
c© Copyright by Rashmi Jyothi, 2003

DEBUGGING SUPPORT FOR CHARM++

BY

RASHMI JYOTHI

B.E., Bangalore University, 2000

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2003

Urbana, Illinois

Abstract

The approaches adopted so far for debugging programs written in Charm++, a data driven

parallel programming language, have been the traditional logging method via printf state-

ments and the “++debug” command-line option which runs the parallel program attach-

ing an instance of a standard sequential debugger like gdb to every individual process of

the parallel program. This thesis presents the implementation of a parallel debugger for

Charm++ which extends the existing debugging support for Charm++ and among its func-

tionalities includes the capability to set breakpoints, examine variables, objects and messages

in queues across the parallel set-up. Also outlined is a simple record and replay mechanism

for Charm++ to replay message execution in a recorded order of occurrence. This approach

is extremely useful in debugging a parallel program when a bug manifests itself because of

an unusual ordering of events.

iii

To the ones closest to my heart.

iv

Acknowledgments

As my advisor, Professor Laxmikant Kale has been a constant source of encouragement

and support. His unabated enthusiasm and passion for the subject has always inspired me.

I consider myself fortunate to have associated with him and thank him profusely for his

guidance during the entire period I worked for him.

I am extremely grateful to Orion Lawlor and Gengbin Zheng, senior graduate students

at the Parallel Programming Laboratory, for all the help, leads and suggestions they offered

to me during the course of my work. My work would have been a whole lot tougher without

them. I specially thank Orion for his implementation of debugging features in Charm and

for the pack/unpack library, which my work is strongly based on. I also thank Eric Bohm,

research programmer at the Parallel Programming Laboratory for proofreading my thesis

and giving me valuable feedback.

I thank all my colleagues at the Parallel Programming Laboratory for being the amazing

people they are and making my stay an invaluable learning experience and a highly mem-

orable one. I owe a lot to my friends near and far, for all the help and support they have

extended to me at various points in my life.

I could not be thankful enough for the family I have been blessed with. None of my

endeavors would have been successful without them.

v

Table of Contents

List of Figures . vii

Chapter 1 Introduction . 1
1.1 Motivation . 2
1.2 Parallel Debugger Objectives . 3
1.3 Thesis Organization . 4

Chapter 2 Charm++: An Overview . 5
2.1 Charm++ Design . 5

2.1.1 Language Entities . 6
2.1.2 Execution Model . 8
2.1.3 Machine Layer: A Brief Overview . 10

2.2 Virtualization Concept . 11

Chapter 3 Frameworks in Charm++ . 12
3.1 The PUP Framework . 12
3.2 Converse Client-Server Interface . 14

Chapter 4 Parallel Debugger . 17
4.1 Freezing and Unfreezing a Program . 17
4.2 Setting Breakpoints . 19
4.3 Introspection API . 20
4.4 Attaching Sequential Debugger . 24
4.5 User Interface and Instrumentation . 25

Chapter 5 Record and Replay . 31
5.1 Related Work . 31
5.2 Implementation in Charm++ . 32
5.3 Testing . 34

Chapter 6 Conclusions and Future Work . 35

References . 36

vi

List of Figures

2.1 Snippet of registration code generated at startup 9

3.1 A simple class declaration showing the pup method 14

4.1 Pseudocode for the handlers which take care of freeze and unfreeze functionality. 18
4.2 A simple call function for entry point foo::bar{fooMsg *} 19
4.3 Pseudocode to set a break point and continue from it. 21
4.4 Data structures in Charm++ that can be examined using CpdLists. 22
4.5 Working of CpdLists. 23
4.6 ccs handler to examine contents of an array element. 24
4.7 Using the menu to set parameters for the Charm++ program 26
4.8 Parallel debugger when a break point is reached 27
4.9 Freezing program execution and viewing the contents of an array element

using the Parallel Debugger . 29
4.10 Parallel debugger showing instances of gdb open for the selected processor

elements . 30
4.11 A sample user implementation of pupCpdData 30

vii

Chapter 1

Introduction

Parallel programming introduces many additional challenges with respect to program correct-

ness, robustness and reliability. The challenges faced during the design of efficient debugging

tools for a parallel program include portability of such tools and examining the dynamic state

information of a parallel program which is much more than a sequential program [2, 9, 10].

Traditional sequential debuggers offer state information by allowing the programmer

to set breakpoints and view contents of variables and thereby examine the nature of the

program’s execution. These sequential debuggers are helpful in debugging the individual

processes in a parallel program. However, this approach does not allow the user to examine

the execution of the parallel program across the parallel machine as if it were a single program

executing, which in effect it is. The other sequential debugging method often used is the

traditional method of inserting output statements like printf in the program that output

specific variables or reflect the section of the code executing. This method requires no

tools or additional software and is quite reliable. Nevertheless, the programmer must decide

in advance which variables to print and where to insert the output statements. Besides,

incorporating new statements translates to editing and compiling the program over again.

Also, scouring through large logs of output statements to gather required information can

become quite tiresome. In the case of a parallel program, the events may not be written to

the buffer in the order of execution due to reasons like disparate processor speeds.

The means of using a sequential debugger for debugging a parallel program is resorted to

1

in Charm++ [4, 5, 7] in the form of the command-line run-time option “++debug”, where

each process of the parallel program running on a processor element (pe) is debugged in a

separate window using a sequential debugger like gdb or dbx. The approach of logging using

CkPrintf statements is used for debugging more often than not in Charm++. CkPrintf is

the parallelized version of printf. If the command-line parameter “+syncprint” is passed

to a Charm++ program, the CkPrintf actually blocks until the output is queued, allowing

the logging to happen in causal order, at the cost of dramatically slowing down the output.

