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Abstract

In this paper, we study the all-to-all multicast operation.
These strategies need to be different for small and large
messages. For small messages, the major issue is the mini-
mization of software overhead, where as for large messages,
the issue is network contention. Many modern large paral-
lel computers use the fat-tree interconnection topology. We
therefore analyze network contention on fat-tree networks
and develop strategies to optimize collective multicast using
known contention free communication schedules on fat-tree
networks in the design of two novel strategies. We evaluate
performance of these strategies with up to 256 nodes (1024
processors) on an alpha cluster. We present schemes that
perform well when a contiguous chunk of nodes is not avail-
able. For large messages, many of our strategies have two
times better throughput than native MPI. We also demon-
strate that the software overhead of a collective operation is
a small fraction of the total completion time in the presence
of the communication co-processor. We therefore compare
the performance of the studied strategies using both metrics
(i) Completion time, and (ii) Computation overhead.

1 Introduction

In the all-to-all multicast [22, 21, 7, 2] collective op-
eration each processor sends the same message to every
other processor in the system. MPI defines the primitives
MPI Allgather for all-to-all multicast. All-to-all multicast
is needed by many applications such as Matrix Multipli-
cation, LU-factorization and linear algebra operations [22].
Molecular dynamics applications like NAMD[17] (a well
known production level application) and computational
quantum chemistry applications like CPAIMD[20] have the
many-to-many multicast pattern, which is a close cousin of
the all-to-all multicast pattern. In many-to-many multicast
many (not all) nodes send the same message to many (not
all) other nodes. Although we restrict our study to the all-
to-all multicast problem, the strategies we develop can be

extended to optimize many-to-many multicast. We shall use
collective multicast as a generic term, that refers to both all-
to-all and many-to-many multicast operations.

Collective multicast is commonly used with both small
and large messages. For example, each processor in
NAMD [17] sends relatively short messages (about 2-4KB)
during its collective multicast operation. In CPAIMD[20],
processors send large messages (160 KB) during the all-
to-all multicast operation. However, different techniques
are needed to optimize collective multicast for small and
large messages. For small messages, the cost of the mul-
ticast is dominated by the software overhead of sending
the messages. This can be reduced by message combin-
ing. For large messages, the cost is dominated by network
contention. Network contention can be minimized by smart
sequencing of messages based on the underlying network
topology.

In this paper, we present the performance results of our
strategies on Pittsburgh Supercomputing Center’s Lemieux
[13]. Nodes on Lemieux are interconnected by QsNet[14]
from Quadrics [19]. Lemieux has over 750 Compaq ES45
nodes (with 3,000 processors) with a peak performance of
over 6TF. QsNet uses a fat-tree network topology. Fat-tree
networks, as described in detail in [12, 15, 5], are easy to
extend and have a high bisection bandwidth. Hence, they
are the preferred communication networks for many mod-
ern parallel clusters. Network contention on fat-trees has
been extensively studied in [5] for the CM5 data network.
We use this analysis to design two new all-to-all multicast
optimization strategies namely, kShift and kPrefix. The op-
timization strategies we describe are general, as they can be
applied to any fat-tree network and do not restrict the num-
ber of processors to powers of two.

Further, in this paper, we also describe additional opti-
mizations specific to QsNet. Specifically, sending messages
directly from NIC memory substantially increases the net-
work bandwidth, as it avoids DMA and PCI contention. We
use this feature in our strategies. As the performance results
in this paper show, the strategies scale to 256 nodes (1024
processors) of Lemieux with an effective bandwidth of 511



MB/s per node(255.5 MB/s each way), which is more than
twice better than Lemieux Native MPI. Our strategies also
perform well in the presence of missing nodes in the fat-tree
(i.e. when a contiguous set of nodes are not available).

