
Opportunities and Challenges of Modern Communication Architectures: Case
Study with QsNet

Sameer Kumar, Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign�
skumar2, kale � @cs.uiuc.edu

Abstract

We describe our efforts to scale message driven applica-
tions to a large number of processors on an Alpha cluster
interconnected by QsNet. The clustering technology QsNet
has a network interface with a communication co-processor.
The presence of the co-processor minimizes main processor
participation in message passing. We show the advantages
of the communication co-processor for message driven ap-
plications. To scale fine-grained message driven appli-
cations to a large number of processors we had to over-
come several hardware, software and operating system hin-
drances. We describe them in detail and present solutions
for them. We use NAMD, a molecular dynamics program,
as a case study for many of our performance optimizations.

1 Introduction

QsNet [12, 13] is a high bandwidth low latency cluster-
ing technology from Quadrics[15], that has been widely de-
ployed. Several of the top 500 machines are built upon it.
Pittsburgh’s Lemieux [11], interconnected by QsNet, is an
Alpha cluster with 750 Compaq ES45 nodes (3000 proces-
sors) and a peak performance of over 6 TF. In this paper,
we present the challenges and opportunities we identified
during our efforts to scale message driven applications to a
large number of processors of Lemieux.

Along with providing low latency and high bandwidth
for messages, QsNet has a programmable network interface
called Elan. The Elan network interface has a communi-
cation co-processor and a remote DMA engine. The com-
munication co-processor relieves the main processor from
most of the work while the message is in flight.

In our past work, through simulation studies, we had
shown [3] that message-driven execution can exploit such
communication co-processors much more effectively than

traditional MPI-style message-passing. In this paper (sec-
tion 4) we substantiate this assertion with application
benchmark data using Charm++ [7], our asynchronous mes-
sage driven system.

Processor virtualization is the key concept in Charm++:
the computation is divided into a large number of chunks
(virtual processors or VPs) by the programmer, that are as-
signed to the processors by an adaptive runtime system. As
a result, Charm++ supports dynamic load balancing [5] (by
migrating VPs), automatic check-pointing, automatic out-
of-core execution, ability to change the number of proces-
sors used by the application [8], optimized collective com-
munications [9], etc. From the point of view of this paper,
processor-virtualization leads to message-driven execution:
since there are multiple objects on a processor, there must
be a scheduler that decides which one of them executes next.
It schedules an object when there are messages available for
that object (thus the scheduling is driven by messages). This
allows for an adaptive overlap of communication and com-
putation.

We have developed a machine layer for Charm++ (de-
scribed in Section 3) that can scale to a large number of
processors on Lemieux, as demonstrated by applications
like NAMD [14] and CPAIMD [18]. NAMD is a molecular
dynamics simulation program, used routinely by biophysi-
cists, that has over 1 TF of peak performance on Lemieux
(A paper on NAMD was awarded the Gordon Bell award
at SC’02). NAMD is completely written in Charm++.
CPAIMD is a quantum chemistry application that has im-
pressive performance on Lemieux.

NAMD is a challenging application because the amount
of computation to be parallelized in each time step is rela-
tively small — each time-step finishes in around 11 ms on
3000 processors. To achieve high performance in this fine-
grained situation, we had to overcome several challenges
with the QsNet-Alpha system. They were related to hard-
ware deficiencies of the QsNet network interface, software
issues in implementation of Elan libraries, and interference
from the OS. In this paper, we describe these issues and the

techniques we used to overcome them.
We begin with an overview and basic performance char-

acteristics of QsNet.

2 Performance Evaluation of QsNet

QsNet is based on two building blocks, a programmable
network interface called Elan and a low latency high band-
width switch called Elite. The Elan network interface has a
SPARC processor that can run four threads. These threads
can be used to implement a high level message passing
system. The Elan network interface also has a DMA en-
gine which is capable of accessing remote memory. The
DMA and the co-processor together minimize main proces-
sor participation in communication operations. This results
in a short MPI message latency of about ��������� . The Elite
switches can support a bandwidth of 400 Million Bytes/s
(or 381 MB/s) each way, though protocol overheads bring
this bandwidth down to about 335 Million Bytes/s (319
MB/s) [13] each way. (1 MB = 1048576 bytes).

