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Abstract

We have been pursuing a research program aimed
at enhancing productivity and performance in parallel
computing at the Parallel Programming Laboratory of
University of Illinois for the past decade. We summarize
the basic approach, and why it has improved (and will
further improve) both productivity and performance.

The centerpiece of our approach is a technique called
processor virtualization: the program computation is di-
vided into a large number of chunks (called virtual pro-
cessors), which are mapped to processors by an adap-
tive, intelligent runtime system. The runtime system
also controls communication between virtual proces-
sors. This approach makes possible a number of runtime
optimizations.

We argue that the following strategies are necessary
to improve productivity in parallel programming:

• Automated resource management via processor vir-
tualization

• Modularity via concurrent composability

• Reusability via frameworks, libraries, and multi-
paradigm interoperability

Of these, the first two directly benefit from processor
virtualization, while the last is indirectly impacted. We
describe our research on all these fronts.

1. Introduction

Parallel programming is more difficult than sequen-
tial programming because of the additional issues of de-
terminism, synchronization, communication costs, load
imbalances and performance portability that must be ad-
dressed by the programmer. As a result, productivity of
parallel programming efforts tends to be low.

Recognizing the importance of high productivity, in
the early days of parallel computing researchers aimed
at automatic parallelizing compilers. However, after
decades of very stimulating research [7, 37, 17, 18, 9],
it has become clear that although some of the tools pro-
duced can indeed extract almost all the parallelism from
thegivencode, a from-scratch parallel reformulation is
often required to attain higher performance.

We have been pursuing an approach to high produc-
tivity with scalable performance even for complex, dy-
namic parallel applications for the past decade [25]. One
of the guiding principles for us is to seek an optimal di-
vision of labor between the programmer and the “sys-
tem”. The human programmers do what they can do
best, while leaving only what can be efficiently auto-
mated to the system. Specifically, we find that program-
mers are best at finding and expressing the natural paral-
lelism of the application, but the runtime system can ef-
ficiently carry out resource management and many per-
formance optimizations.

We think that parallel programming productivity can
be increased by advancing the state of art on the follow-
ing fronts:

• Automatic resource management:Writing a par-
allel program involves managing and allocating re-
sources including processors, memories and net-
works to application data and computations. Espe-
cially for irregularly structured and/or dynamically
varying applications, such resource management
entails a significant programming effort. At the
same time, advances in algorithms create smarter
algorithms (with lower total operation counts) that
tend to be irregular in structure. For example, for
N-body interactions, a simple O(n2) algorithm is
easy to parallelize, where O(n log n) algorithms
(such as Barnes-Hut) or O(n) algorithms (such as
Fast Multipole) are more complex. Applications
themselves are tackling more dynamically evolving



scenarios, typically requiring adaptive refinements
as the computation progresses. If the programmer
were freed from dealing with resource management
issues, their burden would be significantly reduced.

• Concurrent compositionality: It should be pos-
sible to compose independently developed paral-
lel modules into an application, in such a way that
the execution of composed modules may overlap in
time or space (i.e. processors); moreover this “con-
current composition” must be achieved without los-
ing efficiency. With this capability, it would be pos-
sible for application structure to be based on logical
interactions of its modules, automatically overlap-
ping the computation and communications across
modules.

• Techniques for promoting reuse of parallel soft-
ware components:Because a parallel module op-
erates in a more complex context, it is more diffi-
cult to reuse it than a sequential component. Yet,
the complexity of parallel software puts a higher
premium on reuse. Thus, we must develop tech-
niques that eliminate the barriers to reuse of paral-
lel software.

In this paper, we illustrate the research we have been
carrying out towards these objectives. One of the en-
abling factors in our research is the idea of processor
virtualization. We begin with a brief exposition of this
idea.

