy without sacrificing performance.

A challenge to writing asynchronous messaging layers is that each asynchronous send or
broadcast operation typically requires some amount of state to be created and maintained
during the lifetime of the operation. At a minimum, this state generally must contain a
pointer to the message buffer used for the asynchronous operation so the memory for the

buffer can be deallocated at the end of the operation. To further complicate matters, when
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a system has multiple outstanding asynchronous operations, the associated state for a given
operation must be located among the states for all outstanding operations.

Recall that VMI allows the state of an asynchronous operation to be maintained and ac-
cessed in a straightforward manner. Each asynchronous send operation allows the program-
mer to specify a completion function and a completion context. The completion context is
simply a pointer to an arbitrary user-defined address in memory. When the asynchronous
operation completes, VMI invokes the completion function and passes the completion context
as an argument. The completion function can then perform any necessary deallocation and
cleanup operations.

The implementation of Charm++ on VMI defines a structure called a send handle which is
used internally to hold the state of all asynchronous send operations. A send handle contains
a reference count, a pointer to the message buffer, and the size of the message data. The
send handle is used as the completion context for VMI message sends; when an asynchronous
message send completes, VMI passes the send handle corresponding to the completed send
to the completion handler function.

The reference count field allows a single send handle structure to be used to implement
both send and broadcast operations, and both synchronous and asynchronous variations of
these operations. At the end of an asynchronous send operation, the completion function
decrements the reference count field. If the reference count reaches zero, the completion
function deallocates the message buffer within the handle and then deallocates the handle
itself. Since asynchronous broadcasts are nothing more that multiple sends to different
processes, the reference count for a broadcast operation is simply set to be equal to the
number of processes to which the message is sent. When the last send in the broadcast
completes, the reference count is decremented to zero and the completion function deallocates
the message buffer and handle. Finally, synchronous operations can be trivially implemented
by simply setting the reference count field to a value one higher than the number of send

operations. The caller then waits until the reference count value reaches one, at which time
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it knows that all other sends on the handle have completed. It is the responsibility of the
caller to release the message buffer and send handle in the case of synchronous sends and
broadcasts.

As described previously, a caller to asynchronous CMI functions such as CmiAsyncSend ()
receives a CmiCommHandle that can be used to determine when the asynchronous opera-
tion has completed. While it would be possible to simply return the send handle itself as
the CmiCommHandle, this opens the possibility that the caller could somehow corrupt the
internal state of the handle. To prevent this, the send handle contains an additional field, a
pointer to a CmiCommHandle, which is used by the completion function to also update the
state of the CmiCommHandle corresponding to the send.

Send operations are divided into three categories based on the size of the message data
and implemented in a strategy best suited to the message. The small message strategy
and medium message strategy are optimized to favor latency and are implemented with VMI
streams. The large message strategy is optimized to favor bandwidth and is implemented with
VMI RDMA. The message size boundaries between strategies can be changed at runtime.
The default boundary size between the short message strategy and the medium message
strategy is 512 bytes, and the default boundary size between the medium message strategy
and the large message strategy is 4,096 bytes.

Both the small message strategy and the medium message strategy employ VMI streams.
Small messages are sent with a VMI inlined send operation which copies the message data into
the IRB and performs a synchronous stream send. Since the send completes synchronously,
no completion function is invoked. Memory bandwidth is high enough on most machines that
copying the data for small messages and dispatching the copy to the network is favorable.
In contrast, the medium message strategy first pins the message data into memory and then
allocates a send handle and performs an asynchronous stream send. When the asynchronous
send completes, a completion function is invoked and the send handle is passed to the func-

tion, allowing the message data to be unpinned and state of the send to be deallocated. For
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medium-sized messages, paying the cost of pinning memory used by the send operation and
invoking a completion function to unpin the memory after the send completes is favorable.

The large message strategy employs a rendezvous protocol to set up VMI RDMA. An
RDMA operation requires the receiver to publish the address of a pinned region of memory
in which the message data will be deposited by the sender. It is infeasible for each process to
maintain a separate pinned memory region for every other process in a computation. Instead,
when a sender wants to use the large message strategy, it first sends a small message on a
VMI stream to the receiver to signal the upcoming RDMA operation. Upon receipt of this
message, the receiver pins a region of memory and publishes the address of this region to
the sender. The sender then puts the message data directly into the receiver’s address
space. To avoid requiring the receiver to pin unusually large amounts of memory, which
becomes infeasible as the size of a message grows, a maximum message chunk size for an
RDMA operation is defined. To send a message that is larger than the maximum chunk size,
multiple puts to the receiver are required. After each put, the receiver moves the chunk data
into another region of memory and acknowledges to the sender that it has done so, allowing
the sender to put the next chunk of data into the receiver’s address space. For large-sized
messages, sacrificing latency for the increased bandwidth available from RDMA is favorable.