It is seen that there is a need for a parallel debugger for Charm++ that overcomes the

shortcomings of employing sequential debugging techniques in conjunction with a parallel

program. The primary goal of such a debugger should be to provide an integrated debugging

environment which allows the programmer to examine the changing state of the parallel pro-

gram as it executes. This thesis is an effort in this direction and describes the implementation

of a parallel debugger for Charm++.

1.1 Motivation

The typical functionalities offered by sequential debugging schemes are cyclic interactive

debugging, setting breakpoints, memory dumps and tracing. These techniques have limited

applicability to the parallel programming scene because of the inherent non-deterministic

and non-repeatable nature of a parallel program, the difficulty in examining the system

state of the parallel program in a global sense and the fact that the debugging process could

perturb the program so as to significantly change its behavior.

One approach to debugging in a parallel environment is through a collection of instances

of sequential debuggers, each attached to a constituent process in the parallel program.

Although this method of debugging is very useful in debugging a parallel program, program-

mers usually need more information to understand the behavior of their code. The state of

a sequential program includes contents of all its variables and registers. A parallel program

2

in addition contains data that is shared and in transit between processors. There is a need

for a way to examine this data in whatever form the parallel programming model presents

it.

Nondeterminism of a parallel program adds to the complexity of the debugging process.

Certain bugs manifest themselves only due to a specific ordering of messages and may not

show up in a re-run of the program due to a different ordering of messages in the re-run

[15, 1]. One way to reproduce such a bug deterministically is to record the states of the

parallel program and replay the execution using the recorded data.

1.2 Parallel Debugger Objectives

The objectives for the parallel debugger have been identified as follows.

• Making it possible for the programmer to freeze/unfreeze the execution of the program

• Provision to set and remove breakpoints at the entry point [11] level in a charm pro-

gram.

• Providing means to view the contents of entities like array elements and messages in

queues across the parallel set-up [14] during program execution.

• A flexible way of attaching specified processes of the parallel program to the sequential

debugger, during the course of program execution.

This is specially useful when the number of processor elements is high and sequential

debugging is sought on specific processors. In such a situation, using the runtime

“++debug” option is cumbersome as it becomes very difficult to keep track of the

large number of xterm windows opened at the onset of execution for each instance of

the sequential debugger attached to every process in the parallel program.

3

• Incorporating a record-replay mechanism into Charm, for reproducing bugs which hap-

pen once in a while depending on the order in which messages are processed.

A +record option provided at runtime to a Charm program writes a trace to a file,

which is later read when the +replay runtime option is provided to ensure messages

are processed in the same order as the recorded run.

1.3 Thesis Organization

The thesis consists of 6 chapters. Chapter 2 talks about the programming model and con-

cepts of Charm++. Chapter 3 gives an overview about the Converse Client Server (CCS)

module and the PUP framework in Charm++, which are used in the implementation of the

debugger. Chapter 4 elaborates the design of the newly added debugging features. The

record and replay mechanism is presented in Chapter 5. Conclusion and possible future

work are outlined in Chapter 6.

4

Chapter 2

Charm++: An Overview

Charm++ is an object oriented portable parallel programming language based on C++. In

other words, it is a parallel language consisting of C++ with a few extensions. It provides a

clear separation between sequential and parallel objects. The execution model of Charm++

is message-driven [7].

2.1 Charm++ Design

Portability is a key requirement for large scale development of parallel software. Charm++

programs are portable and run without change on all MIMD machines. The system supports

dynamic load balancing strategies which means that dynamic creation of parallel work is

allowed. Dynamic load balancing is necessary when there are irregular parallel computations

and load is unevenly distributed among the processor elements [4, 5].

Charm++ programs specify parallel processes called chares [11]. Chares can create new

chares and can send messages to each other. Message-driven execution is employed in

Charm++ instead of the traditional send/receive based communication. In such a message-

driven execution model all computations are initiated in response to messages being received.

The system calls in Charm++ are non-blocking and therefore, asynchronous. Charm++ en-

tities can contain private data and public methods like regular C++ objects. The significant

difference is that these methods can be invoked from remote processors asynchronously.

5

Asynchronous method invocation implies that the caller does not wait for the method to be

executed or in other words does not wait for the method to return a value. Such a method

that can be invoked remotely in Charm++ is called an entry method or an entry point. Entry

methods do not have a return value. An entry method is always a part of a chare - there are

no global entry methods in Charm++.

2.1.1 Language Entities

Charm++ consists of the following categories of objects

• Sequential objects

Sequential objects are ordinary sequential C++ objects. Such entities are accessible

locally and are not known to the Charm++ runtime system. Charm++ does not affect

the syntax or semantics of such C++ entities.

• Concurrent objects

Chares are the concurrent objects in a Charm++ program. Syntactically, they are

instances of C++ classes that are derived from a system-provided class called Chare.

In addition to the private and public data and methods of a usual C++ object, they

contain entry methods which are asynchronous methods that can be invoked remotely.

Chares are different from C++ objects because they can be created asynchronously

from remote processors. They are accessed using a proxy or a handle. Chares and

their entry methods have to be specified in an interface file.

• Replicated objects

These objects consist of a branch on every processor.

– Chare Arrays

A Chare Array [8] is a collection of chares and the size of the array is not con-

strained by the underlying parallel machine such as number of processors or nodes.

6

Therefore, a chare array can have any number of elements. Each array element

of a chare array has a globally unique index and messages are addressed to that

index. The dynamic load balancing framework which kicks off when a Charm++

program starts, treats array elements as objects that can be migrated across pro-

cessors.

– Chare Groups

A Chare Group is a collection of chares with one representative on each processor.

All members of the chare group share a globally unique name.

– Chare Nodegroups

A Chare Nodegroup is very similar to a Chare Group except that instead of having

one group member on each processor, the nodegroup has one member on each

shared memory multiprocessor node.

