
Scaling Molecular Dynamics to 3000 Processors with
Projections: A Performance Analysis Case Study

Laxmikant V. Kaĺe, Sameer Kumar, Gengbin Zheng, Chee Wai Lee
{kale,skumar2,gzheng,cheelee }@cs.uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract. Some of the most challenging applications to parallelize scalably are
the ones that present a relatively small amount of computation per iteration.
Multiple interacting performance challenges must be identified and solved to
attain high parallel efficiency in such cases. We present a case study involving
NAMD, a parallel molecular dynamics application, and efforts to scale it to run
on 3000 processors with Tera-FLOPS level performance. NAMD is implemented
in Charm++, and the performance analysis was carried out using “projections”,
the performance visualization/analysis tool associated with Charm++. We will
showcase a series of optimizations facilitated by projections. The resultant per-
formance of NAMD led to a Gordon Bell award at SC2002.

1 Introduction

How does one understand and optimize performance of complex applications running
on very large parallel machines? The complexity of application means that multiple
competing and interacting factors are responsible for its performance behavior. These
factors often mask each other. Further, different factors may dominate as the number of
processors used changes. Therefore, performance problems that manifest on the largest
machine configuration cannot be debugged on smaller configurations — one must make
most of the few runs one can get on the large configuration.

The approach we have pursued for this problem is based on application-level vi-
sual and analytical performance feedback. This is facilitated further by use of Charm++
[KK96] and more recently, Adaptive MPI [BKdSH01] which enables MPI programs to
use the features of Charm++. The language runtime (Section 2), is capable of automat-
ically recording substantial performance information at a level that makes sense to the
application programmer.

We will illustrate this approach via a performance optimization case study. The ap-
plication we have chosen is NAMD, a production-quality parallel molecular dynamics
program developed using Charm++, and in routine use by biophysicists. The bench-
mark we describe runs each timestep in 25 seconds on a single processor of the PSC
Lemieux machine, which consists of 3,000 processors! Given the amount of coordina-
tion and communication that must be done in each time-step, one can see the perfor-
mance challenges involved in completing each timestep in 12 msecs, a result we have
achieved.



We will first introduce Charm++ and Projections, the performance analysis tool as-
sociated with Charm++. We will then describe the parallel structure of NAMD. Utility
of projections, and the performance optimization methodology it engenders is described
via a series of examples. Each example shows how a problem is identified (and opti-
mizations suggested) using projections, and the effect of resultant optimizations.

2 Charm++ and Projections

Virtualization is the driving force behind Charm++. The basic idea in virtualization is to
let the programmer divide the program into a large number of parts independent of the
number of processors. The parts may be objects, for example. The programmer does
not think of processors explicitly (nor refer to processors in their programs). Instead
they program only in terms of the interaction between these virtual entities. Under the
hood, the Run Time System (RTS) is aware of processors and maps these virtual proces-
sors (VPs) to real processors, and remap them whenever necessary. Charm++ supports
asynchronous method invocations, reductions and broadcasts which work correctly and
efficiently in the presence of dynamic migrations of objects among processors. It uses
the remapping capability to do automatic load balancing.

2.1 Performance Analysis Tools and Techniques in Projections

Projections is a performance analysis subsystem associated with the Charm++. It con-
sists of an automatic instrumentation and tracing system, and an interactive graphic
analysis system.

Efficient Automatic Tracing Since Charm is a message driven system, tracing can be
fully automated. Specifically, the RTS knows when it is about to schedule the execution
of a particular method of a particular object (in response to a message being picked up
from the scheduler’s queue).

Users can start and stop instrumentation during specific phases of the program. Dif-
ferent tracing modules can register themselves to the RTS via callbacks. The overhead
on the application when NOT tracing is that of an if statement per event (which is typi-
cally associated with a message: so not much overhead in comparison). Even this over-
head can be eliminated in production runs by linking the program with an optimized
version of the RTS.

Unlike MPI, in Charm++ we can retrieve the idle time from the RTS. In MPI when
one is waiting at a barrier or a recv, all the time spent in that gets called as commu-
nication overhead. However this often includes idle time, because another processor
hasn’t arrived at the barrier (or hasn’t sent the message). Charm RTS can cleanly sepa-
rate communication overhead from such idle time. This prevents users from erroneous
conclusions that the performance is low due to “the slow barrier operations”, whereas
it may be due to load imbalances.