In this paper, we also present Computation Overhead
as an important metric to evaluate collective communica-
tion strategies. Most related work has studied collective
communication operations from the point of view of com-
pletion time. We believe that computation overhead is an
equally important factor. Network interfaces like Elan have
a communication co-processor, which reduces main pro-
cessor participation in message management. This allows
the main processor to compute while the collective opera-
tion is in progress. Collective communication operations on
Lemieux can take tens to hundreds of milliseconds. Leaving
processors idle while the multicast is in progress can lead to
serious wastage. Hence, we define a split-phase interface
for the all-to-all multicast operation. First each processor
deposits its data and is returned a handle. The processor
can then poll on that handle while doing other computa-
tion and retrieve the data when the operation has been com-
pleted. We have implemented our strategies on top of the
Converse/Charm++ [8, 9] runtime system. MPI programs
can take advantage of this split-phase interface through the
AMPI framework [6]. We begin by first presenting a com-
munication model to describe the performance of our strate-
gies.

2 Communication Model

We use a simple model for the time to send a point to
point message, denoted as Tptp.

Tptp = α + mβ + Cm + L (1)

Here, α is the total processor and network software over-
head for sending each message, while β is the per byte net-
work transfer time. The byte here is being sent out from
main memory. The parameters L and C represent the net-
work latency and the per byte network contention respec-
tively. Further, when dealing with machine specific, and
network-interface (Elan) specific costs, we use the parame-
ter βem to represent the per byte network transfer time from
Elan memory. Parameter γ is the per byte memory copying
overhead for message combining and δ is the per byte cost
of copying data from main memory to Elan memory.

The Elan network can support a peak bandwidth of 400
Million Bytes/s (or 382MB/s) [15] each way. However,
we found that the processor-to-processor (with data be-
ing transferred from source processor memory to destina-
tion processor memory) achievable bandwidth with one way
traffic, is only 290MB/s. This is mainly due to PCI con-
tention in the ES45 Alpha server. Further, when the two

processors are simultaneously sending and receiving, this
bi-directional traffic brings the each-way bandwidth down
to 128 MB/s. We will use the term effective bandwidth to
represent the combined bi-directional bandwidth of a node
in both directions. In the above case the effective bandwidth
is 256 MB/s.

Heavy contention for the DMA by simultaneous send
and receive operations is responsible for this drop in
throughput. If the message is sent from Elan NIC [15]
memory to the destination processor’s memory, the effec-
tive bandwidth can be raised to 610MB/s (305MB/s each
way). This is because messages in one direction will not
require DMA or PCI intervention. Normally, the cost (δ) of
copying messages into NIC memory nullifies the advantage
of this optimization. In the next section we present the sce-
nario where we can take advantage of this feature of Elan.

On PSC Lemieux, our measurements show that the cost
of copying the message into the network interface (δ) is the
same as the per byte network transmission time from Elan
memory (βem). Specifically, δ ≈ βem ≈ 3.13ns/byte and
β = 7.5ns/byte (corresponding to effective bandwidths of
610MB/s and 256MB/s respectively).

3 Strategies for Short Messages

The cost of implementing a multicast by each processor
directly sending messages to all (P-1) destinations is given
by equation 2.

Tall−to−all = (P − 1)α + (P − 1)m(β + C) + L (2)

As stated in the previous section, α = 7.4µs and β =
7.5ns/byte. With short messages, this cost is dominated
by the software overhead (α) term. Message combining re-
duces the total number of messages, making each node send
fewer messages of larger size. Combining strategies route
messages along a virtual topology, in multiple phases. In
each phase, the messages received in the previous phases
are combined into one large message before being sent out
to the next set of destinations in the virtual topology. After
the final phase, each node has received every other node’s
data. With these strategies, the number of messages sent out
by each node is typically much smaller than P, thus reduc-
ing the total software overhead. We present two combining
strategies: 2-D Mesh [3, 10] and Hypercube [11]. Although
these schemes have been presented before, their adaptation
to fat-trees and Quadrics, and the performance equations are
our contributions.

3.1 2-D Mesh Strategy

In this scheme, the messages are routed along a 2-D
mesh. In the first phase of the algorithm, each node mul-
ticasts its message to all the nodes in its row. In the second

2



phase, the nodes combine all the messages they received
in the previous round and send the combined message to
the nodes in their respective columns. Thus each message
travels two hops before reaching its destination. In the first
phase, each node sends

√
P − 1 messages of size m bytes.