• Shared objects

Charm++ does not allow global variables for keeping programs portable across a wide

range of machines. Read-only variables provide a mechanism for sharing data among

all objects. They are used to share information that is obtained only after the program

begins execution and does not change after they are initialized in the dynamic scope

of the main function. Just like global variables, they can be accessed from any chare

on any processor.

• Messages

Messages are entities that are used for communication between concurrent objects.

Messages supply data arguments to the asynchronous remote method invocation. With

parameter marshalling [11], the Charm++ runtime creates and handles messages com-

pletely internally. Another variation of communication objects is conditionally packed

and unpacked. This variation should be used when one wants to send messages that

7

contain pointers to the data rather than actual data to other processors.

2.1.2 Execution Model

The basic unit of parallel computation in Charm++ programs is the chare, which can be

created on any available processor and the methods of which can be invoked from remote

processors. A Charm++ program consists of a number of Charm++ objects distributed across

the available number of processors or processor elements. Chares are created dynamically

and they invoke methods on one another asynchronously.

The runtime system of Charm++ or the Charm Kernel maintains a pool consisting of

seeds for new chares and messages for existing chares. As mentioned previously, entry meth-

ods are methods of a chare that can be remotely invoked. Entry methods take marshalled

parameters or a pointer to a message object. Since chares can be created on remote proces-

sors, they require a minimum of one constructor that is an entry method. Entry methods

cannot be preempted and therefore once an entry method is entered execution is guaranteed

to proceed till the method is done without interruption.

While creating a chare [11], the location does not have to be specified in terms of pro-

cessor number. The Charm Kernel will place the chare on a least loaded processor. Thus,

Charm++ provides dynamic seed-based load balancing. Chares can potentially migrate from

one processor to another. Chare-arrays, Chare-groups and Chare-nodegroups are important

parallel structures provided by Charm++. An array is a collection of chares, indexed by some

index type and mapped to processors according to a user-defined map group. A Charm++

program must have at least one mainchare. When the Charm++ program starts up, the

mainchare is created on the processor 0. Execution of the program is triggered once the

mainchares have been constructed. Usually, mainchare constructor initiates computation by

creating arrays, other chares and groups. Readonly data is also initialized in the mainchare.

Remote chares communicate with each other via the asynchronous entry methods and

this is the only mode of communication between processors. Therefore, the Charm Kernel

8

void _call_foo_func(void *msg, foo *obj)

{

obj->func(msg);

}

...at startup...

int funcEpIdx=CkRegisterEp(&_call_foo_func,...);

Figure 2.1: Snippet of registration code generated at startup

needs to know the type of chares in the user program and the remotely invocable entry

methods along with the parameters they take as input. These user-defined entities need to

be registered with the Charm Kernel when the program starts up. The Kernel assigns a

unique identifier to each of them. All this registration is automatically taken care of by the

Charm++ interface translator.

At startup of a Charm++ program, each module registers its methods which end up in

an entry method table on every processor on which the program runs. The entry method

table on each processor should be consistent for a particular program. An entry point’s

index in this table is used across the system to refer to that particular entry point. The

Charm++ interface translator reads the interface file, the .ci file and automatically writes

this registration code to the .def file. For instance, suppose the programmer needs to be able

to call some C++ method func remotely on user object of type foo. To make this visible

to the Charm Kernel, a function pointer to a “call-function” corresponding to the entry

method func is registered in the entry table. Figure 2.1 shows a snippet the registration

code generated by the interface translator to achieve this.

The interface translator similarly generates definitions for proxy objects. A proxy object

acts as a handle to a remote chare. Method invocation on a proxy object translates to

remote method invocation on the chare. A Charm++ program can be terminated by the

CkExit call. CkExit need not be called on all processors, it is sufficient to call it from just

one processor at the end of the computation.

9

2.1.3 Machine Layer: A Brief Overview

Charm++ is in essence a simple, thin wrapper on Converse. Converse [3] is a framework for

parallel programming that supports multi-lingual interoperability. It extracts the essential

support of runtime support into a common core so that language specific code (for instance,

Charm++) does not have to pay overhead for features that it does not need. Converse treats

the parallel machine as a collection of nodes that communicate primarily via messages. Each

node is comprised of a number of processors that share memory. In some cases, the number

of processors per node may be exactly one. The processors may have multiple threads

running on them which share code and data but have different stacks. Each processor runs

a scheduler which is responsible for all message reception.

When a message arrives at a processor it triggers the execution of a handler function[12].

The handler function receives as an argument a pointer to the message. The message itself

specifies which handler function to be called when the message arrives. The message is

a contiguous sequence of bytes and has two parts - the header and the data. The header

contains a handler number which specifies which handler function is to be executed when the

message arrives. Converse maintains a table mapping handler numbers to function pointers.

Each processor has its own copy of the mapping.

Communication primitives insert messages into the scheduler queues at remote processors,

where the scheduler thread finds them and processes them. The Converse scheduler serves

not only as a message receiver but also as a central allocator of CPU time. There are two

kinds of messages in the system waiting to be scheduled - messages that have come from the

network and those that are locally generated. The scheduler’s job is to repeatedly deliver

these messages to their respective handlers.

10

2.2 Virtualization Concept

Charm++ is a parallel programming model based on the concept of virtualization , where

the programmer divides the work into a large number of chunks, and lets the system map

these entities to processors. The number of parts a computation is broken into is typically

independent of the number of processors N and is more often than not larger than N. It

is observed that a high degree of virtualization is favorable in most cases because of the

beneficial result of smaller objects on cache performance [6]. In the case of Charm++ the

entities are chares. The programmer does not refer to processors in their code but programs

in terms of the interaction between the virtual entities. The Runtime system (Charm Kernel)

is aware of processors and maps these virtual processors to real processors. It also has the

capability to change the mapping at runtime without the user program having to specify it.