2. Processor Virtualization

Processor virtualization is a simple idea: the pro-
grammer decomposes the computation, without regard
to the physical number of processors available, into a
large number of objects, which we callvirtual proces-
sors (VPs). The programmer leaves the assignment of
virtual processors to physical processors to the runtime
system. The virtual processors themselves can be pro-
grammed using any programming paradigm: e.g. they
can be MPI “processes” implemented as user-level, ex-
tremely lightweight, threads (NOT to be confused with
system level threads or Pthreads), that interact with each
other via messages, as in Adaptive MPI [20]. Alterna-
tively, they can be organized as indexed collections of
C++ objects that interact via asynchronous method in-
vocations, as in Charm++ [28].

This simple idea has significant consequences. Most
importantly, from the point of view of this paper, it em-
powers therun-time system (RTS)to optimize resource
allocation by migrating VPs across processors. The RTS

Figure 1. Processor Virtualization in Adap-
tive MPI: An MPI process is implemented
as a user-level thread, several of which can
be mapped to one single physical proces-
sor.

Figure 2. Message-Driven Execution with a
processor-level scheduler

is also involved in delivery of messages to VPs. as a re-
sult, it can optimize communication as well.

Let us first sketch the direct consequences of proces-
sor virtualization: since each physical processor may
house hundreds (or even thousands) of VPs, the RTS
needs to have a scheduler to decide which VP executes
next. This scheduler can (and indeed must) be message-
driven: it only schedules VPs that are ready to execute
because they have a message pending. This message-
driven scheduler turns out to be a critical component
from the point of view of concurrent composition.

Second, since VPs may migrate as a program evolves,
the RTS needs to maintain information about where each
VP is located. This can (and must) be done efficiently,
without bottlenecks. Our implementations ensure that in
most cases, messages are delivered to VPs without any
forwarding, with the assumption that migrations are not
as common as messages [33].

Charm++ and Adaptive MPI are systems we have de-



veloped over the past 14 years that embody this idea of
processor virtualization. For concreteness, the next few
sections assume each VP as running an MPI “process”
and interacting with others via the usual MPI sends and
receives.

3. Automated Resource Management

Processor virtualization empowers the run-time sys-
tem (RTS) to incorporate intelligent optimization strate-
gies. We discuss two categories of such strategies below.

3.1. Automatic Load Balancing

Probably the most obvious advantage of processor
virtualization is that the runtime system can do auto-
matic load balancing dynamically. Since the applica-
tion program never sends messages directly to physical
processors, the RTS is free to migrate the VPs across
processors any time it pleases.

Of course, the RTS must be quite “intelligent” for this
to work, but it is certainly possible [33]; what is more,
only one RTS needs to have these smarts, whereas all
the application programs can just use it.

In the simplest possible setting, the RTS can moni-
tor the load on a processor and its neighbors. If/when a
(physical) processor goes idle, the RTS sends a request
for additional VPs from a neighboring processor. Other
variations on this idea are possible [23, 39].

A more interesting and fruitful set of strategies be-
comes feasible when we observe a property of many
parallel computations, especially those involving phys-
ical systems. Even for dynamic applications, the com-
putation loads and the communication patterns exhib-
ited by the VPs tend to persist over time for most of the
VPs. This is because often dynamic variations happen
abruptly but infrequently (as with periodic mesh refine-
ments) or frequently but slowly (as with migrations of
particles in n-body codes including molecular dynam-
ics).

Based on this “principle of persistence” (which is a
heuristic principle, like the principle of locality), one
can now build measurement based runtime load bal-
ancing strategies. The RTS can instrument the VPs to
record computational load and communication patterns.
It can do this automatically, without user code, since the
RTS is the intermediary for both scheduling and com-
munication. Load balancing strategies can then use this
database in a centralized or distributed manner to effect
remapping decisions periodically. (These periodic deci-
sions can be augmented by “idleness-based” schemes as
mentioned above when necessary.)

We and others have implemented many such strate-
gies, and work is ongoing on strategies that ob-
serve more subtle patterns, such as dependences, crit-
ical paths, multiple-phases-within-iterations and so on.
However, the main point is that the application program-
mer doesn’t have to worry about this important aspect of
their parallel program.