In this section, we evaluate the performance of message
latency and network bandwidth of QsNet, specifically with
respect to message driven execution.

2.1 Message latency

The Charm++/Converse [6] runtime system has a sched-
uler which executes handlers on message arrival (Section 3).
These handlers may execute user level code and take mil-
liseconds to finish. Control is returned to the scheduler
only after the handler has finished executing. So all ar-
riving messages should have receives posted for them, or
else unexpected handling of messages would lead to loss of
performance. The Elan NIC receives an unexpected mes-
sage (a message for which there is no receive posted) by
first allocating a memory buffer and then receiving the mes-
sage in that buffer. When the runtime posts a receive for
that message, there may be an additional copying overhead
too. So the communication performance worsens when in-
coming messages do not have receives posted for them, as
demonstrated by Table 1. Here the cost of a memory copy
from the unexpected buffer to the user buffer is clearly evi-
dent.

Msg. Size(b) Converse Conv. Unexpected Msgs.
1024 17.3 22.8
4096 29.5 46.9

16384 72.1 144.9

Table 1. Converse Latency (���)

However, posting several receives may also negatively
affect the performance of the network interface. To study

Msg. Size(b) #Recvs. Converse MPI Conv. (SHM)
16 1 6.02 4.69 6.5
16 5 7.27 5.66 8.17
16 9 8.34 6.93 9.24
16 17 10.9 10.9 11.5
16 33 18.5 17.8 19.3
64 1 7.27 5.96 7.63
64 5 8.28 7.23 9.54
64 9 9.48 8.20 10.4
64 17 12.0 12.3 12.9
64 33 19.7 19 20.6

256 1 9.89 8.89 10.4
256 5 11.1 10.0 12.5
256 9 12.2 11.2 13.4
256 17 15.3 15.4 16
256 33 22.9 22.7 23.7

Table 2. Latency (���) vs No. of recvs. posted

the affect of preposted receives, we ran the pingpong bench-
mark (both in MPI and Converse) with preposted receives.
For MPI, these receives were posted with a tag that was
different from the one used for the pingpong. The results
of this experiment are presented in Table 2. Here, each la-
tency value is half the round trip time of pingpong. The
least message latency for Converse is 	
��� . It is a little more
than �������� for MPI. The additional overhead for Converse
is due to timer calls and scheduling overheads in the runtime
system.

As the number of receives posted increases from 1 to 33,
the 16 byte message latency increases from 	
��� to ����� �
���
for Converse and from ��������� to ���������� for MPI. We be-
lieve that the increase in message latency is because the
NIC loops over a list of posted receives on message arrival.
The Elan NIC processor has a clock speed of 100MHz and
traversing a list can be expensive. Moreover, for a large
number of receives posted the NIC also starts experiencing
cache misses. This further increases the message latency.
The cache performance of the NIC is shown in Table 3.
These results have been obtained from performance coun-
ters in the Elan NIC [17, 16]. The results indicate the num-
ber of cache misses for 150K messages of sizes between 16
and 256 bytes. Hence there is a tradeoff between posting
more receives and running the risk of unexpected message
handling.

In order to improve the performance of intra-node com-
munication we use the Elan shared memory library. How-
ever, using this library further affects the message latency
because a lock is needed while receiving a message. Mes-
sage latencies with shared memory enabled are also shown
in Table 2. The MPI results presented in Table 2 should
actually be compared with these Converse latencies.