Finally, two optimizations that are independent of VMI are used to improve the perfor-
mance of the message send path. The first optimization involves the case where a process
sends a message to itself. Self-sends happen in all of the BroadcastAll functions. Further-
more, a programmer may use a self-send to specifically invoke the handler function associated
with a particular message on the local processor. To optimize message sends where the send-
ing process and destination process are the same, it is important not to pass the message
to the network hardware at all. To this end, each CMI send and broadcast function specif-
ically checks for a self-send and enqueues such messages in a queue of local messages. The
Converse scheduler checks the local message queue in addition to the remote message queue

when searching for messages to deliver to the local process.
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The second optimization that is independent of VMI is the use of spanning trees for
optimizing broadcasts. Broadcasts that do not use spanning trees must send an individual
message to each other process in a computation. As the number of processes in a computa-
tion increase, sending messages to each process becomes prohibitive. In contrast, broadcasts
implemented in terms of spanning trees amortize sends across the other processes in the com-
putation. Each process in the tree sends broadcast messages only to its spanning neighbors.
These neighbor processes each forward the message to their spanning neighbors. Forwarding
continues until the message reaches every process in the computation. The number of mes-
sages each process is required to send is bounded by the spanning factor of the tree. The
default spanning factor used for the implementation of Charm++ on VMI is four, and this

spanning factor can be changed by recompiling the CMI module.

5.3 Message Receives

In addition to providing a convenient framework for implementing efficient asynchronous
message sends, VMI also provides features that enable the developer to easily write efficient
message receives. Both stream receives and RDMA receives take place asynchronously.
When a VMI program starts, it registers a handler function which is invoked asynchronously
any time data are received on a stream for any connection. That is, a single handler function
processes all stream data coming into the program. For RDMA data, a VMI program registers
independent handler functions on a per-connection basis. For the Charm-++ implementation
on VMI, a single handler function is used to process all RDMA data coming into the program
for all connections.

Since messages sent between two processes are dispatched via stream sends or RDMA
independently, they may arrive at the receiver in arbitrary order. Because the Converse
Machine Interface does not make any guarantees regarding message ordering but instead

leaves ordering up to the application, the machine layer is free to place received messages
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into the remote message queue immediately after they are completed. This greatly simplifies
the design of the CMI for Charm++ on VMI because message reordering does not have to be

implemented.

5.4 Memory Management

The final category of optimizations employed by the implementation of Charm+-+ on VMI
involves efficient memory management. Repeated allocation and deallocation of memory is
expensive in terms of machine cycles. Such operations occur within the Converse Machine
Interface layer, for example, each time a message is received from the network. Furthermore,
memory may be allocated and deallocated at the application level as the application creates
and deletes Charm++ objects. To help avoid these costly operations, VMI provides facilities
for managing memory pools. The implementation of Charm++ on VMI uses these facilities
by maintaining five buffer pools for memory regions of sizes of less than 1,024; 2,048; 4,096;
8,192; and 16,384 bytes respectively. When a memory allocation operation is performed,
the allocation is ultimately processed by the CmiAlloc() function. Calls to this function
are intercepted and memory allocation requests are fulfilled by returning a block of memory
from the next-higher-sized buffer pool. For example, a memory allocation request for 2,000
bytes would be fulfilled by allocating an entry from the second buffer pool, returning a
block of memory of 2,048 bytes. The remaining 48 bytes in the buffer are wasted. Memory
for allocation requests that are too large to fit into any of the buffer pools is obtained by a
traditional call tomalloc (). When memory is to be deallocated, the deallocation is processed
by the CmiFree() function. Again, calls to this function are intercepted so that memory
may be returned to the appropriate buffer pool. Internally, VMI allocates large blocks of
memory for each buffer pool and manages the allocation and deallocation of memory from
these pools.