As a concrete example, we show dynamic load bal-
ancing in action in NAMD, the highly scalable molec-
ular dynamics program used routinely by biophysicists.
Figure 3 shows processor utilization against time for a
NAMD run of 1024 processors [29]. The initial greedy
balancer works from 157 through 160 seconds (the pe-
riod in the graph with the dip in utilization), leading to
some increase in average utilization. Further, after the
refinement strategy finishes (within about .7 seconds)
at around 161.6 seconds, we can see that utilization is
significantly improved. In this figure, we may appear
to spend too much time on load balancing; however, in
molecular dynamics, such load balancing is needed only
after several thousand timesteps [38].

Refinement

Load Balanced
Timesteps
Continue

Full Load Balancing

Figure 3. Processor Utilization against
Time on 1024 processors

As a result of such runtime optimizations, NAMD has
attained an unprecedented high performance on several
thousand processors, leading to a Gordon Bell award
[38]. The performance of NAMD using Charm++ on
PSC Lemieux is shown in Figure 4. Each timestep takes
around 25 seconds on 1 processor. This drops to 27 mil-
liseconds on 1000 processors and finally down to 12 mil-
liseconds when scaled to 3000 processors with a corre-
sponding performance level of 1000 GFLOPS. Not only
are the achieved speedups impressive, the absolute time



taken per timestep (12ms) is also lowest by a consider-
able margin compared with other molecular dynamics
programs.

Figure 4. Processor Utilization against
Time on 1024 processors

3.2. Communication Optimizations

Since the RTS mediates communication, it can in-
tercept the communication and replace communication
algorithms as required by the patterns observed. This
is especially true for collective operations. By keeping
track of the number of processors (VPs and physical) in-
volved, the amount of data, and the state of the rest of
the computation, the RTS can decide which of the avail-
able collective communication algorithms will be better
suited, and switch it at runtime. Our own results in this
area have been promising [?].

Automatic runtime communication optimizations can
also be performed for other non-collective operations.
For example, a graph partitioning application written by
a newcomer to parallel programming used an extremely
fine-grained communication style: very short messages
with a few bytes of data were being sent, which would
have led to bad performance. However, by interposing
the streaming library of the communication subsystem
of the RTS (which collects short messages locally, and
sends them using a virtual mesh), this was optimized
without changing user code. In this case, the interposing
was done manually, but as the RTS capabilities are im-
proved it can make such decisions itself. (Even with the
manual interposing, the advantage still remains that the
user code didn’t have to change.)

4. Modularity via Concurrent Composition

For high productivity in parallel programming, one
should be able to modularize the program. In particular,
it should be possible to compose independently devel-
oped parallel modules into a single parallel application
(or into higher level modules, composed hierarchically).
Further, the modules being composed should be allowed
to overlap their execution in time, and over processors.
Without this flexibility, one risks the danger of fragment-
ing the set of processors (especially when a large num-
ber of modules are being composed) and certainly loses
the ability to exploit adaptive overlap of communication
and computation across modules. This is illustrated with
a schematic and application example below.

Consider the situation in Figure 5(a). A, B and C are
each parallel modules spread across all processors. A
must call B and C, but there is no dependence between B
and C. In traditional MPI style programming, one must
choose one of the modules (say B) to call first, on all the
processors. The module may contain sends, receives,
and barriers. Only when B returns can A call C on each
processor. Thus idle time (which arises for a variety of
reasons, including load imbalance and critical paths) in
each module cannot be overlapped with useful computa-
tion from the other, even though there is no dependence
between the 2 modules.

In contrast, with processor virtualization (and the
message-driven execution induced by it), A invokes B
on each processor, which computes, sends initial mes-
sages, and returns to A. A then starts off module C in a
similar manner. Now B and C interleave their execution
based on availability of data (messages) they are waiting
for. This automatically overlaps idle time in one module
with computation in the other, as shown in the Figure.
One can attempt to achieve such overlap in MPI, but at
the cost of breaking the modularity between A, B and
C. With processor virtualization, the code in B does not
have to know about the code in A or C, and vice versa.