Two important tracing modules arelog andsummary. In the log mode each event is
recorded in full detail (including timestamp) in an internal buffer.



Thesummarymodule reduces the size of output files and memory overhead. It pro-
duces (in the default mode) a few lines of output data per processor. For each entry-
method it records standard profiling information such as total (max and average) time
spent in it and the number of calls to it. It uses an adaptive strategy to limit the size
of time-dependent data. This data is recorded in bins corresponding to intervals of size
1ms by default. If the number of intervals exceeds a threshold then the bin-size is in-
creased to shrink the data into fewer bins. This way the size of recorded data is kept
bounded.

Analysis and Visualization The visualization system supports multiple views: Agraph
view shows processor utilization as a function of time (using pre-set or user-specified
bins of intervals) for a specified set of processors. One can also turn on a display of
specific message types, to see when each phase of the computation started, and how
dispersed over time its execution was. One of the simplest uses of this view is to iden-
tify the interval of times for a more detailed study.

Theprofile view shows a stacked column bar for each selected processor, for a se-
lected time interval. The time spent by each processor in various activities is shown
within each bar. This view clearly separates idle time and communication overhead.
This is one of the most useful “summarizing” views in projections. One can identify
overloaded processors, unexpected time-spent in specific methods, or high communi-
cation overhead from this.

The animation view shows time-varying behavior across processors, which can be
arranged in multiple topologies (2D grid is most popular). Although this view is initially
interesting, and can provide a “Gestalt” impression for the performance behavior, we
find it to be not as useful as other static views, which one can stare at for insights..

The above views can be supported with both summary or log data. The timeline
view, which is supported with the log data only, is essentially similar to other timeline
tools such as Upshot, and Paragraph [HE91]. It is a highly sophisticated view which
presents additional detailed information about events by simple mouse clicks.

3 Overview of NAMD

NAMD is a molecular dynamics program designed for high performance simulation
of large biomolecular systems [PZKK02]. Each simulated timestep involves computing
forces on each atom, and “integrating” them to update their positions. The forces are
due to bonds, and electrostatic forces between atoms within a cut-off radius.

NAMD 2 is parallelized using Charm++ via a novel combination of force and spatial
decomposition to generate enough parallelism for parallel machines with a large num-
ber of processors. Atoms are partitioned into cubes whose dimensions are slightly larger
than the cutoff radius. For each pair of neighboring cubes, we assign a non-bonded force
computation object, which can be independently mapped to any processor. The number
of such objects is therefore 14 times (26/2 + 1 self-interaction) the number of cubes.

The cubes described above are represented in NAMD 2 by objects calledhome
patches. Each home patch is responsible for distributing coordinate data, retrieving
forces, and integrating the equations of motion for all of the atoms in the cube of space



owned by the patch. The forces used by the patches are computed by a variety ofcom-
pute objects. There are several varieties of compute objects, responsible for computing
the different types of forces (bond, electrostatic, constraint, etc.). On a given processor,
there may be multiple “compute objects” that all need the coordinates from the same
home patch. To eliminate duplication of communication, a “proxy” of the home patch
is created on every processor where its coordinates are needed. The parallel structure of
NAMD is shown in Fig. 1.

Reductions
Asynchronous

Compute Objects
Angle

Transposes

PME

Compute Objects
Pairwise

Patches : Integration

Patches : Integration

Point to Point
Multicast

Point to Point

Fig. 1.Parallel structure of NAMD

NAMD employs Charm++’s measurement-based load balancing. When a simula-
tion begins, patches are distributed according to a recursive coordinate bisection scheme,
so that each processor receives a number of neighboring patches. All compute objects
are then distributed to a processor owning at least one home patch. The framework mea-
sures the execution time of each compute object (the object loads), and records other
(non-migratable) patch work as “background load.” After the simulation runs for sev-
eral time-steps (typically several seconds to several minutes), the program suspends the
simulation to trigger the initial load balancing. The strategy retrieves the object times
and background load from the framework, computes an improved load distribution, and
redistributes the migratable compute objects.