11

Chapter 3

Frameworks in Charm++

The implementation of the parallel debugger involved incorporating required support into

the Charm++ core. The implementation of debugging support in the Charm Kernel relied

heavily on the pack/unpack or PUP framework available in the core. The debugger is also

modelled as a client in the Converse Client-Server (CCS) Interface provided by Charm++.

This built-in features of the Charm++ core are briefly touched upon in the following sections.

3.1 The PUP Framework

The pack/unpack framework or the “PUP” framework is a generic way provided by Charm++

to describe the data in an object. It is a suite of classes that enables objects in Charm++

(for example, array elements) to migrate from one processor to another. In a nutshell,

the framework provides services to any operation that requires a traversal of the object

state in terms of its data members. The Charm++ system uses the generic description of

an object, provided by the PUP framework, to pack the particular object into a message

and later unpack the message into a new object on another processor. Thus the name,

pack/unpack framework. Besides being used in transporting objects intact across processors

during migration, the PUP framework can also be used to serialize an object’s data to disk.

The framework can also be used to retrieve an object’s data in some interpretable form and

this functionality is used in the implementation of the debugger.

12

The obvious approach for a class that needs to provide for its objects to migrate would

be to implement static pack and unpack methods. If an object is required to migrate

to another processor, while the program is executing, the pack method is invoked with a

pointer to the object as an argument. The pack method allocates a memory buffer large

enough to hold all the object’s data and then proceeds to serialize the object’s data into the

memory buffer.The memory buffer is then encased in a message and sent to the processor

where the object is to be migrated. When this message containing the object state is received

by the new processor, a new instance of the class is created by calling a special migration

constructor. The migration constructor’s task is to simply create an uninitialized instance

of the class. The unpack class method is invoked with pointers to the migration message

and the newly created raw object. The unpack method proceeds to extract data from the

packed object in the message to create the new object. At the end of the unpack method,

migration is complete.

It is seen that most of the functionality of the pack and unpack methods is similar in

nature. The pack function copies the data to a serial buffer in a particular order, while

the unpack method copies the data from the serial buffer in the same order as pack. The

PUP library avoids duplication of code by requiring the programmer of a particular class to

implement just a single method, called pup. The pup method takes a single parameter, which

is an instance of a class PUP::er (such a class is also called a pupper). The role of the pup

method is to perform a traversal of the object state. The actual pack, unpack, write-to-disk,

convert-to-interpretable-form operations that need to be performed on the data members

are executed by the pupper class.

The following classes in the PUP framework were used in implementing debugging sup-

port in charm.

• class PUP::er - This class is the abstract superclass of all the other classes in the

framework. The pup method of a particular class takes a reference to a PUP::er as

parameter. This class has methods for dealing with all the basic C++ data types. All

13

class foo {

private:

bool isBar;

int x;

char y;

unsigned long z;

float q[3];

public:

void pup(PUP::er &p) {

p(isBar);

p(x);p(y);p(z);

p(q,3);

}

};

Figure 3.1: A simple class declaration showing the pup method

these methods are expressed in terms of a generic pure virtual method. Subclasses

only need to provide the generic method.

• class PUP::toText - This is a subclass of the PUP::toTextUtil class which is a

subclass of the PUP::er class. It copies the data of an object to a C string, including

the terminating NULL.

• class PUP::sizerText - This is a subclass of the PUP::toTextUtil class which is

a subclass of the PUP::er class. It returns the number of characters including the

terminating NULL and is used by the PUP::toText object to allocate space for building

the C string.

The code in Figure 3.1 shows a simple class declaration that includes a pup method.

3.2 Converse Client-Server Interface

The Converse Client-Server (CCS) module enables Converse [3] programs to act as parallel

servers, responding to requests from non-Converse programs. The CCS module is split into

two parts - client and server. The server side is used by a Converse program while the client

14

side is used by arbitrary non-Converse programs. A CCS client accesses a running Converse

program by talking to a server-host which receives the CCS requests and relays them to

the appropriate processor. The server-host is charmrun [11] for net-versions and is the

first processor for all other versions.

In the case of the net-version of Charm++, a Converse program is started as a server by

running the Charm++ program using the additional runtime option “++server”. This opens

the CCS server on any TCP port number. The TCP port number can be specified using the

command-line option “server-port”. A CCS client connects to a CCS server, asks a server PE

to execute a pre-registered handler and receives the response data. The function CcsConnect

takes a pointer to a CcsServer as an argument and connects to the given CCS server. The

functions CcsNumNodes, CcsNumPes, CcsNodeSize implemented as part of the client interface

in Charm++ returns information about the parallel machine. The function CcsSendRequest

takes a handler ID and the destination processor number as arguments and asks the server

to execute the particular handler on the specified processor. CcsRecvResponse receives a

response to the previous request in-place. A timeout is also specified which gives the number

of seconds to wait till the function returns a 0, otherwise the number of bytes received is

returned.

Once a request arrives on a CCS server socket, the CCS server runtime looks up the

appropriate registered handler and calls it. If no handler is found the runtime prints a

diagnostic and ignores the message. If the CCS module is disabled in the core, all CCS

routines become macros returning 0. The function CcsRegisterHandler is used to register

handlers in the CCS server. A handler ID string and a function pointer are passed as

parameters. A table of strings corresponding to appropriate function pointers is created.

Various built-in functions are provided which can be called from within a CCS handler. The

debugger behaves as a CCS client invoking appropriate handlers which makes use of some

of these functions. Some of the built-in functions are as follows.

• CcsSendReply - This function sends the data provided as an argument back to the client

15

as a reply. This function can only be called from a CCS handler invoked remotely.

• CcsDelayReply - This call is made to allow a CCS reply to be delayed until after the

handler has completed.