This phenomenon is illustrated in NAMD (Figure
5(b)). The computation partitions atoms into a set of cu-
bic cells called “patches”. Interactions between atoms
in adjacent cells are computed by separate virtual pro-
cessors called the “pairwise compute objects” in the
Fgure. The PME (Particle-Mesh Ewald) module in-
volves two 3D-FFTs (each with a communication in-
tensive transpose operation) over a relatively small grid
(192x144x144 in one case). By concurrently compos-
ing the PME and force-calculation modules, it becomes
possible to use the considerable latency of the transposes
in the PME algorithm with pairwise-force computations
adaptively. Neither partitioning of processors among the
two modules, nor sequencing their execution one after



(a) Modularity and Adaptive Overlapping: Schematic
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(b) Concurrent Composition of PME and Force Computa-
tions in NAMD

Figure 5. Concurrent Composition

the other will yield the same efficiency of concurrent
composition employed by NAMD. Moreover, this effi-
ciency is attained without any coding by the programmer
to juggle execution between the two modules.

Figure 6 shows the timeline of a few processors in
a 2112 processor NAMD run on PSC’s Lemieux alpha-
cluster. The light gray rectangles (as well as the dark-
est gray rectangles at the beginning, around 123.938
secs) represent components of the PME computations,
whereas the medium gray rectangles are pairwise (and
bonded) force computations. The overlap of the two
modules’ operations can be clearly seen. On PSC’s
Quadrics communication network, the communication
co-processors ensure that the CPU spends only a small
time on communication. Therefore, all the latency of
the transpose operation (between the yellow sections) is
available for doing useful pair-wise force computations,
which are adaptively scheduled by the system.

4.1. Software Engineering Benefits

Virtual processors are logical entities, and can be
made to correspond to the structure of the application.
In contrast, shoe-horning the application structure into

Figure 6. PME Execution in NAMD

physical processors leads to inelegant software.
The simplest example of this is in the number of pro-

cessors used. MPI programs modeling a physical do-
main via structured grids often require the number of
processors to be a cube (and even a power-of-two cube).
With virtualization, one can decompose the data into a
power-of-two cube virtual processors, yet be able to use
the available number of physical processors. Attempt-
ing to do that without explicit support for virtualization
leads to multiple-block codes that have to deal with mes-
sages for different blocks at various points in the code,
and can spoil neat expression of the evolution of a single
block when it engages in multiple phases of communi-
cation.

In software engineering terminology, such parallel
software (based on physical processors) often lacks “co-
hesiveness”. Code and data are brought together simply
because they are on the same physical processor.

Figure 7. Rocket simulation via virtual pro-
cessors

Consider a version of the rocket simulation appli-
cationconsisting of two parallel modules: Rocflo (a
fluid simulation of the burning gases in the Rocket in-
terior) and Rocsolid (structural dynamics of the solid



fuel). These were derived from independently devel-
oped codes. Since the fluids and solids meshes were
decomposed separately by each module, the portion of
space simulated by Rocflo on processori had no logical
connection with that simulated by Rocsolid on proces-
sor i. However, an MPI implementation required them
to be fused together on each processor (Figure 7 top).
An AMPI implementation, on the other hand, (Figure 7
bottom) provided each module with its own set of vir-
tual processors, and allowed for communication across
them by supporting inter-communicators across multi-
ple MPI_COMM_WORLDs. Among other benefits, this
allows the number of pieces of Rocflo to be determined
independently of that of Rocsolid, and the RTS is able to
bring together (on one processor) pieces of Rocflo and
Rocsolid that directly interact (because they are physi-
cally abutting, for example).

5. Cost of Processor Virtualization

An important question often raised is about the cost
of processor virtualization. Although users may be will-
ing to concede a certain amount of performance in return
for benefit in productivity, they would like to know the
extent of the performance loss. The situation in remi-
niscent of early days of (Fortran) compilers, when users
were unwilling to switch away from assembly language
programming. In fact, then as now, since programmers
are highly conscious of performance issues, and they al-
ready have (by compulsion) mastered the intricacies of
low level programming, they will not want to switch to a
new paradigm unless assured of “as good” performance
with lower effort.