The initial load balancer is aggressive, starting from the set of required proxies and
assigning compute objects in order from larger to smaller, avoiding the need to create
new proxies unless necessary. Once a good balance is achieved, atom migration changes
very slowly. Another load balance is only needed after several thousand steps.

4 Performance Analysis and Optimizations

We will present the performance optimizations we carried out with the help of Projec-
tions in a series of examples. The first two examples involve runs on the ASCI Red
machine, while the rest are on PSC Lemieux.

Grainsize Analysis: The benchmark application we used on ASCI Red machine was
a 92,000 atom simulation, which took 57 seconds on one processor. Although it scaled
reasonable well for few hundred processors, initial performance improvements stalled



beyond 1,000 processors. One of the analysis using projections logs we performed iden-
tified a cause. Most of the computation time was spent in force-computation objects.
However, as shown in Figure 2, the execution time of computational objects was not
uniform: it ranged from 1 to 41 msecs. The variation itself is not a problem (after all,
Charm++’s load balancers are expected to handle that). However, having single objects
with execution time of 40+ msecs, in a computation that should ideally run in 28 msecs
on 2000 processors was clearly infeasible! This observation, and especially the bimodal
distribution of execution times, led us to examine the set of computational objects. We
found the culprits to be those objects that correspond to electrostatic force computations
between cubes that have a common face. If cubes touch only at corners, only a small
fraction of atom-pairs will be within the cut-off distance and need to be evaluated. In
contrast, those touching at faces have most within-cutoff pairs. Splitting these objects
into multiple pieces led to a much improved grainsize distribution as shown in Fig. 2b.

0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

N
um

be
r 

of
 c

om
pu

te
s

Grainsize (ms)

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21 23 25

N
um

be
r 

of
 c

om
pu

te
s

Grainsize (ms)

Fig. 2.Grainsize Distribution on ASCI Red

Message Packing Overhead and Multicast:Projections timeline is a very useful tool
- it can easily tell what a parallel program is doing by showing the recorded events along
the time axis. From a timeline view, one can easily identify what is bad or unexpected
and try to optimize it. One of the analysis using projections logs in timeline tool we did
for NAMD exemplified this.

Fig. 3 shows a timeline view of one 1024 processors run. The circled event shows
the integration phase in NAMD. During the integration phase, each patch combines
all incoming forces and calculates the new atom positions, etc. At end of integration,
the patch sends the updated atom information to all the computes whose computation
depends on it via a multicast. In timeline, the white little ticks at the bottom of the inte-
gration event show the message sending events. From Fig. 3, we observed the unusual
long time spent in the multicast. The implementation of multicast in Charm++ was not
efficient, it treated multicast as individual sends and each send paid the overhead of
message copying and allocation. After reimplementing the multicast in Charm++, to
avoid this overhead the integration time is greatly shortened as shown in the Fig. 3.



Fig. 3.Effect of Multicast Optimization on Integration Overhead

Fig. 4.Processor Utilization against Time on (a) 128 (b) 1024 processors

Load Balancing: Dynamic load balancing was an important performance challenge
for this application. The distribution of atoms over space is relatively non-uniform, and
(as seen in the grainsize analysis above) the computational work is distributed quite non-
uniformly among the objects. We used a measurement-based load balancing framework,
which supports runtime load and communication tracing. The RTS admits different
strategies (even during a single run) as plug-ins, which use the trace data. We used a
specific greedy strategy[KSB+99]. For a 128-processor run, Projections visualization
of the utilization graph (Fig. 4(a) ) confirmed that the load balancer worked very well:
Prior to load balancing (at 82 seconds) relatively bad load imbalance led to utilization
averaging to 65-70% in each cycle. However after load balancing, the next 16 steps ran
at over 95% utilization.