The CCS runtime system provides several built-in CCS handlers, which are available

to any Converse program. All Charm++ programs are essentially Converse programs.

ccs getinfo takes an empty message and responds with information about the parallel

job. Similarly the handler ccs killport allows a client to be notified when a parallel run

exits.

16

Chapter 4

Parallel Debugger

Implementing the parallel debugger required incorporating the necessary support into the

charm kernel and building a friendly user interface. Features that would be useful to a

programmer while debugging a parallel program were identified and implemented one by

one.

4.1 Freezing and Unfreezing a Program

The debugger requires support in the Charm kernel to freeze a Charm++ program in ex-

ecution. This involves the debugger sending a ccs message to the program which triggers

the handler CpdFreeze on the processor element on which execution was intended to be

frozen. This handler sets a flag freezeModeFlag to 1 and the process enters the freeze mode

scheduler. As long as freezeModeFlag is 1, the program continues to be in the freeze mode

scheduler. The freeze mode scheduler queues up all the messages that arrives on the pro-

cessor element into a debug queue. Only the ccs messages are processed, keeping in mind

that they could be from the debugger itself and if they were not processed, it would not be

possible to resume execution of the program (which is again the result of a ccs handler).

Setting the freezeModeFlag to 0 quits the freeze mode scheduler, before which it processes

all the messages queued up in the debug queue. The ccs handler CpdUnFreeze() performs

this functionality. Figure 4.1 shows the pseudocode for the handlers which are responsible

17

CpdFreeze()

{

set freezeModeFlag to true;

CpdFreezeModeScheduler();

}

CpdFreezeModeScheduler()

{

msg = next message to be processed;

while (freezeModeFlag = true)

{

if (msg is a ccs message)

Handle msg;

else

Push msg on debug queue;

}

Process all messages in debug queue;

}

CpdUnFreeze()

{

set freezeModeFlag to false;

}

Figure 4.1: Pseudocode for the handlers which take care of freeze and unfreeze functionality.

for freezing and unfreezing the program.

The programmer could opt to freeze the execution of his program at the click of a button

on the debugger’s user interface to examine the state of the different variables in his parallel

program. Besides this, the CpdFreeze function is called in two scenarios - at the onset of

executing a Charm++ program for debugging and when a breakpoint is reached. In the

first scenario, this CpdFreeze function is called at the end of the initCharm routine. The

initCharm routine runs almost the entire Charm++ setup process. It sets up the various

subsystems and performs all the registration procedures by calling the various register

routines. A command-line argument “+cpd” is passed in as an argument to the program

being debugged, to indicate that it is in the parallel debugging mode. When in the parallel

debugging mode, the program freezes at the onset. The programmer could choose to continue

18

extern "C" void _call_foo_bar(void *msg, void *obj)

{

fooMsg *m = (fooMsg *)msg;

foo *f = (foo *)obj;

f->bar{m};

}

Figure 4.2: A simple call function for entry point foo::bar{fooMsg *}

execution as it is or he/she could tinker around, by setting breakpoints.

4.2 Setting Breakpoints

The Charm++ programmer would need to set breakpoints in terms of entry points as entry

points to capture the true essence of control-flow in the parallel program. Entry points are

purely Charm++ entities and therefore, are not visible to the sequential debugger when the

“++debug” option is used for debugging. Thus, it is not possible to set breakpoints for entry

points using the sequential debugger. Hence it becomes essential to build in the ability to

set and remove break points in terms of entry points. In the Charm Runtime System, the

information about entry points is stored in a data structure entryTable. entryTable is

basically a vector of objects of class EntryInfo, each object representing a single entry

method or constructor. EntryInfo stores the function pointer to the “call-function” cor-

responding to the entry point. A call-function is how Charm++ actually invokes an entry

method on an object. Call functions take two parameters - the message to pass to the method,

the object to invoke the method on. Figure 4.2 portrays a simple call-function to invoke an

entry point foo::bar{fooMsg *}. Call functions are even used to invoke constructors on

new chares.

Information about any particular entry point can be referred to across processors by

their index into the entryTable. This index is referred to as the entry point’s index, often

abbreviated as “epIdx”. Each processor element has a copy of its own entryTable. The

contents of the entryTable should be consistent across processors. The debugger sets a

19

break point for a particular entry point in a Charm++ program by sending the entry point’s

name packed in a ccs message to the running program. This would cause the pre-registered

ccs handler CpdSetBreakPoint to execute.

The logic applied in setting break points is simple - The EntryInfo object corresponding

to the entry point for which a break point is to be set, is replaced with a dummy debug

EntryInfo object whose function pointer corresponds to the call-function

call freeze on break point. At the onset, this call-function saves the entry point index

of the break point and the message and object with which it was invoked. Then, it freezes

program execution by calling CpdFreeze function. The replaced EntryInfo information

is stored in a hash table which is indexed by the entry point index. When the program

continues from the break point (that is, when the ccs handler CpdContinueFromBreakPoint

is triggered) the appropriate entry method is retrieved from the hash table using the saved

entry point index. The object on which the retrieved entry point is invoked and the message

that is used as a parameter are also retrieved from the previously saved information.

The pseudocode for the handlers to set and continue from a break point is shown in

Figure 4.3. System-defined entry points are differentiated from user-defined entry points by

the option “intrinsic” passed to the translator (which creates the .def files). If the “intrinsic”

option is used during translation, the variable inCharm in an EntryInfo object is set to true

indicating that the particular entry point is system-defined.