2

#Receives Posted #Cache Misses
1 86017
5 92475
9 103037

13 174060
17 1008003
33 6539278

Table 3. Receives Posted vs Cache Misses

Msg. Size Latency(���) CPU Overhead(���)
PPN = 1 PPN = 4 PPN = 1 PPN = 4

16 9.49 17.04 5.59 5.3
64 10.5 19.36 5.29 5.36

256 13.4 24.5 6.47 6.05
1024 18.4 42.81 6.04 6.26
4096 29.7 83.2 6.69 6.52

Table 4. Converse Latency vs CPU Overhead

So far we have shown the message latency using one pro-
cessor per node. But, the nodes on Lemieux have four pro-
cessors per node (PPN) and applications usually use all of
them. To compute the latency when all 4 processors are be-
ing used, we ran pingpong with each processor exchanging
messages with the corresponding processor in the remote
node. Table 4 1 shows the message latency for PPN=1 and
PPN=4. Here 9 receives posted by each processor. Observe
that the message latency is much higher when PPN=4, ������
for a 16 byte message compared with � ������� for PPN=1.
Along with node contention by the 4 processors, the latency
is further increased because there are 36 receives posted on
the NIC.

For message driven execution, CPU overhead is a more
critical parameter as the remaining time can be overlapped
with other computation. Table 4 presents the CPU overhead
of the pingpong benchmark for both PPN=1 and PPN=4.
This CPU overhead (e.g. � � 	 ��� for 16 bytes and PPN=1)
includes send, receive and the converse RTS overheads. The
CPU overhead is similar for both PPN=1 and PPN=4 and
does not change much with the message size, perfect for
message driven execution. CPU overhead is obtained by
subtracting the idle time from the round trip time and then
dividing the remainder by two. Notice from Table 4 that for
PPN=1 the CPU overhead for a 256 byte message is more
than the overhead for a 1024 byte message. This is because
messages smaller than 288 bytes are first copied into the
network interface and then sent from there, thus incurring a

1The latency reported in Table 4 is slightly more than that reported in
Table 2. This is because of the additional timer overhead of computing the
CPU overhead and idle time in the pingpong benchmark.

Msg. Size Latency(���) CPU Overhead(���)
PPN = 1 PPN = 4 PPN = 1 PPN = 4

16 12.4 27.17 11.5 9.9
64 12.9 31.81 11.99 10.35

256 15.13 41.37 13.13 12.46
1024 26.24 77.47 12.6 12.08
4096 51.23 154.1 13.47 12.94

Table 5. Converse with two way traffic

PPN=1 Main-Main Elan-Elan Elan-Main
One Way Traffic 290 319 305
Two Way Traffic 128 319 305

Table 6. Elan Node Bandwidth (MB/s)

higher CPU overhead.
Normally parallel applications tend to have bi-

directional traffic. So we computed the CPU overheads
and latencies with bi-directional traffic. The results are pre-
sented in Table 5. For applications that have bi-directional
traffic, 4 processors per node and many irrelevant receives
posted, the latency for short messages could be 27 ��� . This
latency is significant. Section 5.1 describes mechanisms to
manage this large latency.

2.2 Bandwidth

The Elite network can support an application bandwidth
of 319 MB/s in each direction, which is only achievable
if messages are sent from Elan memory. PCI contention
brings the main memory bandwidth down to about 290
MB/s. Further when processors are simultaneously send-
ing and receiving, this bi-directional traffic brings the band-
width down to about 128 MB/s each way. Heavy contention
for DMA and PCI by messages in both directions is respon-
sible for this loss of network throughput.

Table 6 shows the achievable network bandwidth for dif-
ferent placements of the sources and destinations of the
messages. Notice that sending messages from Elan mem-
ory is faster. To send messages from Elan memory, the
message would have to be copied into Elan memory. We
can use DMA to copy a message into Elan memory, with a
bandwidth of about 305MB/s. This memory copy overhead
can nullify the advantage of sending the message from Elan
memory, except in specified situations (Section 5.2).

Bandwidth to distant nodes: We also observed that the
Elite network bandwidth drops to far away nodes. This has
also been reported in [2]. Table 7 shows the worst case
bandwidth as a function of the size of the fat tree. The band-
width is the lowest when messages go to the highest level of

3

#Nodes Elan-Main
4 300

16 292
64 267

256 233

Table 7. Elan Node Bandwidth (MB/s)

switches. For example on a fat-tree of size 64, node 0 sends
a message to node 32, or node 12 sends a message to node
61, etc.

We believe this drop in network throughput is due to the
small packet size (320 bytes) used by the QsNet network
protocol. Hence large messages will have several packets,
acknowledgments to which may be delayed if the nodes are
far away [2].