In the second phase, each node sends the same number of
messages but of size

√
P × m bytes. Both the above steps

are multicasts along rows and columns. Hence the messages
are copied into the network interface before being sent out,
taking advantage of the lower per-byte network transmis-
sion time βem

1.
The completion time for the multicast with mesh strat-

egy, Tmesh is shown in equation 3. Here, Cmesh and Lmesh

represent the network contention and network latency ex-
perienced by the messages. The equation also includes, (i)
memory copying overhead from message combining (the γ
terms), (ii) the cost of copying the message into the network
interface (the δ term).

Tmesh ≈ 2
√

Pα + Pm(βem + γ + Cmesh) +
√

Pmδ (3)
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Figure 1. 2-D Mesh Topology

When the number of nodes is not a perfect square, the
mesh is constructed using the next higher perfect square.
This gives rise to holes in the mesh. Figure 3.1, illustrates
our scheme for handling holes in a mesh with two holes.
The dotted arrows in Figure 3.1 show the second stage. The
role assigned to each hole is mapped uniformly to the re-
maining nodes in its column. So if node (i, j) needs to send
a message to column k and node (i, k) is a hole, it sends
that message to node (j mod (nrows−1), k) instead. Here
nrows is the number of rows in the mesh. Thus in the first
round node 12 sends messages to nodes 2 and 3. No mes-
sages are sent to a rows with no nodes in them. Dummy

1The Elan network interface has about 64 MB of SDRAM memory.
This should be sufficient for the Mesh strategy (which sends messages of
size

√
P × m bytes) for messages up to 4 MB on 256 nodes. Larger

messages would have to be packetized, but with minimal additional cost
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Figure 2. Hypercube Topology

messages are used in case nodes have no data to send. By
analysis similar to that in [10], the presence of holes does
not affect equation 3.

3.2 Hypercube

The hypercube (Dimensional Exchange) scheme con-
sists of log2(P ) stages. In each stage, the neighboring
nodes in one dimension exchange messages. In the next
stage, these messages are combined and exchanged between
the neighbors in the next dimension. This continues un-
til all the dimensions are exhausted. So in the first phase,
each node sends its multicast message of size m bytes to its
neighbor. In the second phase, each node combines the mes-
sage it received in the previous round with its message and
sends 2m bytes to its neighbor. In the third phase the mes-
sages from the previous rounds are combined with the local
message leading to a message size of (m+m+2m = 4m).
In round i the message size is 2i−1m. The overall cost is
given by the equation 4.

Thcube = log2Pα + (P − 1)m(β + γ + Chcube) (4)

In the case of an imperfect hypercube (when the num-
ber of nodes is not a power of 2), the next lower hypercube
is formed. In the first step, the nodes that are outside this
smaller hypercube send their message to their correspond-
ing neighbor in the hypercube. For example, in Figure 3.1,
node 8 sends it messages to node 0 in the first stage. Next,
dimensional exchange of messages happens in the smaller
hypercube. All the messages for node 8 are sent to node 0.
In the final stage, node 0 combines all the messages for node
8 and sends them to node 8. If there are holes, many nodes
will have twice the data to send. The cost of hypercube with
holes is shown in equation 5. Here λh = 1 if there are holes
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and 0 otherwise.

Thcube = (log2P +λh)α+(1+λh)(P −1)m(β +Chcube)
(5)

Notice that in the hypercube strategy, a distinct message
is exchanged in each phase. Hence we cannot take advan-
tage of the lower transmission overhead βem, which de-
pends on the same message being sent several times. How-
ever, we can use a hybrid approach with hypercube ex-
change for log2P − ζ stages and then direct exchange on
ζ-dimension sub cubes. For ζ = 2, the number of messages
would only increase by 1, and for ζ = 3 it would increase
by 4. However the per byte term would be reduced substan-
tially, as most of the data is sent in the last few stages. We
will be describing the performance of this optimization in
the next section. The new cost equation is given by equa-
tion 6. For simplicity we have not included the holes term
in this equation. Equation 6 has three parts to it, (i) hyper-
cube cost for log2P − ζ stages, (ii) direct cost within the
ζ-subcube with messages of size (P/2ζ)m bytes, (iii) cost
of copying this message into the network interface. The op-
timal value of ζ depends on the number of nodes P and
the size of the message m. The term P ′ represents P/2ζ in
equation 6.