4.3 Introspection API

The other significant part of the parallel debugging support in Charm is the introspection API

or the CpdLists interface (implemented by Orion Lawlor). The fundamental idea adopted

here is to allow the debugger to retrieve and examine the entities in the parallel set-up

using the pup framework. The CpdLists interface is used to register a list of items with

pup routines and pup the items out in a readable format (in this particular implementation,

20

breakPointEntryInfo = hash table of replaced entry points

indexed by epIdx;

lastMessage = Pointer to a message;

lastObject = Pointer to an object;

lastBreakPointIndex = stores epIdx of last break point reached;

_call_freeze_on_break_point(msg, obj)

{

lastMessage = msg;

lastObject = obj;

lastBreakPointIndex = retrieve epIdx from msg

freeze the program;

}

CpdSetBreakPoint(entryPointName)

{

num = number of entries in _entryTable

for (i = 1 to n)

{

entry = _entryTable[i];

if (entry->name = entryPointName)

{

Insert entry into breakPointEntryInfo;

_entryTable[i] = new entry info with function

pointer "_call_freeze_on_break_point";

quit for loop;

}

}

}

CpdContinueFromBreakPoint()

{

unfreeze the program;

entry = retrieve entry point info from breakPointEntryInfo with

index lastBreakPointIndex;

Invoke entry on lastObject with parameter lastMessage;

}

CpdUnFreeze()

set freezeModeFlag to false

Figure 4.3: Pseudocode to set a break point and continue from it.

21

_entryTable

_chareTable

_msgTable

_readonlyTable

_readonlyMsgs

_mainTable

_groupIDTable

CmiLocalQueue

CmiSchedQueue

Figure 4.4: Data structures in Charm++ that can be examined using CpdLists.

a C-style string is used). The list of items that can be examined are entries in the data

structures listed in Figure 4.4.

entryTable, chareTable, msgTable, readonlyTable, readonlyMsgs, mainTable

are linear lists consisting of registered entities. These lists are indexed by an index which

is identical across processors. Each of the entries in each of these lists represents an entry

method, a chare/group element/array element, a type of message, a readonly global variable,

a readonly message (once was a way to get truly variable sized messages, obsolete now) or

a mainchare’s constructor respectively. groupIDTable is a linear list of indices to access

pointers to group objects (could be Array Managers, Nodegroups or Charegroups) from the

groupTable. CmiLocalQueue is a data structure maintained at the machine layer and is a

FIFO queue containing all messages from the local processor. CsdSchedQueue is a priority

queue used to store messages from other processors.

The main component in the CpdLists interface is the abstract super class CpdListAccessor.

An instantiation of class CpdListAccessor or a typical accessor object keeps track of one

particular list, from the list of entities previously discussed. The length of the list , the path

or string to identify the accessor object and a pointer to a pup function are stored as part of

the object. All the accessor objects are stored in a hash table where the key is a string which

is the path of the object. For instance, the accessor object for the chareTable is retrieved

from the hash table using the key “charm\chare”. The registration of the accessor objects

22

cpdListTable = hash table storing accessor objects

// during Charm++ registration

// This creates an entry in the hash table cpdListTable for

// fooList

CpdListRegister(new CpdListAccessor("charm/foo", fooList.length(),

pupFoo));

.

.

CpdList_ccs_list_items_txt (msg)

{

path = retrieve from message;

accessor_object = retrieve from cpdListTable using path;

Pup out data using pup function of accessor_object;

//If path = "charm/foo", pup function used is pupFoo

}

Figure 4.5: Working of CpdLists.

happens at the beginning of the program execution in the initCharm routine. When the

entities in a particular list have to be examined, a ccs handler CpdList ccs list items txt

is invoked which retrieves the correct accessor object from the hash table (using the path

passed in to the handler) and uses the pup function of the accessor object to pup out the

entities as a C string to the debugger, which is displayed to the programmer appropriately.

Figure 4.5 outlines the working of CpdLists and shows the registration of a dummy list

fooList which is accessed using the string “charm\foo”.

A separate ccs handler CpdExamineArrayElement is written to retrieve the contents of

an array element on a processor. An accessor object is pre-registered for groupTable and

a particular array location manager could be accessed on each processor to retrieve the

data of all array elements on a processor at one shot. However, this method is not used

because the data retrieved can be quite overwhelming like in the case where each array

element stores a huge array of floating point numbers and there exists hundreds of array

elements on every processor. Therefore, the more optimal approach is to retrieve an array

element’s data one at a time, as and when asked for. If the user has implemented the function

23

CpdExamineArrayElement (msg)

{

retrieve group id and array index from msg;

retrieve appropriate array manager corresponding to group id;

array_element = got by iterating through array manager and using

retrieved array index to locate the desired

element;

array_element->pupCpdData();

}

Figure 4.6: ccs handler to examine contents of an array element.

pupCpdData(PUP::er &), this function is used to pup out data to the debugger for the user

to examine. The user can incorporate comments in the pupCpdData function to identify

variables and make the information displayed by the debugger more understandable. The

default behavior of pupCpdData is to use the pup function implemented for the array. The

working of the handler CpdExamineArrayElement is illustrated in Figure 4.6.

4.4 Attaching Sequential Debugger

Another functionality provided by the debugger is the ability to attach specified number of

individual processes in the parallel program to instances of a sequential debugger during the

execution of the program. This would allow the programmer to selectively debug on specific

processors during the course of execution. The current implementation of this functionality

is for the net-linux version of Charm++. For instance, if the parallel program is being run

on 10 processors, the programmer can choose to open gdb instances on processors 2, 3 and 4,

go about debugging, close the windows and then later on in the program execution, perform

sequential debugging using gdb on the process on processor 7. This is achieved by forking

off a child process on the desired processor which executes a script to bring up an instance

of gdb which attaches itself to the process id of the parent process which is the individual

process of the parallel program on that processor.

24

4.5 User Interface and Instrumentation

The user interface for the Parallel debugger is modelled as a CCS client and is implemented

in Java. The debugger performs the various actions like setting/removing break points, freez-

ing/unfreezing the execution, examining entities in the parallel program, attaching specific

processes to instances of a sequential debugger by sending ccs messages to the Charm Run-

time system. These messages trigger the invocation of appropriate pre-registered handlers,

which perform the required actions.