3 Converse Machine Layer

SEND
Garbage

collectionPUMP

Scheduler

Handler

To the network
from the network
Receives messages

Figure 1. Converse System

Converse [6], the portability layer of Charm++, pro-
vides basic point-to-point communication. Converse also
provides efficient collectives, and has been designed to be
inter-operable with many languages. Prioritized message
driven execution is enabled by the Converse’s message-
driven scheduler. The user program registers handlers with
the Converse system. Each message carries the id of the
destination handler. When the message is received on the
destination processor, the Converse scheduler invokes the
correct handler for that message. The Converse machine in-
terface (CMI) currently implements point to point messag-
ing, broadcasts and multicasts. On Lemieux (and QsNet)
Converse is implemented on top of the Elan Tport [16, 17]
tagged message passing interface. The CMI has three main
components, (i) Send module which sends user messages,
(ii) Pump module which pulls messages of the network by
posting receives and periodically polling their handles and
(iii) Garbage collection module which frees up user buffers
after the message has been sent. Figure 1 shows the block
diagram of the Converse runtime system.

The send module makes calls to the Elan Tport library
to send user messages. There are three types of messages,
identified by three different tags 2. First are the short mes-
sages (sizes 4KB or below), that are sent eager by calling
elan tportTxSend. The next range of messages are the in-
termediate sized messages (less than 64KB), that are sent
by calling elan tportTxSend with a different tag. We need
two different types of eager messages to optimize memory
allocation on the receiver. Large messages are sent by first
sending (as a small message) a header that contains the size
and address of the message. The destination then RDMAs
the message off the sender’s memory.

The pump module posts receives for both short and in-
termediate sized messages. These receives are posted in an
optimized circular queue, where only one receive for each
tag is polled for completion. If the message received is a
header for a large message, elan get is used to pull it off the
sender’s memory. After receiving the message the pump
module passes the message to the converse scheduler. The
scheduler either queues the message or calls the appropriate
message handler.

We have seen in the previous section that posting re-
ceives increases the message latency between nodes. But
the pump module is only called between handler invoca-
tions. User handlers can take several milliseconds to finish.
Hence several receives may need to be posted, or else mes-
sages may require unexpected message handling. Hence
there will be a trade-off which can only be optimized in
an application specific manner. For NAMD, this optimal
number is about 10 posted receives.

The garbage collection module polls the Elan system for
the completion of the send operations. After the messages
have been sent, the the garbage collection module frees up
all buffers allocated to the messages.

4 Advantages of Co-Processor

The presence of the co-processor in Elan makes the CPU
overhead a small fraction of the total communication time.
For example, a 4KB message takes � � ��� to send (Table 5),
but the CPU overhead is only about ��� ��� . In principle, the
remaining time can be used for other computation. The ad-
vantage of this overlapping is demonstrated by a 3d 6-point
stencil benchmark. Here, each processor (or virtual proces-
sor in our case) computes and then communicates (sends
and receives) with 6 neighbors, two in each dimension.

In traditional MPI style of programming, this program
would be written as computation followed by communica-
tion with no overlapping. The communication operation in-
volves the exchange of 6 messages. Figure 2(a) demostrates
this style of programming, though only two messages are

2For applications is written in Charm++ or AMPI [4], the runtime sys-
tem hides Elan message tags and is free to use the entire Elan tag space

4

���

���

������������������������������������
������������������������������������

���

���

���

���

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���

���

P0

P1

P2

Computation

Idle Time

Send CPU Overhead Recv CPU Overhead

(a) Without Virtualization

���������������

�����������������������������������

����������������������������
����������������������������

�����������������������������������

�����������������������������������

���

���
�����������������������������������

�����������������������������������

���

���

��
��

����������������������������
����������������������������

��
��

 � � � � � � � � � � � � � � � � � � � � � � � � � � �

!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!
"�"�"�""�"�"�""�"�"�""�"�"�""�"�"�"

#�#�#�##�#�#�##�#�#�##�#�#�##�#�#�#

$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$

%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%

P0

P1

P2

VP0 VP1

Computation
Send CPU Overhead

VP0 VP1

Recv CPU Overhead

(b) With Virtualization

Figure 2. Timeline for neighbor-exchange

shown. Here, the shaded rectangles show computation and
the solid rectangles show the CPU overhead of communica-
tion (both send and receive overheads are shown). Observe
that there is idle time between the computations. This sce-
nario does not effectively utilize the low CPU overhead of
Elan network interface.

