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Abstract

This paper explores collective personalized communica-
tion. For example, inall-to-all personalized communica-
tion (AAPC), each processor sends a distinct message to
every other processor. However, for many applications, the
collective communication pattern is many-to-many, where
each processor sends a distinct message to a subset of pro-
cessors. In this paper we first present strategies that reduce
per-message cost to optimize AAPC. We then present per-
formance results of these strategies in both all-to-all and
many-to-many scenarios. These strategies are implemented
in a flexible, asynchronous library with a non-blocking in-
terface, and a message-driven runtime system. This al-
lows the collective communication to run concurrently with
the application, if desired. As a result the computational
overhead of the communication is substantially reduced, at
least on machines such as PSC Lemieux, which sport a co-
processor capable of remote DMA. We demonstrate the ad-
vantages of our framework with performance results on sev-
eral benchmarks and applications,

1 Introduction

The communication cost of a parallel application can
greatly affect its scalability. Although communication
bandwidth increases have kept pace with increases in pro-
cessor speed over the past decade, the communication la-
tencies (including the software overhead) for each message
have not decreased proportionately. The past decade has
also seen the increase in popularity of workstation clusters.
Such systems can be cost effective but use general purpose
operating systems and tend to have higher communication
latencies and per message overheads.

Collective communication operations, which often in-
volve most processors in a system, are time consuming and
can involve massive data movement. An inefficient imple-
mentation of such operations will often affect the perfor-
mance of the application significantly. In this paper we fo-

cus oncollective personalized communications, where each
processor sends distinct data to many other processors.

An all-to-all personalized communication (AAPC for
brevity) is a collective operation in whicheach proces-
sor sends distinct data toall other processors. AAPC has
been extensively studied in literature. Many of these opti-
mization algorithms have been designed for particular net-
work topologies, including mesh [1, 7, 19, 17, 22], torus
[10, 18, 4], fat tree [16, 3] etc. AAPC algorithms can
be classified as direct or indirect[20]. With direct algo-
rithms each processor sends its data directly to the destina-
tion processors. Direct algorithms aim at exploiting specific
communication architectures and emphasize sequencing of
messages to avoid link and node contention. In the indi-
rect approach [2] processors combine messages into larger
data blocks which are sent to intermediate processors to be
routed to the final destination. Indirect approaches allow
message combining, and are are hence most useful for small
messages; while direct approaches minimize the number of
copies and so are suitable for long messages [1, 20].

Many applications require amany-to-manypersonalized
communication (MMPC for brevity), where many (not all)
processors send personalized data to many (not all) other
processors. For example the molecular dynamics applica-
tion Namd [15] has a transpose-like operation in which 192
(out of possibly a few thousand) processors send messages
to 144 processors. With MMPC the best strategy not only
depends on the size of message but also on the degree of the
communication graph (δ), which is the number of proces-
sors each processor sends its data to. In this paper we study
how existing strategies for AAPC perform with MMPC.

We limit our study here to indirect strategies. A basic
issue in collective communication with small messages is
the per-message cost (α). The strategies we describe aim
at reducing theα cost by sending fewer, larger messages.
A virtual topology is imposed over the processors. Mes-
sages destined to a group of processors are combined into
one message and sent to a representative processor in the
group. The representative, acting as an intermediary, com-
bines messages going to the same destination, and forwards



them. We can even repeat this combining-and-forwarding
“phase” several times. We will describe three such multi-
phase strategies for personalized collective communication,
(i) Mesh, (ii) 3d Grid, (iii) Hypercube.

Our framework library is implemented on top of
Converse[8] which is portable and available on most plat-
forms. Charm++ [9] and MPI programs can use our library
through interfaces to Converse. A synchronous, block-
ing implementation like MPIAlltoall is potentially ineffi-
cient because processors will idle unnecessarily, until the
communication is complete (from the local point of view).
Moreover all the processors may not be involved in every
stage of the strategy. In the above Namd example some pro-
cessors (around 48) may be idle during the different stages
of the communication operation. Our library provides an
asynchronous, non-blocking, interface. This gives the ap-
plication the flexibility to use the idle CPU time for other
useful computation. As a result, it can effectively handle
the scenario when only a subset of processors are involved
in the collective communication operation.