Thcube = log2Pα+P ′m(β+γ+δ)+(P−P ′)mβem (6)

3.3 Performance

Figures 3(a) and 3(b) show the short message per-
formance (completion time) of the strategies (combining
strategies and Lemieux MPI), on 64 and 256 nodes re-
spectively. The mesh strategy presented in these graphs
(Mesh EM) sends all the messages from Elan memory
(EM). Hypercube EM, shown in the plots, directly sends
messages from Elan memory in the last three stages, i.e.
parameter ζ = 3. Observe that, MPI does better than our
strategies for very short messages, because of scheduling
and timer overheads in the Charm runtime system. But for
messages larger than 2KB on 64 nodes and 400 bytes on
256 nodes, Hypercube EM starts doing better.

Figure 4(a) shows the advantage of copying the message
into Elan memory, on 256 nodes. Here, Mesh MM shows
the performance of the mesh strategy sending all its mes-
sages from main memory. For Hypercube MM, there are
no direct stages, i.e. ζ = 0. Sending messages from Elan
memory (EM) substantially improves the performance of
the mesh strategy on 256 nodes. Hypercube also benefits
from direct stages that send messages from Elan memory.

Figure 4(b) shows the computation overhead of Hyper-
cube and Mesh strategies. Notice that the computation over-
head is much less than the completion time. This suggests
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Figure 3. Performance for short messages

the need for an asynchronous split-phase interface, as pro-
vided by our framework.

4 Direct Strategies

Direct strategies do not combine messages. These strate-
gies are designed to optimize all-to-all multicast for large
messages. Network contention is the main limiting factor
here, so these strategies need to be topology specific. In
this section, we first present an analysis on fat-tree networks
(used in QsNet) from literature [5] and describe contention
free communication schedules on fat-tree networks. The di-
rect strategies that we present next take advantage of such
communication schedules.
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Figure 4. All-to-all Multicast on 256 nodes

4.1 Fat Tree Networks

QsNet uses a fat-tree (more specifically, 4-ary n-tree)
interconnection topology. The graph k-ary n-tree has been
defined in [16]. It is a type of fat-tree which can be defined
as follows:

Definition: A k-ary n-tree is a fat-tree that is composed
of two types of vertices: P = kn processing nodes and
nkn−1 switches. The switches are organized hierarchically
with n levels that have kn−1 switches at each level. Each
node can be represented by the n-tuple {0, 1, ..., k − 1}n,
while each switch is defined as an ordered pair 〈w, l〉 where
w ε {0, 1, ..., k − 1}n−1 and l ε {0, 1, ..., n − 1}. Here the
parameter l represents the level of each switch and w iden-
tifies a switch at that level. The root switches are at level
l = n − 1, while the switches connected to the processing
nodes are at level 0.

Processing Nodes 

Level 1

Level 0

Level 2 <0,,0,2> <0,1,2> <0,2,2> <0,3,2>

<0,,0,1> <0,1,1> <0,2,1> <0,3,1>

<0,0,0> <0,1,0> <0,2,0> <03,0>

<0,0,0>
<0,0,1><0,0,2>

<0,0,3> <0,30>
<0,3,1><0,3,2>

<0,3,3>

From <3,3,0> To <1,0,0>

Figure 5. First Quarter of a 4-ary 3-tree

• Two switches, 〈w0, w1, ..., wn−2, l〉 and
〈w′

0, w
′
1, ..., w

′
n−2, l

′〉 are connected by an edge
iff l′ = l + 1 and wi = wi′ for all i 6= n − 2 − l

• There is an edge between the switch
〈w0, w1, ..., wn−2, 0〉 and the processing node
{p0, p1, ..., pn−1} iff

wi = pi for all i ε {0, 1, ..., n− 2}

The bisection bandwidth of fat-trees is O(kn) or O(P ).
Figures 4.1 shows the first quarter of a 64 node fat-tree,
with nodes and switches labeled using the above defini-
tion. The switches 〈w0, w1, 2〉 are the root nodes while the
switches 〈w0, w1, 0〉 are connected to the processing nodes
〈w0, w1, i〉.