To be sure, the adaptive runtime systems enabled by
processor virtualization achieve such performance en-
hancements as automatic dynamic load balancing. But
it can be argued that expert programmers will be able to
achieve such performance by programming load balanc-
ing code into their application themselves.

So, the question of overhead is still important. Luck-
ily, in most situations, the overhead of processor vir-
tualization is insignificant. Context switching between
virtual processors requires less than a microsecond on
current processors. (Recall that our virtual processors
are not system level threads, or pthreads; they are user
level threads). The number of messages increases with
multiple VPs per processor. Messages have a software
overhead of a few microseconds. So, the degree of vir-
tualization chosen should be such that the computation
per message is substantially larger than these overheads.
This is clearly reasonable for most applications. For ex-
ample, in a particular molecular dynamics benchmark,
we used about 30,000 VPs spread over 3000 processors;

the average computation per VP per timestep was 900
microseconds, and the average computation per message
was about 200 microseconds.

Figure 8. “Overhead” of Multipartitioning
in an FEM application

Figure 9. 7-point stencil on a 3D problem
size 2403 run on PSC Lemieux.

To compare the performance of MPI and AMPI, we
compared the performance of a 7-point stencil code, do-
ing Jacobi relaxation for 3-D data, in Figure 9. AMPI
achieves nearly identical performance as MPI, but it runs
on any number of processors, whereas MPI requires a
cubic number of processors. Additional performance
data can be found in [20].

Cache performance typically improves with proces-
sor virtualization, because of its blocking effect. A study
of the effect of virtualization we did with an unstructured
mesh application showed (Figure 8) that performance
actually improves with the degree of virtualization, and
only after over 1024 VPs per physical processor does the
overhead start showing its effect.

Since Charm++/AMPI are often implemented on top
of native MPI, the communication costs can be expected
to be higher. This is not a fundamental cost: on many



machines,our implementation uses lower level commu-
nication APIs (E.g. Elan, GM and VMI), where our per-
formance is comparable to MPI [?]. A comparison of
MPI and AMPI versions of the rocket simulation code
at Illinois also showed the performance of two versions
to be almost identical [11].

In some applications, virtualization leads to a large
number of small messages. This can be mitigated by
using a streaming library available in the Charm++ run-
time that uses message combining to optimize perfor-
mance.

5.1. Limitations and Remedies

There are situations where processor virtualization
may lead to poorer performance.

When large layers of ghost cells (instead of the com-
mon 1-layer ghosts) are used, virtualization may be con-
strained by the memory overhead of the extra ghost cells.
However, we believe it is possible to alleviate this over-
head by a combination of techniques alluded to in [26].

Parallel algorithms whose costs increase with the
number of processors can also limit the benefits of virtu-
alization. Fortunately, such algorithms are rare, and they
exist as components of large applications (e.g. parallel
prefix, which has a complexity of2n + log p), and they
can be allowed to run with a lower virtualization factor
by concentrating data inp virtual processors.

Another source of overhead arises when processors
use a large amount of remote data. If each VP uses its
own memory for such data,and if such data overlaps
significantly (i.e. multiple VPs request the same data)
then both memory and communication overheads may
increase. This happens, for example, in gravity com-
putations, where each cell containing a bunch of parti-
cles is a VP, and the computation requests particles from
other cells. This can be remedied by using an abstraction
for requesting and caching remote data, which is imple-
mented by a lower level library that is aware of physical
processors. We are using such a library in a collaborative
project in computational astronomy. NAMD also uses a
similar technique in the form of proxy objects [24].

6. Reuse of Parallel Software Components

Reuse of parallel components can be promoted by
domain-specific frameworks and allowing composition
of modules written in different parallel programming
paradigms.

6.1. Frameworks and Libraries

One method for improving productivity is to reuse a
collection of techniques that are commonly needed in a
particular application domain. Even though parallel ap-
plications are diverse, one can find such commonalities.
For example in simulations of physical models (which
constitute the dominant use of parallel computers now),
one finds that only a few distinct parallel data structures
are used: structured grids (arrays), unstructured meshes,
spatially decomposed particles, tree structures (e.g. in
multi-grid and AMR), along with a collection of linear
system solvers, cover a large fraction of the application
space. To improve productivity we should therefore ex-
tract the domain specific techniques into frameworks so
that they don’t have to be recoded for every application.