In Charm++, with processor virtualization, the above
program can have multiple virtual processors in each pro-
cessor. After a virtual processor has sent its messages and
is waiting for reply messages, another virtual processor can
compute (Figure 2(b)). Here each processor has two virtual
processors.

On processor P1, VP0 computes and sends its messages.
While VP0 is waiting for messages from its neighbors (on
processors P0 and P1 and possibly others), VP1 can start
computing. Thus, effectively overlapping communication
with computation. Also by the time VP1 finishes, VP0 has
received all its messages (only 2 out of 6 are shown here)
enabling it to compute again with no or a short delay.

Table 8 shows the performance of the 3D 6-pt sten-
cil benchmark on Lemieux (these results are based on our
AMPI framework [4]). Here NVP is the number of virtual
processors per real processor. So for 8 processors and an
NVP of 8 we have 64 total virtual processors in the pro-

Processors NVP=1 NVP=8
8 193 105
64 16.4 12.7

512 6.5 5.7

Table 8. Time (ms): 3D stencil Computation
of size &��('*) on Lemieux

gram. We ran the program with an NVP of 1 and an NVP
of 8, corresponding to the two columns in table 8. Observe
that NVP=8 performs better as it makes better use of the
communication co-processor. Moreover, observe that the
performance gain for NVP=8 drops with the increase in the
number of processors. This is because the application be-
comes more fine grained on larger number of processors,
leading to shorter messages and a smaller difference be-
tween the total latency and CPU overhead.

5 QsNet Challenges

We next describe techniques we used to overcome the
three main challenges posed by QsNet, namely (i) signif-
icant message latency, (ii) low memory to memory band-
width, (ii) unexpected stretches in handlers.

5.1 Handling Latency: Message Combining

The message latency, with 4 processors per node and two
way traffic, is about & ����� (Section 2.1). This high latency
can restrict the scaling of some collective communication
operations, e.g. all-to-all communication. We use message
combining as our approach to handle this high latency. Mes-
sage combining has been presented in literature before. We
quote here a specific example from our past work [9].

We used message combining to optimize the perfor-
mance of the NAMD Particle Mesh Ewald step. This step
requires a 3d FFT which is implemented as 2d FFTs over
planes followed by a transpose and then 1d FFTs. The
transpose requires an all-to-all personalized communication
operation. In [9] we have described virtual topologies and
message combining to optimize all-to-all personalized com-
munication for short messages. Table 9 (taken from our
past work [9]) shows the advantage of virtual topologies in
NAMD. Here APoA-1 and ATPase are bio-molecules being
simulated. Observe that the Mesh strategy performs best.

The mesh strategy sends messages along a 2D-Mesh
topology. In the first round of the mesh strategy, proces-
sors send messages along their rows. In the second round
these messages are combined and sent to processors along
the columns. So in the mesh topology, each processor only
sends &

+ ,
messages, as opposed to P messages in direct

5

all-to-all communication. Hence mesh has the best perfor-
mance in Table 9.

APoA-1 uses a 108X108X80 sized grid while ATPase
uses a 192X144X144 sized grid for the 3d FFT (PME) op-
eration. Hence the all-to-all operation occurs over 108 pro-
cessors for APoA-1 and 192 processors for ATPase. In our
current implementation of NAMD, these PME virtual pro-
cessors are distributed with as few of them on a node as
possible. This gives the all-to-all operation the maximum
available node bandwidth.

As shown in Table 9, the performance gain with the
mesh strategy is best for 256 processors. But, since only
108(ApoA-1) or 192(ATPase) processors are being used for
the all-to-all operation, the performance gain is not signifi-
cant on 1024 processors.