MPI applications can take advantage of our library via a
split-phase interface. This enables programs to start a col-
lective operation and then poll the system till it finishes. In
the meantime the program can do computation.

The rest of the paper is organized as follows : Section
2 describes the various strategies used by the library. Sec-
tion 3 discusses the MMPC problem and how the strategies
developed for AAPC perform with MMPC. Section 4 pro-
vides performance results of the library with several bench-
mark applications. Related work is presented in Section 5,
while Section 6 presents some concluding remarks.

2 All to All Personalized Communication

This section describes strategies to optimize AAPC. We
first present a simple communication model used for ana-
lyzing our strategies. We then present three indirect strate-
gies which use message combining for optimizing AAPC.

2.1 Communication Model

Many models for communication on parallel architec-
tures have been presented [13, 21, 2, 20]. We use a simpli-
fied communication model [2, 20] where the time to send a
point to point message is given by

Tptp = α+mβ

whereα is the sending, receiving and network overhead for
the message,β is the per unit data transfer cost andm the
size of the message.

However, we note that in presence of a communication
co-processor, it is desirable to distinguish the cost to the
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Figure 1. Mesh based AAPC, with holes.

processor from the latency of the operation.

Tptpcpu = αcpu +mβcpu

On machines with a co-processor capable of remote DMA,
βcpu, the per-byte cost incurred by the processor is substan-
tially lower.

With a direct implementation of AAPC, using individual
point-to-point messages, each processor has a cost given by

Cost = (P − 1)× (α+mβ) (1)

HereP is the total number of processors. Network con-
tention is not modeled here because for small messages the
cost is dominated by the software overhead or theα cost.
Thus, forα = 5µs, β = 3.33ns/byte andm = 100bytes,
on 1000 processors this operation would take 5.33 ms1.
Strategies based on considerations of physical topology are
also out of scope of this paper.

In the indirect strategies we discuss next, each proces-
sor combines messages destined to a group of processors
into one message, and sends a combined message to one
(or a series of) intermediary(ies). The strategies thus aim
at reducing the alpha component of the communication cost
while typically trading off an increase in theβ component.

Next, we will consider three virtual topologies: 2-D
mesh, 3-D grid and hypercube. We will refer to2-D mesh
by mesh and3-D grid by grid in the remainder of the paper.

2.2 2-D Mesh

In this scheme, the messages are routed along a 2-D
mesh. In the first phase of the algorithm, each node sends

1Theall-to-all time on 1024 processors presented in Section 4 is more
than this in part because we are using 4 processors per node on Lemieux
and messages from processors will have to wait for messages from the
other processors in that node.
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Figure 2. Mesh based AAPC: Worst case with holes

the messages to all the nodes in its row. In the second phase,
the nodes sort these messages and send them to the nodes in
their column. Thus all the messages travel at most two hops
before reaching the destination. Here each processor sends√
P − 1 messages of size

√
P ×m bytes in each of the two

phases. The completion time for AAPC with mesh strategy,
Tmesh is shown in equation 2.

Tmesh = 2× (
√
P − 1)× (α+

√
Pmβ)

Tmesh ≈ 2
√
Pα+ 2Pmβ (2)

When the number of nodes is not a perfect square, the
mesh is constructed using the next higher perfect square.
This gives rise toholes in the mesh. Figure 1 illustrates
our scheme for handling holes, in a mesh with two holes.
(The dotted arrows show the second stage.) The role as-
signed to each hole (which are always in the top row) is
mapped uniformly to the remaining processors in its col-
umn. So if a node(i, j) needs to send a message to column
k and node(i, k) is a hole, it sends the message to node
(j%(NROWS − 1), k). Here NROWS is the number of
rows in the mesh. Thus in the first round node 12 sends
messages to nodes 2 and 3. No messages are sent to a row
with no processors in it. Dummy messages are used in case
a processor has no data to send.