One can take two approaches to design domain spe-
cific frameworks: Vertical integration or horizontal lay-
ering. Vertical integration leads to highly specialized
problem solving environments (e.g. for structural dy-
namics), while horizontal layering leads to a collection
of capabilities that can be composed in different ways
for different applications.

Our experience with horizontally layered frameworks
has been quite positive. Specifically, we have developed
an unstructured-mesh framework [4] that can partition a
mesh and set up communication lists for a user-specified
layer of ghosts. Although originally used for Finite Ele-
ment computations, the framework is now used for finite
volume, discontinuous Galerkin, as well as space-time
meshes. Other capabilities such as collision detection
or matrix-free solver interfaces are available as separate
components.

However, the simplicity of problem solving environ-
ments (PSEs) suggests that horizontally layered compo-
nents should be used to put together specialized PSEs,
which will cut down on the development cost of PSEs
themselves.

It is tempting for application developers to decide to
code such capabilities themselves, since they seem rela-
tively simple. However, once one takes the maintenance
cost of software into account, and considers the fact
that many focused optimizations and capabilities may
have been implemented by the framework developer in
the context of real applications, the advantage of frame-
works becomes clear. Also, frameworks can make use of
complex and tricky features of the RTS that application
developers may require a significant effort to use.

6.2. Multiparadigm Interoperability

Although reuse of parallel components is desirable
for enhancing productivity, another obstacle to such



reuse occurs because of the use of different parallel pro-
gramming paradigms in different modules. One mod-
ule may be written using Charm++, while another might
use a DSM system, or Global Arrays [36], or the FEM
framework, or MPI, or BSP, etc. By requiring that all
the modules being composed into an application use the
same paradigm, we give up a large opportunity for reuse.

The modules themselves may be written in different
paradigms for two distinct reasons: First, a particular
paradigm may be better suited for the algorithms be-
ing specified by the module. Second, it may be sim-
ply a matter of subjective choice of the programmer of
that module (which might have been developed indepen-
dently at an earlier time).

Concurrent composition capabilities of message-
driven execution come in handy in this context, with one
proviso: If all the (message-driven) paradigms share a
single scheduler (See Figure 2), and possibly a com-
mon runtime support layer, then such interoperability
is possible. With this in mind, we designed the Con-
verse [27] framework, which provides (a) common ca-
pabilities such as a scheduler, user-level thread package,
portable low-level communication interface, and encap-
sulation of other machine capabilities and (b) meth-
ods to allow the concurrent interoperation of modules
written in different paradigms. In addition to provid-
ing interoperability, Converse also simplifies the task of
writing runtime systems for new parallel programming
paradigms.

Converse and Charm++ together now support a wide
variety of programming paradigms in our infrastructure,
including ARMCI, Global Arrays, Adaptive MPI, Jade
(a parallel Java-like language), PVM, specific forms of
DSM systems, etc. Of course, adoption of such multi-
paradigm frameworks is possible only when runtime de-
velopers agree to a common standard, for which Con-
verse is but one candidate.

7 Related Work

This paper focused on productivity-and-performance
oriented ideas developed by the author, for pedagogi-
cal clarity. However, many of the central ideas have ap-
peared in other research as well.

Chare Kernel, the C-based progenitor of Charm++
was developed around 1989 [22]. This system, with
function calls to remote processors with objects encoded
as global pointers, and a message-drive scheduler, is
similar to Nexus [14]. Active Messages [41] shared
message-driven execution ideas with Charm, but not
processor virtualization. The Actors model [1], with
its message-driven objects, is quite similar to Charm++
at its lower level, and is considered useful for specify-

ing and understanding the semantics of message-driven
programs. However, the intellectual progenitors of our
early work were the RediFlow project [31] for parallel
execution of functional programs, and the Dataflow re-
search. The basic low-level ideas in Charm++ can be
considered to be macro data-flow, extended with high-
level notions of automatic resource management. Other
research with overlapping approaches include work on
Percolation and Earth multi-threading system [21], work
on HTMT and Gilgamesh projects [15], and the work on
Diva [16].