Processors ApoA-1(ms) ATPase(ms)
Mesh Direct Mesh Direct MPI

256 39.2 44.4 113.6 120.8 134.5
512 23.4 28 60.8 63.0 69.5

1024 20.3 26.8 35.8 38.6 39.3

Table 9. NAMD step completion time (ms)

5.2 Better bandwidth for multicast

The send module in the CMI (Section 3) implements a
multicast (CmiListSend) by first copying the message to the
network interface and then send the message from there. In
Section 2.2, we showed that sending messages from Elan
memory more than doubles the node bandwidth, as com-
pared with sending messages from main memory. The k-
prefix strategy3 for all-to-all broadcast(AAB) [10] sends
messages from Elan memory by making calls to CmiList-
Send. The performance of the k-prefix strategy is presented
in Table 10 (also taken from [10]). It outperforms Lemieux
MPI which only sends messages from main memory.

5.3 Stretched Handlers

Another major issue we faced while scaling NAMD and
other applications to large number of processors was that
of stretched (delayed) entry methods (handlers for mes-
sages) [14]. Figure 3 shows the timeline of NAMD on 1536

3The k-prefix strategy is an all-to-all broadcast optimization strategy
which uses two contention free permutations namely, prefix send (p ex-
changes messages with ��������� in step i) and ring (p sends messages to	 ��
�����������). In this scheme, the cluster of P nodes is partitioned into
sub-clusters of size k. Prefix send is used for the AAB operation within
sub-clusters while ring is used across the sub-clusters. This hybrid nature
minimizes data exchange with far away nodes, enabling the strategy to
scale to 256 nodes. The details of this strategy are presented in [10]

Nodes Native MPI (MB/s) k-Prefix (MB/s)
64 113 266

128 99 260
256 95 256

Table 10. AAB each-way node bandwidth

processors. Each grey rectangle on the processor time line
shows the execution of a handler in NAMD. Observe that
processors 900 (timeline 6 from the top) and 933 (timeline
7) have handlers that last about 20-30 ms. This is clearly
shown by the long superscript bar (colored in light grey)
on top of the handler. Normally these handlers should take
about 2-3ms to finish, as shown by the remaining rectan-
gles in Figure 3. Both the stretched handlers here block on
a send operation, indicated by the superscript bar on top of
the entry method. Observe that the other superscript bars
are just dots. We also noticed other stretches in the middle
of entry methods (not shown in the figure). We believe these
stretches were caused by a mis-tuned Elan library and op-
erating system daemon interference. We now mention the
mechanisms by which we overcame this stretching problem.

Figure 3. NAMD Run on 1536 processors

5.3.1 Stretched Sends

The Converse runtime system (Section 3) only makes
calls to elan tportTxStart (equivalent of MPI Isend in Elan)
which should be a short call. From Table 4 we know that
the CPU overhead of pingpong is just a few microseconds.
But the entry methods were blocked in the sends for tens of
milliseconds.

On looking at the Elan library source (and also working
with Quadrics), we found that this was a side effect of Elan

6

software’s implementation of MPI message ordering. MPI
message ordering requires that messages between two pro-
cessors be ordered. Incidentally, Charm++ does not require
such ordering.

In order to implement this ordering, the Elan system
made a processor block on an elan tportTxStart if the ren-
dezvous of any previous message had not been acknowl-
edged, irrespective of the destination of that previous mes-
sage. So in the presence of a hot-spot in the network, all
processors that sent a message to the hot-spot would freeze.
This could cascade leading to long stretches of even tens of
milliseconds.

We reported this to Quadrics, and obtained a fix for this
problem. This involved recompiling the Elan software li-
brary, after enabling ����� ����� 	���
 	�
������������
 .
Now, a message send only blocks if the previous rendezvous
to its destination is unacknowledged. CMI keeps a list of
processors with unacknowledged rendezvous, and buffers
future messages to them till those rendezvous have been ac-
knowledged. Thus, eliminating the stretched sends. This
problem has been fixed in version 1.4 of Elan software.