Notice thatd
√
P e − 1 ≤ NROWS ≤ d

√
P e, whereas

number of columns is alwaysd
√
P e. (If NROWS ≤

d
√
P e − 1 then the next smaller square mesh would have

been used). Thus the number of processors that would have
sent messages to the hole is at mostd

√
P e− 1, and the pro-

cessors in the hole’s column (that share its role) is at least
(NROWS− 1) = d

√
P e− 2. Hence the presence of holes

will increase the number of messages received by proces-
sors in columns containing holes by one (nodes 2,3,6,7 in
figure 1) or two (node 3 in figure 2). Figure 2 shows the
worst case scenario when a processor (3) receives two ex-
tra messages. The worst case happens when the number of
rows isd

√
P e − 1 and there is only one hole.

In the second phase (when processors exchange mes-
sages along their columns) these processors will exchange
one or two messages less and the total will remain un-
changed. So theα factor of equation 2 remains the same
and theβ factor will only increase by2(

√
P ).m.β which

can be ignored for large P. Thus leaving equation 2 unal-
tered. A simple proof can show that the cost of equation 2
is within the optimal cost for any mesh by a constant addi-
tive factor in the number of messages.

2.3 3D Grid

We also implemented a virtual grid topology. In this
topology messages are sent in three phases along the X, Y
and Z dimensions respectively.

In the first phase, each processor sends a message to its
3
√

(P )− 1 neighbors along the X dimension. The data sent
contains the messages for the processors in the plane in-
dexed by the X coordinate of the destination. In the second
phase, messages are sent along the Y dimension. The mes-
sages contains data for all the processors that have the same
X and Y axes but different Z axis as the destination proces-
sor. In the third and final phase data is communicated to
all the Z axis neighbors. Since in each phase the processor
sends at most3

√
P messages the total time for each opera-

tion is given by equation 3.

Tgrid = 3× ( 3
√
P − 1)× (α+ ( 3

√
P )2mβ)

Tgrid ≈ 3 3
√
Pα+ 3Pmβ (3)

When the number of processors is not a perfect cube, the
next larger perfect cube is chosen. Here we use a simpler
strategy to map holes for ease of implementation. Holes are
mapped to the corresponding processor in the penultimate
plane. So all messages destined to a hole are received by the
corresponding processor in the penultimate plane. If there
is only one plane the holes are mapped like they are in the
mesh strategy. No messages are sent to planes with no pro-
cessors in them. Here each processor can receive messages
for a hole in the first and second phases. We also assume
that the receivingα cost is half the totalα cost. The cost for
grid strategy with holes is given by equation 4. Hereλh is
1 if there are holes in the grid, 0 otherwise.

Tgrid ≈ (3 + λh)× 3
√
Pα+ (3 + 2λh)× Pmβ (4)

2.4 Hypercube

The hypercube (Dimensional Exchange) scheme con-
sists of log2(P ) stages. In each stage, the neighboring
nodes in one dimension exchange messages. In the next
stage, these messages are combined and exchanged between
the nodes in the next dimension. This continues until all the
dimensions are exhausted.
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Figure 3. Hypercube based AAPC with an imperfect hypercube.

During each of thelog2(P ) phases, the processors along
one dimension exchange data. Thus in phase 1, each pro-
cessor combines the messages for P/2 processors and sends
it to its neighbor in that dimension. In the second phase, the
messages destined forP/4 processors are combined. But
now, each processor has the data it received in phase 1 in
addition to its own data. Thus it combines2 × (P/4) ×m
bytes and sends it to its neighbor. The overall cost is repre-
sented by the equation 5.

Thypercube = log2P × (α+
P

2
mβ) (5)

In the case of an imperfect hypercube (when the number
of nodes is not a power of 2), the next lower hypercube
is formed. In the first step, the nodes that are outside this
hypercube send all their messages to their corresponding
neighbor in this hypercube. For example, in Figure 3, node
8 sends it messages to node 0 in the first stage. As in the
usual scheme, dimensional exchange of messages happens
in this hypercube. All the messages for node 8 are sent to
node 0. In the final stage, node 0 combines all the messages
for node 8 and sends it to node 8. If there are few holes
many processors will have twice the data to send. The cost
of hypercube with holes is shown in equation 6

Thypercube ≈ log2P × (α+ (
1 + λh

2
)× Pmβ) (6)

Mesh tends to be faster then hypercube because it has
fewer stages and will load the network less. Hypercube will
transmitlog2P times the total data exchanged on to the net-
work. Grid will have an intermediate performance.