However, when the same strategy was used on 1024 processors, the results were not
as satisfying (Fig. 4 (a)). In particular, (via a profile view not shown here) it became
clear that the load on many processors was substantially different than what the load
balancer had predicted. Since the greedy strategy used ignored existing placements of
objects entirely (in order to create an unconstrained close-to-optimal mapping), it was
surmised that the assumptions about background load (due to communication, for ex-



Fig. 5.Processor Utilization for each processor after (a) greedy load balancing and (b) refining

ample) as well as cache performance were substantially different in the new context
after the massive object migration induced by load balancer. Since the new mapping
was expected to be close to optimal, we didn’t want to discard it. Instead, we added
another load balancing phase immediately after the greedy reallocation, which used a
simpler “refinement” strategy: objects were moved only from the processors that were
well above (say 5%) the average load. This ensured that the overall performance con-
text (and communication behavior) was not perturbed significantly after refinement, and
so the load-balancer predictions were in line with what happened. In Fig. 4(b), initial
greedy balancer works from 157 through 160 seconds, leading to some increase in aver-
age utilization. Further, after the refinement strategy finished (within about .7 seconds)
at around 161.6 seconds, we can see that utilization is significantly improved. Another
view in Projections (Fig. 5), showing utilization as a function of processors for the time
intervals before and after refinement, shows this effect clearly.

Note that due to some quirks in the background load, several processors in the range
between 500 and 600 were left underloaded by the greedy algorithm. The refinement al-
gorithm did not change the load on those, since it focuses (correctly) only on overloaded
processors: having a few underloaded processors doesn’t impact the performance much,
but having even one overloaded processor slows the overall execution time. Here, we
see that 4 overloaded processors (e.g, processor 508) were significantly overloaded be-
fore the refinement step, whereas the load is much much closer to the average after
refinement. As a result, overall utilization across all processor rises from 45 to 60%.

Using 4 processors on each node and “Stretches”:The Lemieux machine has 3,000
processors. However, when we tested NAMD on more than 2,000 processors, the pro-
gram performed relatively poorly. Several separate runs, observed with the timeline
view, showed that this was due to several object methods (seemingly) randomly “stretch-
ing” to take a much longer time than they took during other time-steps. (For example,
see Fig. 6(a)). The two computations highlighted by a green line take over 10 msecs,
in comparison with a couple of msecs taken by the same object-method in the other



(a) “Stretched” computations

(b) Before:Large Number of Stretches (c) After:Fewer Stretches

Fig. 6. “Stretched” executions, and their resolution

timesteps. Such stretching was seen to be more pronounced (stretches of over 50msecs
were observed) when we used all 4 processors on each node, in a bid to utilize all 3,000
processors.

Eliminating stretches involved fine tuning the elan communication library provided
by Quadrics through significant trial-and-error experimentation. It also involved the
use of blocking receives to reduce operating system interference which was causing
the stretches. Although we cannot show all the steps involved, the evaluation process
was assisted significantly by Projections. Specifically useful was the grainsize analysis
histogram that we discussed in an earlier section. Fig. 6(b) shows that about 30 objects
were stretched in an earlier 2,250 processor run, beyond 5 msecs, with the largest one
well over 20 msecs. After all the fixes were applied, the resultant histogram on 3,000
processors shows (Fig. 6(c)) only 5 stretched executions, with the largest being only 7.5
msecs, in spite of the fact that we are now using all 4 processors on each node.



Fig. 7.Profile (a) and Timeline (b) view of a 3000 processor run.

Triumph! Tera-Flop using all 3000 Processors: After using elan based communi-
cation with several optimizations, and a few more relatively minor optimizations, we
were able to run the application on all 3,000 processors. The time per step was 12
msecs, leading to 1.04 TF performance! Within these 12 msecs, many processors send
30-50 messages containing atoms coordinates (8-10KB each), receive results from the
30-50 force computations objects, carry out asynchronous reductions for total kinetic
and potential energies, and migrate atoms to neighboring (26) boxes every 8 steps. For
molecular dynamics for biophysics, this is an unprecedented level of performance, ex-
ceeding the previous state of art by almost an order of magnitude.

The profile view of selected 200 processors (0-49, 1000-1100, 2950-2999) is shown
in Figure 7(a). The white area at the top represents idle time, which is quite substantial
(25% or so). Timeline views (Figure 7(b)) show that load balancing is still a possible
issue (See processor 1039, identified from the profile view), while communication sub-
system still is showing minor, but significant hiccups (a message sent from one of the
processor 1076 is not available on processor 1074 for over 10 msec after it is sent).
These observations indicate that further performance improvement may be possible!