Routing on a fat-tree has two phases: (i) Ascending
phase: here the message is routed to one of the common
ancestors of the source and the destination, (ii) Descend-
ing phase: here the message is routed through a fixed path
from the common ancestor to the destination node. Network
contention happens mainly in the downward descending
phase[5]. However, many communication schedules on fat-
trees are congestion free, i.e. they have no contention dur-
ing the downward descending phase. The following lem-
mas present congestion free permutations, where each node
sends a message to a distinct destination node. Proofs of
these Lemmas have been presented in detail in [5]. We only
briefly restate the Lemmas and the outlines of the proofs
here.

Lemma 1 Cyclic shift by 1, where. each processor Pi

sends a message to the processor P(i+1) mod P , is conges-
tion free.

The proof is straightforward. Only 1/4th of the traffic at
the lowest level will go up to the next level and the rest will
remain at the lowest level. The traffic that goes up will never
compete for the same output link at any level of switches.
Figure 4.1 also shows the congestion free schedule of the
cyclic-shift-by-1 operation on a 64 node fat-tree.
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Lemma 2 All quarter permutations that preserve the order
of messages within a quarter are congestion free.

In a quarter permutation, all messages from a source
quarter go to the same destination quarter. The destination
quarter for each quarter is also distinct. For example, Q1,
Q2, Q3, Q4 sending messages to Q3, Q4, Q1, Q2 is a quar-
ter permutation. In a quarter permutation, all messages go
to the top of the fat tree. At the topmost level switches, each
incoming packet is destined to a different quarter and hence
a different output port. So, there will be no contention at the
topmost level switches.

Message order is preserved if processor Pi,l in quarter
Qi only sends a messages to the corresponding processor
Pj,l in quarter Qj . In this scenario the message from Pi,l at
the topmost switch will use the path used by the message
from Pj,l (or a translated path) to the topmost switch, hence
there will be no network congestion. In fact [5] describes
shuffle and exchange quarter permutations that are all
congestion free.

Definition: A permutation is said to map a tree to itself
when hierarchical groupings are preserved: siblings remain
siblings, first cousins remain first cousins, kth cousins re-
main kth cousins.

Lemma 3 If a permutation maps a fat-tree into itself it is
congestion free.

This is the generalization of Lemma 2 where at each
level of switches the traffic is a quarter permutation pre-
serving the order of messages. So it is congestion free. The
following Lemmas present communication schedules that
map the fat-tree into itself. Hence they are also congestion
free.

Lemma 4 Hypercube dimension exchange is congestion
free.

Lemma 5 Prefix-Send, where each processor Pi in stage j
sends a message to the processor Pi⊕j , is congestion free
iff the total number of processors P is a power of two.

Lemma 6 Cyclic shift by k = a∗4j (i.e. processor Pi sends
a message to either of the processors Pi±k), is congestion
free iff a=1,2,3 and k ≤ P .

The permutations Hypercube and Prefix-Send require
that the number of processors P, is a power of two. The
communication pattern cyclic-shift-by-k only requires that
the number of nodes and the start node be multiples of k.

Since the performance of these permutations is important
for their use as steps of our multicast strategies, we analyzed
them empirically. Figures 6(a) and 6(b) show the perfor-
mance of the cyclic-shift and the prefix-send permutations
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Figure 6. Effective Bandwidth(MB/s) vs k

on 64 and 256 nodes of Lemieux. In both permutations, in
the kth step each node Pi sends a message to its neighbor
at distance k. For cyclic shift this neighbor is P(i+k) mod P ,
while it is Pi⊕k for prefix-send. In the figures, the x-axis
shows the distance k and the y-axis displays the effective
bandwidth. The bandwidth for prefix-send is more stable
than cyclic shift. Observe that for k > 16 the bandwidth
of prefix-send drops from 610 MB/s to 534 MB/s and for
k > 64 it drops to 470 MB/s. Large wire/switch delays
to far away nodes [4] is responsible for this loss of perfor-
mance.

In the figures, observe that the peaks for cyclic shift oc-
cur only at the values of k given by Lemma 6. For other
values of k network contention impairs throughput. On
64 nodes, the effective bandwidth at the peaks in the plots
varies between 560 and 580 MB/s. However, on 256 nodes
the peak bandwidth drops and varies between 460 and 485
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MB/s. This is because in the cyclic-shift-by-k operation
nodes at the boundaries send messages to distant nodes, re-
stricting the network throughput at at the peaks. Again wire
and switch delays are responsible for this loss of network
throughput.