1 2 3 i i+1 i+2 i+delta p

Figure 4. Neighbor Send Application

3 Many to Many Personalized

For many applications each processor in the collective
operation may not send messages toall other processors.
Applications that have such a communication pattern in-
clude Namd [15], Barnes Hut Particle simulator[23], Eu-
ler Solver and Conjugate grid solver. Hence the degree (δ)
of the communication graph, which is the number of remote
processors each processor communicates with, becomes an-
other important factor in the cost equations. We comment
below on two classes of the MMPC (many-to-many person-
alized communication) pattern.

3.1 Uniform Many-to-Many Personalized

In uniform MMPC, each processor sends (and receives)
around the same number of messages. The AAPC appli-
cations are a special case of this class. Many other ap-
plications which have small variances in the degree (δ)
also belong to this class. An example of uniform MMPC
is the neighbor-send application shown in figure 4. Here
processori sends messages to processors(i + k)%P for
k = 1, 2, .., δ.

For MMPC, the cost equations of section 2 are modified:

Tmesh ≈ 2
√
Pα+ 2δmβ (7)

Tgrid ≈ 3 3
√
Pα+ 3δmβ (8)

Thypercube ≈ log2P × (α+ δmβ) (9)

Tdirect = δ × (α+mβ) (10)

In the mesh strategy, each processor sendsδ messages
and each of these messages is transmitted twice on the net-
work. So the amount of per-byte cost spent on all the mes-
sages in the system is2Pδmβ. Since the MMPC is uniform
this cost can be evenly divided among all the processors.
The resulting cost equation is given by 7. By a similar ar-
gument we get equations 8, 9. Also notice thatδ appears
only in theβ part of the equations 7,8,9. This is because
in each virtual topology the number of messages exchanged
between the nodes is fixed. If there is no data to send, at
least dummy messages need to be sent.
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3.2 Non-Uniform Many-to-Many Personalized

In non-uniform MMPC there is a large variance in the
number of messages each processor sends (or receives).
(E.g. some processors may be the preferred destinations
of all the messages sent). There may also be a variance in
the sizesof messages processors exchange. Hence a more
general framework needs to be developed which should also
consider actual destinations of the message along with the
degree of the graph. If certain nodes in the virtual topology
are being overloaded then the virtual topology may have to
be rearranged. Large messages can be handled by sending
them directly and not using an intermediate processors to
route it, thus saving on theβ cost. We are still investigating
this problem. However, the 3-D FFT application described
in 4.4 explores performance of strategies for this pattern.

4 Performance

We tested the performance of our library on PSC
Lemieux[11], a 750 node, 3000 processor cluster. Each
node in Lemieux is a Quad 1Ghz Alpha server connected by
Quadrics Elan [14], a high speed interconnect with a4.5µs
message latency.

Figures 6 and 7 present the performance of AAPC us-
ing our library and MPI on Lemieux, using 4 processors per
node. Mesh and 3d Grid do better than direct sends for mes-
sages smaller than 1000 bytes on both 512 and 1024 pro-
cessor runs. For very small messages these indirect strate-
gies are better than MPI all-to-all. For intermediate message
sizes however MPI is somewhat better.

Also notice the jump for direct sends at message size
of 2KB. This is because our runtime system switches from
statically to dynamically allocated buffers at this point. MPI
has a similar and much larger jump, which further increases
with the number of processors.