The Charm++ programmer starts the debugger Java client running the following com-

mand

> java ParDebug [[-file < charmprogramname >] [[-param ”< charmprogramparameters >”][-

pes < numberofpes >]]]

The program to be debugged and the parameters passed to the program including the num-

ber of processor elements the program should run on are passed as command-line arguments

to the debugger client. Alternatively, they can be set via a menu on the debugger GUI. This

is shown in Figure 4.7.

Once the debugger’s GUI loads the programmer triggers the program execution by click-

ing the Start button. The program starts off displaying the user and system entry points

as a list of check boxes, freezing at the onset. The user could choose to set breakpoints by

clicking on the corresponding entry points and kick off execution by clicking the Continue

Button. Figure 4.8 shows a snapshot of the debugger when a breakpoint is reached. The

program freezes when a breakpoint is reached.

Clicking the Freeze button during the execution of the program freezes execution, while

Continue button resumes execution. Quit button can be used to suspend execution at any

point of time. Entities (for instance, array elements) and their contents on any processor

25

Figure 4.7: Using the menu to set parameters for the Charm++ program

26

Figure 4.8: Parallel debugger when a break point is reached

27

can be viewed at any point in time during execution as illustrated in Figure 4.9.

Specific individual processes of the Charm++ program can be attached to instances of

gdb as shown in Figure 4.10. Like mentioned previously, the programmer can implement the

function pupCpdData(PUP::er &) for an array element and thereby control the information

displayed by the debugger by choosing the data to be displayed and by inserting appropriate

comments. An example is illustrated in Figure 4.11.

28

Figure 4.9: Freezing program execution and viewing the contents of an array element using
the Parallel Debugger

29

Figure 4.10: Parallel debugger showing instances of gdb open for the selected processor
elements

//MyArray is a chare array where each array element has a member

//variable data, which is an integer array

void MyArray::pupCpdData(PUP::er &p) {

p.comment("contents of integer array: data");

p|data;

}

Figure 4.11: A sample user implementation of pupCpdData

30

Chapter 5

Record and Replay

Record and Replay is a mechanism used to detect bugs that happen only once in a while

depending on the order in which messages are processed. The program in consideration is

first run in a record mode which produces a trace. When the program is run in replay mode

it uses a previous trace got from a record run to ensure that messages are processed in the

same order as the recorded run. The idea is to make use of a message-sequence number and

a theorem says that the serial numbers will be the same if the messages are processed in the

same order [15].

5.1 Related Work

Instant replay [1] was introduced as a mechanism to debug the asynchronous behavior of

a parallel program. In a parallel program’s execution a bug can manifest itself because of

an unusual ordering of events. The bug may not recur if the experiment is repeated under

the control of a debugger, because the debugger may alter the original ordering of events.

In such cases it would be helpful to be able to deterministically reproduce the bug. Instant

replay is not dependent on the particular form of interprocess communication used. Replay

is provided for an entire program rather than individual processes in isolation. It avoids

global synchronization of events through the use of a fully distributed protocol. There is no

centralized bottleneck and no need for synchronized clocks or a globally consistent logical

31

time.

Instant replay models all process interactions in a parallel program as operations on

shared data. This is not restrictive since all communication and synchronization primitives

can be reduced to operations on shared data. Message passing can be modelled as commu-

nication through a shared port, mailbox or memory segment. Instant replay requires that

the set of operations on each shared object have a valid serialization. A set of operations

has a valid serialization if the result of each individual operation is the same as it would be

if the operations had all been executed in some sequential order.

The idea in [1] is to use a set of process history tapes to record partial order of accesses

to objects that characterizes an execution. During the monitoring phase, a process history

tape is used to record the version number of each shared object accessed by a process; it

is modified only by the process. Upon creation, each shared object is assigned a version

number 0. Also upon creation, each process is assigned a history tape that is initially blank.

During each read or write operation on a shared object by a process, information about the

object is recorded on the process’s history tape.

Record and Replay makes debugging easier because it enables cyclic debugging. Cyclic

debugging is possible with record and replay because order of execution is repeatable. Re-

peatable execution also makes top-down interactive debugging possible.

5.2 Implementation in Charm++

The record and replay mechanism allows a user to reproduce a program’s execution. The

key idea in replay is to identify atomic events and record their order of occurrence in the

execution. The execution can be replayed by re-executing the atomic events in their recorded

order of occurrence. A replay cannot take into account spontaneous events like events which

occur periodically with no other causal events.

The first execution run or the record run is used to collect minimum trace data about

32

entry points. Since entry points are atomic events in a Charm program this information is

sufficient for replay. Subsequently, the program is replayed at which time extensive trace data

is gathered. This trace is used to replay the program execution by re-executing each entry-

point on each processor as recorded on the trace. The only information needed to replay a

Charm++ program is the order of processing of events on each processor (no information is

needed about creation, enqueue and dequeue events) An event can be uniquely identified by

a tuple consisting the following pair (i) message-sequence-id (ii) processor-id.

The trace data necessary for replay is an ordered set of such tuples where the ordering is

imposed by the order in which events occurred on that processor. Extensive tracing is not

required in this scheme. There are some unique issues for replay in the context of Charm

because it provides high-level support for dynamic load balancing, quiescence detection and

information sharing. Many of the load balancing strategies in Charm have a spontaneous

component. The strategy periodically checks the sizes of the queues on the local processor.

A replay load balancing strategy implements the known load redistribution. The behavior of

the old balancing strategy is therefore not replayed only its effect is. Since minimal tracing

is used by the replay mechanism the amount of perturbation due to tracing is reduced. The

replay mechanism is proposed as a debugging support to replay asynchronous message arrival

orders.