A second area of memory management optimization that the implementation of Charm++
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on VMI employs is efficient management of registered memory regions for send and receive
operations. Typically, high-performance messaging layers such as Myrinet and InfiniBand
require the memory used for send and receive operations to be pinned into core memory
prior to the operation. Pinning the memory ensures that the contents of the memory region
are not paged to disk by the operating system’s virtual memory manager, allowing the
network adapter to use Direct Memory Access to deposit or retrieve message data without
interrupting the CPU. Registering and deregistering memory is a very expensive operation.
Furthermore, the granularity of memory pinned by a registration operation is generally
limited to page-sized regions. Upon initialization, VMI registers several pages of memory
for send and receive operations and makes this pre-pinned memory available to higher level
languages and libraries via API calls. The implementation of Charm++ on VMI uses this

facility to improve performance.
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Chapter 6

Performance

Evaluating the performance of the Charm++ implementation on VMI is critical to determine
whether the project achieves its goal of giving Charm++ programs access to the features
of VMI while incurring minimal overhead. The danger is that adding additional layers of
software could potentially cause significant impacts to the performance of Charm++ ap-
plications. This chapter presents the results of the implementation running latency and
bandwidth microbenchmarks and compares them to the performance of Charm-++ imple-

mentations running on other communication layers.

6.1 Test Environment

Data for this thesis were collected on the Titan cluster [6] at the National Center for Su-
percomputing Applications from September 22, 2003 to September 26, 2003. Titan is a
production-quality TA-64 architecture Linux cluster with a peak performance of one ter-
aflop.

The Titan cluster consists of two access nodes, 128 compute nodes, and four storage
nodes. Each access and compute node is a dual-processor IBM IntelliStation Z Pro 6894
workstation containing 800 MHz Itanium 1 (Merced) processors, four megabytes of L3 cache,
and two gigabytes of ECC SDRAM. Access and storage nodes are connected to each other

and to the compute nodes via Gigabit Ethernet. Compute nodes are connected to each other
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via Gigabit Ethernet and Myrinet 2000 interconnects. All nodes run RedHat 7.1 with Linux
kernel version 2.4.16. The compilers used on the cluster are the Gnu C/C++ compiler gee
version 2.96, and the Intel C/C++ compiler ecc version 7.0.

Performance data were collected for Converse and Charm++ running latency and band-
width microbenchmarks for message payload sizes ranging from one byte to one megabyte in
increasing powers of two. Data were collected for the net-linux-ia64, net-linux-tcp-ia64, and
vmi-linux-ia64 versions of the Converse Machine Interface for Gigabit Ethernet and for the
net-linux-gm-ia64 and vmi-linux-ia64 versions of CMI for Myrinet. Furthermore, the net-
linux-ia64, net-linux-tcp-ia64, and net-linux-gm-ia64 versions can run in either netpoll mode,
in which data are retrieved from the network via a polling operation, or in S/GI0O mode in
which data are retrieved from the network after an interrupt signal is raised. Performance
data for both modes of these Charm++ versions were collected.

The compilations of Converse, Charm++, and the microbenchmark application code
were done with the compile-time options -0 -DCMK_QPTIMIZE for the net-linux-ia64, net-
linux-tcp-ia64, and net-linux-gm-ia64 benchmark runs. For the case of the vmi-linux-ia64
benchmark runs, Converse and the microbenchmark application code were compiled with
-0 -DCMK_QOPTIMIZE but Charm++ was compiled with only ~-DCMK_OPTIMIZE. Unfortunately
when Charm—++ on vmi-linux-ia64 is compiled with the ~-DCMK_OPTIMIZE compile-time op-
tion, incorrect code is produced and the resulting software produces segmentation faults
when executed. This compile-time flag controls whether certain optimizations are included
within the Charm++4- source code.

The latency and bandwidth microbenchmarks both run eleven instances of the bench-
mark, discarding the first result to eliminate startup anomalies, and averaging the results
of the remaining ten instances to produce a given benchmark number. For the latency mi-
crobenchmark, each test involves the sender sending 1,000 instances of message data of the
requested size to the receiver and then waiting for an acknowledgment message after each

instance. Time for each of the 1,000 instances is recorded and these times are averaged at
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Figure 6.1: Performance of Converse on Gigabit Ethernet

the end of the run to compute the latency in microseconds per message. For the bandwidth
microbenchmark, each test involves the sender starting a timer, sending 1,000 instances of
message data of the requested size to the receiver, waiting for a single acknowledgment from
the receiver after all 1,000 messages are received, stopping the timer, and computing the

bandwidth in megabytes per second.