5.3.2 OS Daemon Stretches

Figure 4. NAMD on 3000 processors

Fixing the Elan software did not completely eliminate
stretches if the application used four processors per node.
NAMD simulation of the ATPase system takes about 11ms
on 3000 processors. This time step is very close to the 10ms
time quanta of the operating system. So if on any of the
3000 processors a file system daemon is scheduled, NAMD
step time could become 21ms.

Petrini et al. [1] have studied this issue of operating sys-
tem interference in great detail. They present substantial
performance gains for the SAGE application on ASCI-Q (a
QsNet-Alpha system similar to Lemieux) after certain file
system daemons have been shutdown.

Poll Time (n) � ����� Processors Step Time (ms)
100 2912 11.3
200 2912 11.2
500 2912 11.0

Table 11. NAMD with blocking receives

We did not have control over the machine to do the sys-
tem level experiments carried out by Petrini et al. How-
ever, we were still able to reduce and mitigate the impact
of such interference with two mechanisms. First, NAMD
uses a reduction in every step to compute the total energies.
With Charm++, it was able to use an asynchronous reduc-
tion, whereby the next timestep doesn’t have to wait for the
completion of the reduction. This gives the processors that
were lagging behind due to a stretch an opportunity to catch
up. Second, when a processor becomes idle, the pump mod-
ule in the Converse machine layer blocks on a receive, in-
stead of busy-waiting. This enables the operating system to
schedule daemons while the processor is sleeping. On re-
ceiving a message, there is an interrupt from the network in-
terface which awakens the sleeping process. The new time-
line is presented in Figure 4, where there are no stretched
entry methods. Observe the dark grey superscripted rect-
angles on top of the black idle time, which implies that a
processor is blocked on a receive.

Blocking receives are based on interrupts and hence have
overheads. The Elan library gives the option of polling the
network interface for � ��� before blocking. Setting the en-
vironment variable LIBELAN WAITTYPE to � achieves
this. NAMD performance on 3000 processors of Lemieux
was best with ��� � . This was before daemons were shut-
down on Lemieux. NAMD still achieved a 1.04 TF peak
performance and a 12ms time step.

Most of the daemons (recommended in [1]) have been
shutdown on the compute nodes of Lemieux. But a full
system run uses head and I/O nodes which still run some
of these daemons. Table 11 shows a more recent perfor-
mance of NAMD on 2912 processors for different values
of n. Observe that now NAMD performance is best for �
in the range of a few hundred, which implies that there is
lesser OS interference after the daemons were shut down.

6 Summary and Future Work

QsNet is an excellent interconnect that has increased
the performance of parallel applications considerably, as
demonstrated by NAMD. It includes a communication co-
processor with remote and local DMA capabilities, which
off-loads the task of communication from the main proces-
sor. We have demonstrated how a message-driven system
like Charm++ (or Adaptive MPI) can take better advan-

7

tage of such co-processors, as compared with traditional
compute-communicate-compute style used in many MPI
applications.

To achieve good performance we had to overcome the
challenges posed by QsNet. Under no-load conditions the
communication latencies are as low as �������� for short mes-
sages. But, in real-application contexts when multiple pro-
cessors on each node are used and bi-directional commu-
nication ensues, these latencies are much larger. How-
ever, since the CPU overhead is still low in these con-
texts, a message-driven application can utilize the latencies
for overlapping useful computation without additional pro-
grammer effort. Such relatively large latencies for short
messages also motivated optimizations we implemented for
message-combining with virtual topologies, especially for
collective operations. We showed how we were able to
use the higher bandwidth attained when sending from the
co-processor’s memory to optimize the all-to-all broadcast
operation. We also discussed the problems faced when
scaling applications with relatively fine-grained parallelism:
stretched communication operations and OS interference.
These were handled by changing communication protocols
in the Elan library, allowing OS to use the processor when
idle (by calling “sleep” instead of busy-waiting for a mes-
sage) and use of asynchronous reductions (which is natural
in message-driven programming).

Our current implementation of the runtime system on
QsNet extensively uses tagged message passing. We be-
lieve that using one sided communication even for short
and intermediate sized messages would improve the com-
munication performance of applications, as it will reduce
the processing load on the NIC. This is particularly use-
ful when application communication patterns are persistent
and buffers can be reserved on destinations for future mes-
sages. But, for this scheme to work, the application will
have to guarantee that the buffers on the destinations are
used before the next message arrives in that buffer. This
new scheme is under investigation.