A new trace module is implemented in Charm for the record replay functionality. To

include this required tracing into a Charm++ program it is required to link the program

with the link option -tracemode recordreplay. For every charm message handled a sequence

number is assigned to a variable event in the envelope. By default, when an envelope is

created its member variable event is set to zero. Every time an entry method is invoked,

depending on where in the sequence of events the invocation happened (the trace module

keeps track of the sequence number) the event variable in the envelope is set appropriately.

When the program is run in record mode (achieved by running the program with a ”+record”

command line option) , a tuple <source pe, envelope size, sequence number> is written to

33

a trace file for every message processed on each of the processor element. There exists such

a trace file for every processor element. When the program is rerun using the ”+replay”

command-line option, these trace files are read to achieve the same message sequence. Before

each message is processed on a processor element, a check is made to see if the event number

of its envelope matches the expected sequence number in the last read tuple from the trace file

corresponding to that processor element. This particular implementation is not guaranteed

to work with all of the load balancing strategies.

5.3 Testing

To test the record replay implementation, a simple array hello program was used. All this

Charm++ program does is create a chare array of size 100 and call the entry method SayHi

in broadcast mode on the array. In the SayHi method, the array element prints a ”Hi”

message along with its index. After the message is printed, the array element reports back

to the main chare, by calling the entry method done of the main chare. Depending on the

order in which the array elements report back to the main chare, the program proceeds or

does not proceed successfully to completion. For a certain order of reporting back, a ”divide

by zero” operation is performed, which results in a floating point exception. This program

was run for a varying number of processor elements in the record mode using the runtime

option ”+record” several times till the exception occurred. The probability of the exception

occurring in a consecutive rerun is low, therefore making it difficult to reproduce the error

deterministically. But, when the program is run using the recorded trace produced when the

exception occurred, using the +replay runtime option, the exception reproduces itself every

time.

34

Chapter 6

Conclusions and Future Work

The parallel debugger will prove to be a valuable tool to a Charm++ programmer. It allows

one to inspect the state of the parallel program during execution. A programmer can keep

track of the control flow in the parallel program by setting break points at entry points. The

data in the array elements on each processor and the messages in the queues can be retrieved

during the running of the program. In this way, via the debugger, the programmer is provided

a means of examining the dynamic state of the program. The implemented tool also provides

the programmer a way of going about sequential debugging on selected processors on the fly.

The record and replay mechanism allows the programmer to deterministically reproduce a

program’s behavior.

The functionality of the parallel debugger can be extended such that it could be used

in conjunction with the existing performance analysis tool for Charm++, Projections [13].

There is scope for enhancement of the debugging support to make use of the huge amounts

of trace data produced by Projections. It would also be very useful to incorporate methods

to access network statistics into the existing debugging support. These are just a few of the

many possible extensions. The topic of debugging in Charm++ is a green area and there is

lots of scope for future work.

35

References

[1] Thomas J. Blanc and John M. Mellor-Crummey. Debugging parallel programs with

instant replay. IEEE Transactions on Computers, C-36(4):471–482, April 1987.

[2] J. Cunha, J. Lourenco, and T. Antao. A debugging engine for parallel and distributed

environment. In Proceedings of 1st Austrian-Hungarian Workshop on Distributed and

Parallel Systems, pages 111–118, Miskolc, Hungary, 1996.

[3] L. V. Kalé, Milind Bhandarkar, Narain Jagathesan, Sanjeev Krishnan, and Joshua

Yelon. Converse: An Interoperable Framework for Parallel Programming. In Proceedings

of the 10th International Parallel Processing Symposium, pages 212–217, April 1996.

[4] L. V. Kalé, B. Ramkumar, A. B. Sinha, and A. Gursoy. The CHARM Parallel Pro-

gramming Language and System: Part I – Description of Language Features. IEEE

Transactions on Parallel and Distributed Systems, 1994.

[5] L. V. Kalé, B. Ramkumar, A. B. Sinha, and V. A. Saletore. The CHARM Parallel

Programming Language and System: Part II – The Runtime system. IEEE Transactions

on Parallel and Distributed Systems, 1994.

[6] Laxmikant V. Kalé. The virtualization model of parallel programming : Runtime opti-

mizations and the state of art. In LACSI 2002, Albuquerque, October 2002.

[7] L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented

System Based on C++. In A. Paepcke, editor, Proceedings of OOPSLA’93, pages 91–

108. ACM Press, September 1993.

36

[8] O. Lawlor and L. V. Kalé. Supporting dynamic parallel object arrays. In Proceedings

of International Symposium on Computing in Object-oriented Parallel Environments,

Stanford, CA, Jun 2001.

[9] John May and Francine Berman. Panorama: A portable, extensible parallel debugger.

In Proceedings of ACM/ONR Workshop on Parallel and Distributed Debugging, pages

96–106, San Diego, California, 1993.

[10] John May and Francine Berman. Designing a parallel debugger for portability. In

Proceedings of the Eighth International Parallel Processing Symposium, pages 909–915,

1994.

[11] Parallel Programming Laboratory, University of Illinois, Urbana-Champaign. The

Charm++ Programming Language Manual, Version 5.0, April 1999.

[12] Parallel Programming Laboratory, University of Illinois, Urbana-Champaign. Converse

Programming Manual, Jan 1999.

[13] Parallel Programming Laboratory, University of Illinois, Urbana-Champaign. Projec-

tions Manual, April 1999.

[14] Parthasarathy Ramachandran and L. V. Kalé. Mulitlingual debugging support for data-

driven and thread-based parallel languages. Technical Report 99-04, Parallel Program-

ming Laboratory, Department of Computer Science, University of Illinois at Urbana-

Champaign, August 1999. To appear in the Proc. of 12th International Workshop on

Languages and Compilers for Parallel Computing (LCPC ’99).

[15] Amitabh Sinha. Performance Analysis of Object-based and Message-driven programs.

PhD thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1994.

37