Although the indirect strategies are clearly better than di-
rect sends for messages smaller than 1KB, for a small range
of message sizes MPI does better than our strategies. How-
ever, two factors make our library superior to MPI.
Scalability: Figure 5 shows thescalability of our library
compared with MPI for the all to all operation with a mes-
sage size of 76 bytes. The Hypercube strategy does best
for a small number of processors (this is not clearly seen in
the linear-linear graph). But as the number of processors
increase, mesh and 3d grid improve, because they use only
two and three times the total amount of network bandwidth
respectively, while for hypercube the duplication factor is
log p/2. MPI compares well for a small number of proces-
sors but for 64 or more processors our strategies start doing
substantially better (e.g. 55 ms vs 32 ms on 2k processors).
CPU Overhead: Probably the most significant advantage
of our strategy arises from its use of a message-driven sub-

strate on machines with a communication co-processor. In
contrast to MPI, our library is asynchronous (with a non-
blocking interface), and allows other computations to pro-
ceed while AAPC is in progress. Figure 8 displays the
amount ofCPU timespent in the AAPC operations on 1024
processors. This shows the software overhead of the opera-
tion incurred by the CPU. Note that this overhead is sub-
stantially less than the overall time for our library. E.g.
at 8KB, although the mesh algorithm takes about 800 ms
to complete the AAPC operation, it takes less than 32 ms
of CPU time away from other useful computation. This
is possible because of the remote DMA engines provided
by Quadrics Elan cards. The fact that communication co-
processors are exploited better by a message-driven system
was pointed out by our earlier simulation work ([6, 5].)

In our implementation, we have two calls for the AAPC
interface. The first one schedules the messages and the sec-
ond one polls for completion of the operation. On machines
with support for “immediate messages” — those that will be
processed even if normal computation is going on — and on
message-driven programming models (such as Charm++),
this naturally allows for other computations to be carried
out concurrently. In other contexts, user programs or li-
braries need to periodically call a polling function to allow
the library to process its messages.

Another interesting perspective is provided by the per-
formance data on on 513 processors with 3 processors per
node, shown in Figure 9. Note that all the strategies perform
much better here (compare with Figure 7). We believe this
is due to OS and communication library interactions when
all 4 processors on a node are used (as bourne out by our
recent scalability studies [15]).
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Figure 5. AAPC time for 76 byte message

We also tested our communication library with four
benchmark applications, described below.
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Figure 6. AAPC completion time on 1024 processors
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Figure 7. AAPC completion time on 512 processors

4.1 Neighbors

In this benchmark, each processori sendsδ messages to
processors(i+ k)%P for k = 1, 2, .., δ. Figures 10 and 11
show the performance of the strategies with the degree of
the graphδ being varied from 64 to 2048, for 2048 proces-
sors. For smallδ the direct strategy is the best. Comparison
between the mesh and grid strategies is interesting. The for-
mer sends each byte twice, while the latter sends each byte
thrice. But theα cost encountered is lesser when the grid
strategy is used. For small(76 byte) messages, theα (per-
message) cost dominates and the grid strategy performs bet-
ter. For larger(476 byte) messages, the grid strategy is bet-
ter until the degree is 512. For larger degrees, the increased
amount of communication volume leads to dominance of
theβ (per-byte) component, and so the mesh strategy per-
forms better.
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Figure 8. AAPC CPU time on 1024 processors
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Figure 9. AAPC completion time on 513 processors

4.2 Radix Sort

Radix sort is a sorting program which sorts a random
set of 64 bit integers, which is useful in operations such as
load balancing using space-filling curves. The initial list
is generated by a uniform random number generator. The
program goes through four similar stages. In each stage
the processors divide the local data among 65536 buckets
based on the appropriate set of 16 bits in the 64 bit integers.
The total bucket count is globally computed through a re-
duction and each processor is assigned a set of buckets, in a
bucket map which is broadcast to all the processors. All the
processors then send the data to their destination processors
based on the bucket map. This permutation step involves an
AAPC and has the most communication complexity. Radix
sort is therefore a classic example of AAPC. The perfor-
mance of Radix sort with the mesh and direct strategies on
128, 256 and 1024 processors is shown in Table 1. N is
the number of integers per processor. Notice that the per-
formance gain of the mesh-based version increases with the
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Figure 11. MMPC: time with 476 byte message on 2048 processors

number of processors.