In summary, the capabilities offered by modern co-
processors can significantly improve performance, but fully
exploiting them requires sophisticated handling of commu-
nication operations. Further, message-driven execution and
adaptive runtime systems can achieve high performance,
without increasing programming complexity in this context
by automatically adjusting to runtime conditions.

Acknowledgments We would like to thank David O’Neal
(PSC) and David Addison (Quadrics) for their assistance.
This work was supported by the National Institutes of
Health (NIH PHS 5 P41 RR05969-04) and the National Sci-
ence Foundation (NSF NFS 0103645, NSF CTR 0121357).

References

[1] S. P. Darren J. Kerbyson, Fabrizio Petrini. The Case of the
Missing Supercomputer Performance: Achieving Optimal
Performance on the 8,192 Processors of ASCI Q. In Super-
computing 2003, November 2003.

[2] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and
S. Coll. STORM: Lightning-Fast Resource Management.
In Supercomputing 2002, Baltimore, MD, November 2002.

[3] A. Gursoy. Simplified Expression of Message Driven Pro-
grams and Quantification of Their Impact on Performance.
PhD thesis, University of Illinois at Urbana-Champaign,
June 1994. Also, Technical Report UIUCDCS-R-94-1852.

[4] C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI. In Pro-
ceedings of the 16th International Workshop on Languages
and Compilers for Parallel Computing (LCPC 03), College
Station, Texas, October 2003.

[5] L. V. Kale, M. Bhandarkar, and R. Brunner. Run-time Sup-
port for Adaptive Load Balancing. In J. Rolim, editor, Lec-
ture Notes in Computer Science, Proceedings of 4th Work-
shop on Runtime Systems for Parallel Programming (RT-
SPP) Cancun - Mexico, volume 1800, pages 1152–1159,
March 2000.

[6] L. V. Kale, M. Bhandarkar, N. Jagathesan, S. Krishnan, and
J. Yelon. Converse: An Interoperable Framework for Paral-
lel Programming. In Proceedings of the 10th International
Parallel Processing Symposium, pages 212–217, April 1996.

[7] L. V. Kale and S. Krishnan. Charm++: Parallel Program-
ming with Message-Driven Objects. In G. V. Wilson and
P. Lu, editors, Parallel Programming using C++, pages
175–213. MIT Press, 1996.

[8] L. V. Kalé, S. Kumar, and J. DeSouza. A malleable-job sys-
tem for timeshared parallel machines. In 2nd IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid
(CCGrid 2002), May 2002.

[9] L. V. Kale, S. Kumar, and K. Vardarajan. A Framework for
Collective Personalized Communication. In Proceedings of
IPDPS’03, Nice, France, April 2003.

[10] S. Kumar and L. V. Kale. Scaling collective multicast on fat-
tree networks. Technical Report 03-11, Parallel Program-
ming Laboratory, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, 2003.

[11] Lemieux. http://www.psc.edu/machines/tcs/lemieux.html.
[12] F. Petrini, W. chun Feng, S. Hoisie, A.and Coll, and

E. Frachtenberg. The quadrics network: high-performance
clustering technology. IEEE Micro, 22(1):46 –57, 2002.

[13] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie. Perfor-
mance Evaluation of the Quadrics Interconnection Network.
To appear, Journal of Cluster Computing, 2002.

[14] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. NAMD:
Biomolecular simulation on thousands of processors. In
Proceedings of SC 2002, Baltimore, MD, September 2002.

[15] Quadrics Ltd. http://www.quadrics.com.
[16] Quadrics Ltd. Elan Programming Manual. 1999.
[17] Quadrics Ltd. Elan Reference Manual. 1999.
[18] R. Vadali, L. V. Kale, G. Martyna, and M. Tuckerman. Scal-

able parallelization of ab initio molecular dynamics. Tech-
nical report, UIUC, Dept. of Computer Science, 2003.

8