6.2 Gigabit Ethernet Performance

Figure 6.1 shows the performance of Converse on Gigabit Ethernet. Bandwidth is shown in
Figure 6.1(a). The vmi-linux-ia64 version of Converse offers the most favorable performance,
followed closely by the net-linux-ia64 version in both netpoll and SIGIO modes. Finally, the
net-linux-ia64-tcp version, in both netpoll and SIGIO modes, offers the worst performance.
The best bandwidth achieved by vmi-linux-ia64 is 64 megabytes/second. Similarly, latency
is shown in Figure 6.1(b). Again, the performance of the vmi-linux-ia64 implementation is
best, followed closely by both versions of net-linux-ia64. Both versions of net-linux-ia64-tcp
are similarly matched and offer significantly worse performance. The best latency achieved

by vmi-linux-ia64 is 97 microseconds/message one-way.
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Figure 6.2 shows the performance of Charm++ on Gigabit Ethernet. Bandwidth is shown
in Figure 6.2(a). Similar to the performance of Converse on Gigabit Ethernet, the vmi-linux-
ia64 version of Charm-++ offers the most favorable performance, followed closely by the net-
linux-ia64 version in both netpoll and SIGIO modes. Finally, the net-linux-ia64-tcp version,
in both netpoll and SIGIO modes is slowest. The best bandwidth achieved by vmi-linux-ia64
is 64 megabytes/second. While the performance difference between the net-linux-ia64 version
and net-linux-ia64-tcp version remain similar between Converse and Charm++, the margin
of improvement between vmi-linux-ia64 and net-linux-ia64 is more pronounced for Converse
than for Charm++. This is most likely due to the inability to use the ~-DCMK_OPTIMIZE
compile-time flag when building the vmi-linux-ia64 version of Charm++-. Latency is shown in
Figure 6.2(b). In this experiment, the net-linux-ia64 version of Charm++ running in netpoll
mode offers the most favorable performance. The vmi-linux-ia64 and net-linux-ia64 (SIGIO)
versions of Charm++ follow in performance and are very closely matched in relation to each
other. Finally, both versions of the net-linux-ia64-tcp version of Charm++ offer the worst
performance. The best latency achieved by vmi-linux-ia64 is 111 microseconds/message one-
way. The performance of vmi-linux-ia64 and net-linux-ia64 (netpoll) versions relative to each
other suggest that the above discussion regarding compile-time options for vmi-linux-ia64

may indeed be the source of its less impressive performance.

6.3 Myrinet Performance

Figure 6.3 shows the performance of Converse on Myrinet. Bandwidth is shown in Figure
6.3(a). The vmi-linux-ia64 version of Converse offers the most favorable performance followed
by both versions of the net-linux-ia64-gm version. At 1,024 bytes, the net-linux-ia64-gm
versions both show a dip in performance due to internal packetization of message data
that is longer than 1,024 bytes. The best bandwidth achieved by vmi-linux-ia64 is 240

megabytes/second. Similarly, latency is show in Figure 6.3(b). Again, the performance of the

20



T T T T
net-linux-ia64 —+—
net-linux-ia64 (netpoll) —»—
-li iab4-tcp —x—

T
net-li cp
net-linux-iaé4-tcp (netpoll) —a—
/ vmi-linux-ia64 —a—
0 / )
%/ o

A

200 %
net-iinux-ia64 —— /'/

/ net-linux-ia64 (netpoll) —— -

/ | 64-

-
net-linux-ia64-tcp —*—
net-linux-ia64-tcp (netpoll) —=— 100 —
nux'iae4‘+

Latency (microseconds)

Bandwidth (MB/sec)

vmirl‘i

.
1 4 16 64 256 1024 4096 16384 65536 262144 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Message Size (bytes) Message Size (bytes)

(a) Bandwidth (b) Latency

Figure 6.2: Performance of Charm+-+ on Gigabit Ethernet

vmi-linux-ia64 implementation is best, followed by both versions of net-linux-ia64-gm which
are closely matched. The best latency achieved by vmi-linux-ia64 is 16 microseconds/message
one-way.

Figure 6.4 shows the performance of Charm++ on Myrinet. Bandwidth is shown in Figure
6.4(a). The vmi-linux-ia64 version of Charm++ offers the most favorable performance. Both
versions of net-linux-ia64-gm follow significantly behind. Again, at 1,024 bytes, the internal
packetization of net-linux-ia64-gm is apparent in performance. The best bandwidth achieved
by vmi-linux-ia64 is 243 megabytes/second. Latency is shown in Figure 6.4(b). All three
implementations of Charm++ show nearly identical performance on this benchmark. The

best latency achieved by vmi-linux-ia64 is 20 microseconds/message one-way.