4.3 Namd

Namd is a parallel, object-oriented molecular dynam-
ics program designed for high performance simulation of
large bio-molecular systems [15]. Namd employs the
prioritized message-driven execution capabilities of the
Charm++/Converse parallel runtime system, allowing ex-
cellent parallel scaling on both massively parallel super-
computers and commodity workstation clusters.

PME (Particle Mesh Ewald) is one of the important op-
erations in Namd. It involves a 3d FFT. In PME a local 2d
FFT is performed by each processor on the Y and Z dimen-
sions of the grid, and the grid is then redistributed along the
Y axis for a final 1d FFT on the X dimension. The trans-
formed grid is then multiplied by the appropriate Ewald
electrostatic kernel, and a backward FFT performed on the
first dimension. The grid is redistributed back along its first
dimension, and a backward 2d FFT performed, producing
real-space potentials. The structure of PME calculation in

N Mesh(s) Direct(s)
128 256 1024 128 256 1024

1k 0.57 0.815 1.224 1.39 2.195 4.64
10k 0.61 0.821 1.631 1.394 2.582 9.94
100k 1.21 1.487 2.102 1.455 2.493 11.26
500k 3.39 3.51 4.372 3.561 4.22 16.21
1m 6.45 6.512 7.49 6.714 7.698 18.72
2m 13.6 15.30 14.57 12.25 14.039 30.87

Table 1. Sort Completion Time (s)

Transpose

All to All

All to All

Point to Point

Point to Point

Figure 12. PME calculation in Namd

Namd is shown in figure 12.

Namd simulations were done for two molecules ApoA-
1 and ATPase. For ApoA-1 a108 × 108 × 80 grid is
used and for ATPase it was a192 × 144 × 144 grid. The
PME calculation involved a collective communication be-
tween the X planes (planes with the same X coordinate)
and the Y planes (planes with the same Y coord.). In our
large processor runs the number of processors for PME is
max(#XPlanes,#Y P lanes), which is 108 for ApoA-
1 and 192 for ATPase. The size of the messages in the
collective communication operation is around 900b. Namd
was recompiled to use the mesh strategy. The resultant per-
formance gains are presented in Table2. Namd carries out
other force computations (for atoms within a cutoff radius)
concurrently with PME, and thus is able to take advantage
of the lower computation overhead (Fig. 8) of our strategies.

Processors ApoA-1(ms) ATPase(ms)
Mesh Direct Mesh Direct MPI

256 39.23 44.40 113.58 120.84 134.53
512 23.37 27.95 60.75 62.96 69.50
1024 20.27 26.754 35.84 38.62 39.31

Table 2. Namd step time (ms)
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4.4 3-D FFT

The 3d FFT benchmark performs a similar FFT compu-
tation as Namd. First a 2d FFT is performed on each YZ
plane and then each Z pencil (a column along the Z direc-
tion) in the YZ plane is sent out for a 1d FFT along the
X direction. After the 3d FFT step each processor signals
completion through a barrier reduction and then the process
is repeated again. The performance of 3d FFT is shown in
tables 3 and 4.

In tables 3 and 4 the size of the X dimension is 256 and
corresponds to the number of senders of the transpose data.
The size of the Y dimension corresponds to the number of
messages being sent by each processor and the number of
receivers of the transpose data. The size of the Z dimen-
sion corresponds to the size of the message being sent. The
variance in the degree of the communications graph is high
if the number of senders is much larger than the number of
receivers. In this case all processors will send #Y number
of messages to #Y receivers which will receive P messages.

It can be noticed that for the high variance case hyper-
cube does better than expected compared to mesh and 3d
grid. We believe this is because in the hypercube strategy
each message does not travellog(P ) hops and so itsβ cost
is a weak upper-bound. With low variance (which also has
a highδ) the behavior is more like uniform many-to-many
communication withmesh < 3dgrid < hypercube for
most cases as expected. Also, in almost all cases, at least
one indirect strategy is better than direct sends.