Figures 6(a) and 6(b) also show the performance of the
cyclic-shift-by-k permutation with messages sent from main
memory. DMA and PCI contention bring the effective
bandwidth down to a steady 240MB/s. Observe that net-
work contention makes no difference to this bandwidth, as
the node bandwidth here is much lower than the network ca-
pacity. This shows the usefulness of sending messages from
NIC memory, as node bandwidth is more than doubled.

The analysis presented so far brings out three major per-
formance bottlenecks on Lemieux, (i) Network contention,
(ii) Wire/Switch delays to distant nodes, (iii) Low network
bandwidth for messages sent from main memory.

Our direct multicast strategies handle each of these three
issues. Network contention can be avoided by using prefix-
send and cyclic-shift permutations. Collective multicast can
implemented by P-1 such permutations. Wire/switch de-
lays are addressed by the kPrefix strategy, which minimizes
data exchange with far away nodes, enabling it to scale to
256 nodes. Finally, our direct strategies copy messages into
the network interface and send it from there with the lower
transmission time βem. We now describe four direct strate-
gies, (i) Ring, (ii) Prefix-Send (iii) kShift, and (iv) kPrefix.

4.2 Ring Strategy

In this strategy, messages are sent along a ring formed by
all the nodes in the system. In all stages of the ring strategy,
on receiving a message node p forwards that message to
its neighbor ((p + 1) mod P ) in the ring. This strategy is
the same as cyclic-shift-by-1 operation, repeated P-1 times.
So by Lemma 1 it is congestion free. The cost of the ring
strategy is given by

Tring = (P − 1)(α + mβ) + Lring (7)

Even though the ring strategy is congestion free it can-
not take advantage of lower network transmission time βem.
This is because in each iteration every node sends a different
message.

4.3 Prefix-Send Strategy

In this strategy each node exchanges its message with its
prefix neighbor p ⊕ i, in the ith step. Here, the messages to
all neighbors is send from Elan memory. Equation 8 shows
the performance of the prefix-send strategy. The cost of
copying the message into Elan memory is also included.

TPrefix = (P − 1)(α + mβem) + mδ + LPrefix (8)

From Lemma 5, the prefix-send strategy is congestion
free if P is a power of 2. Prefix-Send strategy has two main
disadvantages, (i) it forces the number of nodes P to be a
power of 2, (ii) it sends data to distant nodes. As mentioned
earlier, wire and switch delays would limit the throughput
of the prefix-send strategy. The kPrefix strategy has been
designed to address both these problems.

4.4 kPrefix Strategy

The kPrefix strategy is a hybrid of the ring and the prefix-
send strategies. Here, k is a power of two and P is a multiple
of k. We divide the fat-tree into partitions of size k. Prefix
send is used to send multicast messages within the partition,
while ring strategy is used to exchange messages between
neighbor partitions. Each node in the partition is involved
in a different ring across all the partitions.

In the first k−1 phases, each node exchanges its message
with its k − 1 prefix neighbors within the partition. So, in
phase i (where 0 ≤ i ≤ k− 1) node p exchanges a message
with the node p ⊕ (i + 1). In the kth phase, node p sends a
message to the node (p+k) mod P forming the ring across
partitions.

In the next iteration, the message from node p − k (in
the previous iteration) is multicast to the same k neighbors.
This is repeated P/k times until all the messages have been
exchanged. Moreover, multicast to k neighbors is imple-
mented by first copying the message into the network inter-
face and sending it from there.

By Lemma 5 the first k − 1 phases are congestion free.
Since k is a power of two, by Lemma 6 the last phase is also
congestion free. Hence, kPrefix is congestion free. The cost
of the kPrefix strategy is given by equation 9.

TkPrefix = (P − 1)(α + mβem) + (P/k)mδ + LkPrefix

(9)
In k−1 out of k phases of this strategy, messages are sent

to nearby nodes (at most k away). This makes the kPrefix
strategy have a high throughput and scale to a large number
of nodes.