6.4 Interpretation of Results

Based on the performance graphs presented in the previous section, it seems safe to con-
clude that the implementation of Charm++ on VMI does indeed achieve the goal of making
the features of VMI available to Charm++ programs without loss of performance. Of the

eight graphs examined, performance of the vmi-linux-ia64 version is better than any of the
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other implementations of Charm++ examined in this thesis in six cases, equal to the other
implementations in one case, and worse than the other implementations in one case. An ex-
amination of the source code for the vmi-linux-ia64 Converse Machine Interface to determine
the reason for segmentation faults in Charm++ when the implementation is built with the
-DCMK_QOPTIMIZE option is an important future point of investigation. After this problem is
solved, it is expected that the performance of the efficient implementation of Charm++ on

VMI will be better than all other implementations considered here.
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Chapter 7

Conclusion and Future Work

This thesis has described an efficient implementation of Charm++ on Virtual Machine Interface
and discussed the various design trade-offs involved. Performance of the implementation was
evaluated for latency and bandwidth and compared to the performance of Charm++ imple-
mentations running on other communication layers. Based on this performance evaluation,
it seems reasonable to conclude that the features provided by VMI have been made available
to Charm++ developers with a minimum of overhead. In several cases, the performance
of Charm++ on VMI is better than the performance of Charm++ on other communication
layers that involve fewer levels of abstraction.

The efficient implementation of Charm++ on VMI is intended to be production-quality
code with the potential for being deployed in environments such as the high-performance
clusters at the National Center for Supercomputing Applications. To this end, future work

on this code will focus on several key areas:

e Evaluation of performance on InfiniBand — The InfiniBand interconnect is expected to
increase in popularity over the next several years and promises compelling performance
in terms of latency and bandwidth. Performance of the efficient implementation of
Charm++ on VMI should be evaluated on InfiniBand to ensure that the implementation

is optimized for highly-efficient interconnects such as this.

e Application-specific benchmarking — Applications such as NAMD [18] include datasets
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used to benchmark the performance of the software on various architectures. While
the latency and bandwidth microbenchmarks used in this thesis are a good first step
in evaluating the performance of the implementation of Charm++ on VMI, it is also
important to evaluate the performance of the implementation with application-specific
benchmarks due to the fact that they more clearly reflect the overall performance

realized when handling real workloads.

Comparison to performance of Charm++ mpi-linux version — A Converse Machine
Interface layer exists for the successful Message Passing Interface (MPI) and can be
used to build an mpi-linux version of Charm++. Additionally, a version of MPI running
on VMI has been developed. Thus it is possible to deploy Charm++ on VMI via the
use of the mpi-linux version. The performance of this version of Charm++ should
be evaluated and compared to the performance of Charm++ implemented directly on
VMI. Due to the nature of the mpi-linux version of Charm++-, certain operations are
inherently slow. For example, the only option the mpi-linux implementation has for
determining whether message data are available from a remote process is to probe each
MPI communication handle belonging to a given process. As the size of a computation
increases, this probing scales poorly and limits the efficiency of the overall computation.
For reasons such as this, the performance of the mpi-linux version of Charm-++ running

on VMI is expected to be much lower than the performance of the vmi-linux version.

Implementation of shared memory support — An increasing number of commodity clus-
ters employ Shared Memory Multiprocessor (SMP) systems with two or four processors
per cluster node. The implementation of Charm++ on VMI supports SMP systems in
two ways. First, messages sent between processes within the same SMP may be deliv-
ered via the network exactly like messages sent between processes on different machines.
The disadvantage of this approach is that it involves unnecessary interaction with the

network hardware, introducing needless latencies in message delivery. Second, mes-
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sages sent between processes within the same SMP node may be handled by the VMI
shared memory device. This approach has the advantage of eliminating the use of the
network hardware, but still involves the overhead of four IRB traversals (send initia-
tion, send completion, receive initiation, receive completion). The best approach is to
build support for SMP directly into the vmi-linux Converse Machine Interface, similar

to the support that exists in layers such as the net-linux CMI.

Performance analysis of advanced VMI features — VMI provides several advanced fea-
tures such as the ability to stripe data across multiple network interfaces and the ability
to dynamically compress data passing over the network. Through the Charm++ imple-
mentation for VMI, these features are automatically available to Charm-++ programs.

Some effort should be spent evaluating the performance of these features.

Evaluation of multi-cluster performance — As commodity cluster systems become ubig-
uitous, there is increasing interest in applications that can span multiple clusters to
gain access to a larger numbers of processors than are available within the scope of
a single cluster. The Charm++ implementation on VMI offers an attractive platform
for deploying such applications because it abstracts details of the underlying network
technologies used in each cluster. For example, an application that spans two clus-
ters may need to use Myrinet for communication within one cluster, InfiniBand for
communication within the second cluster, and Gigabit Ethernet for cross-cluster com-
munication. The advantage offered by the implementation of Charm++ on VMI is that
the VMI runtime handles details of the different networks and will use the most effi-
cient communication path for sending messages between any arbitrary pair of processes.
Evaluation of Charm++ on VMI in such multi-cluster environments is an important

and interesting future endeavor.
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