#Y #Z Size Dir. Mesh Hyp. Grid
256 32 640b 108.9 32.1 42.0 33.6
224 32 640b 78.1 37.0 40.0 29.0
192 32 640b 52.7 34.4 36.1 39.7
256 64 1280b 112.8 40.1 86.7 82.7
224 64 1280b 90.9 41.9 75.6 42.3
192 64 1280b 64.0 44.1 63.4 40.0
256 256 4KB 144.2 141.7 211.4 183.6

Table 3. 3d FFT step time (256 processors and low variance) (ms)

#Y #Z Size Dir. Mesh Hyp. Grid
32 32 640b 20.51 44.25 23.4 35.1
64 32 640b 32.19 51.49 14.4 57.8
128 32 640b 32.12 62.24 20.0 35.7
32 64 1280b 17.65 48.95 19.7 66.3
64 64 1280b 31.67 48.17 20.6 42.1
128 64 1280b 30.21 37.09 30.4 45.2

Table 4. 3d FFT step time (256 processors and high variance) (ms)

5 Related Work

All to all personalized communication has been studied
extensively over the past decade. Both direct and indirect
optimizations for specific architectures like 2d meshes, tori,
3d grids, hypercubes and fat trees have been presented in
[20, 10, 18, 1, 16, 7, 4, 3, 19, 17]. A survey of commu-
nication algorithms for AAPC algorithms is presented in
[12]. [2] talks about an architecture independent message
combining for all to all personalized communication. The
paper describes the ring, mesh and 3d grid strategies. Find-
ing dimensions of virtual topologies for non powers of two
number processors is not clearly mentioned. Handling non
uniform collective communication communication is men-
tioned in [16]. A hybrid algorithm that combines a di-
rect and an indirect strategies is presented in [19]. It com-
bines the direct Scott’s [17] optimal 2d mesh communica-
tion strategy with the recursive partitioning strategy which
is similar to our hypercube. The effectiveness of pipelining
and packetization in direct strategies is presented in [20].

Our work differs from the above because we handle the
more general problem of many to many personalized com-
munication where each processor sends messages to a vari-
able number of other processors. Our mesh strategy per-
forms close to the optimal mesh allocation. Our framework
is also asynchronous and nonblocking giving more flexibil-
ity to the application.

6 Summary and Future Work

In this paper we described three different collective com-
munication algorithms: mesh, 3d grid and hypercube. Our
implementations of these algorithms place no restrictions
on the number of processors. Our mesh algorithm is within
the optimal by an additive constant. We also present the
many-to-many collective communication problem. This re-
sults in a new parameterδ (the degree of the communica-
tions graph) being added to the cost equations.

Most scientific applications [15, 23], tend to be iterative
and have a persistent communication pattern which can be
learned. A learning framework can record the number of
messages sent from each processor and the size of each
message, in each iteration. Based on this information, a
strategy can be chosen at runtime using the cost equations
presented in the paper. This operation can also be repeated
periodically for a dynamic application with a varying com-
munication pattern. We are currently working on develop-
ing such a framework.

Further research is needed to deal with incomplete 3d
grids and hypercubes optimally. We also plan to improve
the performance of our AAPC library for intermediate sized
messages, where MPI’s performance is currently better.
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Our analysis of many-to-many personalized communi-
cation (MMPC) considers only the degree (δ) of the com-
munications graph and not the actual destinations. This is
suited for uniform many-to-many applications likeNeigh-
bors and the performance results validate our cost equa-
tions. In many cases certain intermediate nodes may get
overloaded and violate the cost equations like the 3d FFT
case with high variance. This can possibly be handled by
reorganizing the virtual topology among the processors, es-
pecially using persistence-based “learning” strategies. Fur-
ther, a more sophisticated cost framework which takes the
actual destinations into account also needs to be designed.

Our current analysis and methods are topology indepen-
dent. This is reasonable for a machine such as Lemieux
(with a fat-tree topology). But for future machines such
as Blue Gene/L, with relatively limited cross-section band-
width, mapping of virtual topologies to real ones needs to
be optimized.
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