Virtualization itself is not a new concept. Geoffrey
Fox’s 1986 textbook on parallel programming describes
virtualization, for example (it was used to load balance
the sharks-and-fishes application by dividing the do-
main into a large number of blocks, and sprinkling them
across the processors randomly). The DRMS system
[35] is an example of an approach based on virtualiza-
tion that is closer to our work. Our approach (embodied
in programming systems such as Charm++ and AMPI)
can be thought of as virtualization++ : we support virtu-
alization at the language and run-time level, and exploit
it to the hilt to optimize application performance.

In the direction of interoperability, recent work on
Common Component Architecture [2] is important, as
it provides a method for interconnecting independently
developed modules, enhancing reuse. We believe that it
needs to be extended to allow processor virtualization,
which is infeasible in the current form.

Several other domain specific frameworks exist that
aim to raise the level of abstraction in programming.
For structured grids, with possible adaptive mesh re-
finements, they include KeLP [13], Paramesh [34], and
Chombo [8]. For computations on unstructured meshes,
frameworks such as Sierra [40] exist.

Since linear system solvers arise in many current par-
allel applications, several libraries provide good support
for them such as ESI [32] and PETSc [3]. Numerical li-
braries such as Ellpack [19] and Linpack [12] also help
enhance reuse.

Shared memory programming models, and especially
with its standardization via OpenMP, must also be con-
sidered. Via systems such as TreadMarks [30], such
models are now available on distributed memory ma-
chines. However, the claim that shared memory ab-
straction simplifies parallel programming has not quite
been substantiated. Although some programs look sim-
pler with shared memory, others get more complex, es-
pecially if they have to deal with race conditions. It is
possible that the full generality of a shared variable is
unnecessary, while limited use of shared variables, in
specific modes, might be productive (E.g. GA [36]).



8. Productivity Metrics

We have not performed any quantitative studies of
improvement in productivity with Charm++/AMPI yet.
We will state some anecdotal evidence instead.

Clearly, when an application requires dynamic re-
source management, the savings in writing code are ap-
parent. For example, in multi-block codes, one has to
write by hand how the blocks should be distributed af-
ter new refinements. All that code is in the Charm++
runtime system, and is being reused.

Virtualization also confers benefits by reusing the
ability to migrate objects in different contexts. For ex-
ample, once one has written a Charm++ or AMPI pro-
gram with migratable objects, the runtime system can
automatically carry out efficient check-pointing, sup-
port out-of-core execution, change the set of processors
(shrink or expand) used by the application at runtime,
vacate a machine that is about to go down or needs to be
relinquished to the owner, and support fault tolerance.
All of these new functionalities can be available without
the user having to write new code. Of these, fault toler-
ance is still being worked on. Once the runtime imple-
ments this feature, it will be available for all applications
without significant new application code.

Further productivity enhancements are expected
when we are able to develop a “standard library for par-
allel programming” which will eliminate having to write
code for commonly needed parallel operations.

9. Conclusion and Future Work

We presented a research agenda, and our progress
along it, which has been explicitly aimed at improving
programmer productivity and computer performance on
complex parallel applications.

Processor virtualization was seen as a key to some
productivity enhancements. Via this, the runtime sys-
tem is empowered to carry out intelligent optimizations,
including dynamic load balancing and communication
optimizations, without programmer intervention. It also
leads to message-driven execution, and thus to the abil-
ity to concurrently compose multiple independently de-
veloped modules effectively without losing efficiency.
Separation of virtual processors from physical resources
in the programmer’s mind also leads to a separation of
concerns and better software engineering practices.

It can be argued that manual, application specific re-
source management can always do at least as well as au-
tomated techniques, in terms of performance. However,
with increasing complexity of applications, and the in-
creasing number of processors in large supercomputers,

we believe that automated techniques, culled from ex-
perience on a wide variety of applications, will be more
efficient than what most actual programmers accomplish
by themselves, even with a lot of effort.