4.5 kShift Strategy

Both prefix-send and kPrefix are very sensitive to miss-
ing nodes (holes) in the system. On Lemieux, it is often
hard to find contiguous nodes. Moreover, the Elan hard-
ware skips these holes, while assigning virtual processor
ids to the programs running on the nodes, confusing the
optimization strategies and their performance drops. We
now describe the kShift strategy which performs better in
the presence of holes in the system.

The kShift strategy takes advantage of Lemma 6. In
kShift strategy each node p sends messages to k nodes {(p−
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Figure 7. kShift Strategy

d(k−1)/2e, ..., p−2, p−1, p+1, p+2, ..., p+b(k−1)/2c),
p + k}. Each message that node p gets from node p − k,
can be copied into its NIC before it is sent to the k neigh-
bors. This is repeated for P/k iterations to complete the
collective operation.

For k = {1, 2, 3, 4, 8} we get a contention free sched-
ule if P is a multiple of k. Other values of k will have
contention in some or all stages of the strategy. Figure 7
shows the kShift communication schedule. The cost of
kShift strategy is shown by the following equation.

TkShift = (P−1)(α+mβem)+(P/k)mδ+LkShift (10)

The equation also includes the cost of copying the mes-
sage into the Elan NIC. Due to this additional overhead,
larger values of k would have a better performance. So we
use k = 8 in all our performance runs.

In the kShift strategy, most messages are sent to succes-
sive nodes. So having a few non-contiguous nodes, results
in network contention only in some (not all) phases of the
strategy.

4.6 Performance

The performance results of the direct strategies are
shown in Figures 8(a) and 8(b). Our results (not shown) in-
dicate that combining strategies do better than direct strate-
gies for messages smaller than 8KB. Therefore, we present
performance data for direct strategies with message sizes
greater than 8KB. The kPrefix strategy has the best perfor-
mance. For messages larger than 40KB, kPrefix performs
twice better than Lemieux MPI. The ring strategy, which
only sends messages from main memory, has a performance
very close to that of MPI.

To keep the nodes synchronized during the collective
multicast operation, we have inserted global barriers in our
direct strategies after every message is sent. However, these
barriers make the computation overhead the same as the
completion time. But, kShift and kPrefix can be altered to
perform barriers after k messages have been sent and re-
ceived. The altered strategies return control to the Charm++
scheduler after sending k messages. The scheduler can
schedule useful computation until k messages have been re-
ceived from the node’s neighbors. Control is returned to the
strategy, which first performs a barrier and then executes its
next step. The performance of the altered kPrefix strategy is
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Figure 8. All-to-All with large messages

shown by kprefix-lb in figures 9(a) and 9(b). Here lb repre-
sents less barriers. This modification causes a drop in per-
formance, because nodes are not completely synchronized
any more. But the computation overhead is improved a lot.
On 64 nodes, the performance of kprefix-lb is comparable
to that of kPrefix. However on 128 nodes this performance
lower than expected and we are investigating it.

Table 1 shows the bandwidth of the collective multicast
operation for 256 KB messages. In the absence of miss-
ing nodes kPrefix scales best among all the strategies, with
an effective bandwidth of 511MB/s on 256 nodes. As men-
tioned earlier wire and switch delays to distant nodes results
in kShift and prefix-send not performing as well as kPre-
fix. But in the presence of missing nodes kShift performs
best. This is because missing nodes cause only some (not
all) phases of the kShift strategy to have congestion, result-
ing in better performance. On Lemieux, a large number of
contiguous nodes are often hard to find. The kShift strategy
can be used in such a scenario.
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Figure 9. CPU Overhead vs Completion Time

5 Related Work

All-to-all multicast has been extensively studied in litera-
ture. Much of the related work has been specific to architec-
tures. All-to-all multicast on 2d Meshes and Tori has been
studied in [22, 21] and cluster of workstations in [7]. The
LS strategy presented in [7] is best suited for small clusters
of work stations. This paper also presents the ring algorithm
for multicast which also used by us in [1]. General mecha-
nisms for all-to-all multicasts are presented in [2]. The algo-
rithms presented in this paper could lead to bottlenecks on
the nodes which are going to become experts as most of the
other nodes could be sending messages to this node at the
same time. Collective communication on the CM5 network
is presented in [18], but the paper mainly deals with collec-
tive personalized communication. The Mesh and hypercube
strategies (without analysis of holes) have been presented in
[3, 11].