5 Conclusion and Future Work

We introducedProjections, a performance analysis tool used in conjunction with the
Charm++ parallel programming system. Projection tracing system automatically cre-
ates execution traces, in brief “summary” mode, or detailed “log” mode. We showed
how the analysis system, and various views it presents, were used in scaling a produc-
tion quality application to 3,000 processors and 1 TF.

This experience has helped us identify several new capabilities for Projections. As
the problem at hand demanded new analysis, we had to add new capabilities to Projec-
tions. Now, we plan to extend Projections, so that users can add such capabilities by
expressing simple queries or predicates they want evaluated. The relatively large num-
ber and size of trace files in thelog mode has led us to extend thesummarymode so
that more insightful information can be captured with fewer bytes of summary data.
Linking performance visualization system to the source, as done in Pablo, will also be



another useful extension. We have already added preliminary features that use perfor-
mance counters which will be used in an integrated automatic analysis system. We are
currently also in the process of extending these features to AMPI.

Acknowledgements

NAMD was developed at the Theoretical Biophysics Group (Beckman Institute, Uni-
versity of Illinois) and funded by the National Institutes of Health(NIH PHS 5 P41
RR05969-04). Projections and Charm++ are supported by several projects funded by
the Department of Energy (subcontract B523819) and the National Science Foundation
(NSF DMR 0121695). The parallel runs were carried out primarily at the Pittsburgh Su-
percomputing Center(PSC) and the National Center for Supercomputing Applications
(NCSA). We are thankful to these organizations and their staff for their continued assis-
tance and for the early access and computer time that we were provided for this work.
In particular we would like to thank Jim Phillips(TBG), David O’Neal, Sergiu Saniele-
vici, John Kochmar and Chad Vizino from PSC and Richard Foster(Hewlett Packard)
for helping us make the runs at PSC Lemieux and providing us with technical support.

References

[AMCA +95] V.S. Adve, J. Mellor-Crummey, M. Anderson, K. Kennedy, J.-C. Wang, and D.A.
Reed. An Integrated Compilation and Performance Analysis Environment for Data
Parallel Programs. InProceedings of Supercomputing’95, December 1995.

[BKdSH01] Milind Bhandarkar, L. V. Kale, Eric de Sturler, and Jay Hoeflinger. Object-Based
Adaptive Load Balancing for MPI Programs. InProceedings of the International
Conference on Computational Science, San Francisco, CA, LNCS 2074, pages 108–
117, May 2001.

[HE91] M.T. Heath and J.A. Etheridge. Visualizing the Performance of Parallel Programs.
IEEE Software, September 1991.

[KK96] L. V. Kale and Sanjeev Krishnan. Charm++: Parallel Programming with Message-
Driven Objects. In Gregory V. Wilson and Paul Lu, editors,Parallel Programming
using C++, pages 175–213. MIT Press, 1996.

[KSB+99] Laxmikant Kaĺe, Robert Skeel, Milind Bhandarkar, Robert Brunner, Attila Gursoy,
Neal Krawetz, James Phillips, Aritomo Shinozaki, Krishnan Varadarajan, and Klaus
Schulten. NAMD2: Greater scalability for parallel molecular dynamics.Journal of
Computational Physics, 151:283–312, 1999.

[LK01] O. Lawlor and L. V. Kaĺe. Supporting dynamic parallel object arrays. InProceed-
ings of ACM 2001 Java Grande/ISCOPE Conference, pages 21–29, Stanford, CA,
Jun 2001.

[PZKK02] James C. Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé. Namd:
Biomolecular simulation on thousands of processors. InProceedings of SC 2002,
Baltimore, MD, September 2002.

[San96] Sanjeev Krishnan and L. V. Kale. A parallel array abstraction for data-driven ob-
jects. InProceedings of Parallel Object-Oriented Methods and Applications Con-
ference, Santa Fe, NM, February 1996.

[SK96] Amitabh Sinha and L. V. Kale. Towards Automatic Peformance Analysis. InPro-
ceedings of International Conference on Parallel Processing, volume III, pages 53–
60, August 1996.