Concurrent composition enables flexible reuse of par-
allel modules. But to make such reuse happen, reusable
parallel modules must be developed. Based on the idea
that a relatively small number of basic data-structures
account for a large number of application components,
we advocate the building of domain-specific frame-
works. If each such framework provides encapsulation
of a limited but useful capability, it becomes possible
to compose such frameworks into vertically integrated
problem solving environments.

Modules written in different parallel programming
paradigms can be integrated if they share common run-
time structures, and especially a message-driven sched-
uler (in case of virtualized or user-level thread based
systems). We described our experience with Converse,
an infrastructure explicitly designed to support interop-
erability and easy development of runtime systems for
new programming paradigms.

In this paper, we kept the focus on our research in
order to present a single point of view. There are many
other approaches aimed at productivity. Interaction and
cross-fertilization of ideas among them will lead to bet-
ter systems/approaches for the future. As an example,
we hope that the common component architecture effort
can be extended to permit virtual-processor based for-
mulations.

We have identified some additional future directions
towards productivity. The research on intelligent adap-
tive runtime systems, although quite fruitful, has only
picked the “low-hanging fruit”. We see potential for
much more sophisticated runtime techniques, based on
self-observing systems. In terms of low-level support,
co-processors that can handle remote requests (beyond
just puts and gets) are essential for effective deployment
of composable systems. At the higher end, it seems pos-
sible to include compile-time support in a comprehen-
sive approach aimed at productivity. The current obsta-
cles for this include the fact the compiler-support issues
that arise in this context are often considered mundane,
and are not the usual issues (such as automatic paral-
lelization) that are considered attractive by the compiler
community. Telescoping languages being proposed and
developed by several researchers might be able to bridge
this gap.

We also see potential to increase productivity via ad-
ditional language support. For instance, Jade [10], a lan-
guage based on Java, provides the ability to take advan-
tage of some of the simplifications in Java, such as the
use of references instead of programmer managed stor-



age, while still having access to the features of Charm++
and the Converse runtime.

Also, we see potential in the ability to build systems
of composable parallel components. The Charisma sys-
tem [6] is a start in this direction, with the concept of
explicit runtime support for components. A future or-
chestration language, which will allow the interactions
among components to be defined in a scripting language,
will also improve the reuse of parallel components and
make the logic of parallel applications more explicit.
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Explicit FEM. In M. Valero, V. K. Prasanna, and S. Va-
jpeyam, editors,Proceedings of the International Con-
ference on High Performance Computing (HiPC 2000),
Lecture Notes in Computer Science, volume 1970, pages
385–395. Springer Verlag, December 2000.

[5] M. Bhandarkar, L. V. Kale, E. de Sturler, and J. Hoe-
flinger. Object-Based Adaptive Load Balancing for MPI
Programs. InProceedings of the International Con-
ference on Computational Science, San Francisco, CA,
LNCS 2074, pages 108–117, May 2001.

[6] M. A. Bhandarkar. Charisma: A Component Architec-
ture for Parallel Programming. PhD thesis, Dept. of
Computer Science, University of Illinois, 2002.

[7] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoe-
flinger, D. Padua, P. Petersen, B. Pottenger, L. Rauchw-
erger, P. Tu, and S. Weatherford. Polaris: Improving the

effectiveness of parallelizing compilers. InProceedings
of 7th International Workshop on Languages and Com-
pilers for Parallel Computing, number 892 in Lecture
Notes in Computer Science, pages 141–154, Ithaca, NY,
USA, August 1994. Springer-Verlag.

[8] Chombo – infrastructure for adaptive mesh refinement.
http://seesar.lbl.gov/anag/chombo/.

[9] R. Cytron, D. J. Kuck, and A. V. Veidenbaum. The effect
of restructuring compilers on program performance for
high-speed computers.Computer Physics Communica-
tions, 37(1–3):39–48, 1985.

[10] J. DeSouza and L. V. Kalé. Jade: A parallel message-
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