Contention free permutations on fat-tree networks and

Nodes NativeMPI kShift kPrefix PrefixSnd
64 225 507 531 520

128 198 432 519 428
144 187 433 521 -
192 - 416 516 -
256 190 405 511 429

128 (1 hole) 143 392 338 316
128 (2 hole) 112 399 373 -
240 (1 hole) 138 394 346 -

Table 1. Effective bandwidth (MB/s/node)

are also presented in [16, 15]. Prefix send is presented in
[5], as a contention free solution for all-to-all personalized
communication. The analysis presented in [5] requires that
the entire fat tree is available for the application, forcing P
to be a power of 2. In a large machine like Lemieux, several
nodes are often down and powers of two nodes may not be
available. Hence such restrictions may be hard to meet.

In contrast, our all-to-all multicast strategies do not re-
strict the number of nodes to be powers of two or perfect
squares. We also present two new strategies kPrefix and
kShift to optimize collective multicast on fat-tree networks.
Our strategies take advantage of the higher bandwidth avail-
able by sending messages from Elan memory. We also an-
alyze collective communication from the point of view for
completion time and computation overhead.

6 Summary and Future Work

We present optimization strategies for both small and
large messages. We use Mesh and Hypercube combining
strategies to optimize all-to-all multicast for short messages.
These strategies use virtual topologies and can be applied
to any network. We evaluate their performance on fat-tree
networks, by equations and experiments. We then present
contention free lemmas for fat-tree networks from litera-
ture. The direct strategies presented in this paper, optimize
collective multicast for large messages by taking advan-
tage of contention free permutations. We also present two
new strategies kPrefix and kShift. These direct strategies
can be applied to any fat-tree network. The strategy kShift
has good performance even with missing (non-contiguous)
nodes present in the fat-tree. As nodes often go down in
large production systems (which leads to non-contiguous
nodes), this is a very desirable feature.

We also optimize the direct and combining strategies in
the context of Quadrics QsNet. We first present a perfor-
mance evaluation of QsNet. The network bandwidth from
Elan memory is much more than the bandwidth from main
memory. We quantify the affects of network contention on
system throughput, showing the utility of congestion free
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permutations. Moreover, bandwidth to far-away nodes is
lower than bandwidth to nearby nodes. Our strategies take
advantage of these QsNet optimizations. They copy the
messages into Elan SDRAM buffers and send the messages
from there, leading to a significant performance improve-
ment. The hypercube strategy is actually a hybrid as it sends
messages directly in the last 3 stages, which lets it send mes-
sages from Elan memory. Mesh, prefix send, kPrefix and
kShift also send messages from Elan memory. As an ad-
ditional optimization for QsNet, the kPrefix strategy min-
imizes message sends to far-away nodes. Hence, it scales
well to 256 nodes with an effective per-node bandwidth of
511 MB/s. This corresponds to 64GB/s of data being sent
out on the network, which is 80% of the achievable bisec-
tion bandwidth of a 256 node QsNet fat-tree.

Another point we made is that the time that the CPU
has to spend on the collective operation (computation over-
head), is much lower than the completion time of the oper-
ation. So, if the application can take advantage of the split-
phase asynchronous interface provided by our framework,
(and do useful computation while the multicast completes),
it will gain substantially over a synchronous interface such
as that provided by MPI. Moreover, the optimal strategy in
such a context may be different. For example, kprefix-lb
may be a better choice over kPrefix, if the application can
compute while the collective multicast is in progress.

The above conclusions emphasize another theme in our
research: the runtime system must be smart enough to ob-
serve the application behavior, and for the same interface,
substitute the most appropriate strategy that the context in-
dicates. We are engaged in development of such a learning
system in the Charm++ framework.

Moreover, on a future machine such as IBM’s Blue
Gene/C, the physical interconnect is a 3D grid. Hence there
will be 6 ports out of a node which is larger than the fat-
tree. But the bisection bandwidth is limited. Evaluation of
existing strategies, as well as development of new strategies
in this context is necessary.
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