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Abstract

For the past decade, we have been developing
a parallel programming model based on virtual-
ization. The basic idea is simple: let the pro-
grammer divide the work into a large number
of chunks, mostly independent of the number of
processors, and let the system map these enti-
ties to processors. This simple idea leads to an
effective separation of concerns between the pro-
grammer and the runtime system (RTS), and
empowers the RTS to carry out several tasks
automatically that would normally require com-
plex parallel programming skills. We describe
the methodology, explain its advantages, and the
success it has led to, including two Gordon Bell
award nominations for “difficult to parallelize”
applications.

1 Introduction

Parallel computing technology is poised to make
a significant impact on society. The hardware
technology itself is quite impressive: machines
with tens of teraflops of peak performance al-

ready exist, at least one with over a hundred
teraflops peak performance is on the anvil (Blue
Gene/L), and one can realistically discuss build-
ing PetaFLOPS class machines. Scientific and
engineering applications that will run on such
machines tend to be dynamic, complex, and mul-
tidisciplinary. Programming such applications
correctly, and with high execution efficiency on
these machines is a challenging hurdle.

Specifying a parallel program can be seen as
a multistage process. First, it involves decid-
ing which actions to do in parallel, then de-
ciding which processor will execute each action
(and what data will be housed on each proces-
sor), followed by deciding the sequence in which
each processor will execute the work assigned
to it, and finally, expressing these decisions us-
ing primitives provided by the particular parallel
machine on which the program will run.

Parallelizing compilers aim at automating the
entire process. Research in this area has been
intellectually stimulating, and has achieved con-
siderable success. However, for large machines
and complex applications it has proved to be in-
adequate. MPI automates the last step, thus
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providing a generic (and popular) machine inde-
pendent parallel programming interface. How-
ever, in complex dynamic applications, MPI pro-
gramming demands a significant effort from the
programmer.

Figure 1: Technical Approach

The approach that we have been exploring is
one level below the parallelizing compiler (see
figure 1) Here, the programmer specifies only
the decomposition into parallel parts, while the
system maps the parallel parts to processors au-
tomatically. We think that this approach leads
to an optimum division of labor between the pro-
grammer and the system.

In this approach, the number of parts a com-
putation is broken into is typically not dependent
on the number of processors (P), and is often
much larger than P. One can think of these parts
as virtual processors. Hence this approach can
be loosely called virtualization (In the past, we
have called it concurrent-object-based approach,
message driven programming, or multi–partition
decomposition).

Virtualization itself is not a new concept. Ge-
offrey Fox’s 1986 textbook on parallel program-
ming describes virtualization, for example (it
was used to load balance the sharks-and-fishes
application by dividing the domain into a large
number of blocks, and sprinkling them across the
processors randomly). The DRMS system [1] is
another example of an approach based on virtu-

alization. However, as will become clear in the
paper, our approach (embodied in programming
systems such as Charm++ and AMPI) can be
thought of as virtualization++ : we support vir-
tualization at the language and run-time level,
and exploit it to the hilt to optimize application
performance.

This paper summarizes the state of this ap-
proach which we have explored and applied for
the past decade. One of the reasons the approach
has been so successful is that it has always been
developed in the context of multiple real ap-
plications [2]. One of the early applications of
our methodology has been in molecular dynam-
ics simulations of biological systems. This appli-
cation, which has traditionally been difficult to
parallelize, has been scaled to several thousand
processors, and led to a Gordon Bell finalist po-
sition at SC2000 (At SC2002, newer results have
led to another finalist selection for the award,
and the award itself will be decided at SC2002).
Several other applications, including simulation
of atomic structures using QM/MM techniques,
properties of materials, behavior of solid rocket
boosters, and applications in computational cos-
mology are being developed using this approach.

In this paper, we will illustrate this approach,
its embodiment in programming systems, and
elaborate on the benefit it confers on parallel
programming. We will illustrate these with ex-
amples from the application domains, and in-
clude performance data from a few applications.

2 Virtualization

The basic idea in virtualization is to let the pro-
grammer divide the program into a large num-
ber of parts, independent of the number of pro-
cessors. The parts may be objects, for exam-
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Figure 2: Object-based Parallelization

ple. The programmer does not think of proces-
sors explicitly (nor refer to processors in their
programs). Instead they program only in terms
of the interaction between these virtual entities.
This is illustrated in Figure 2. Under the hood,
the RTS is aware of processors and maps these
virtual processors (VPs) to real processors, as
it pleases. In particular, it can also change the
mapping at runtime, without the user program
having to specify it.

2.1 The Degree of Virtualization

Figure 3: “Overhead” of Multipartitioning in an
FEM application

How can one select the degree of virtualization
independent of the number of processors (at least

for most applications)? Essentially, the answer
lies in the overhead associated with each virtual
processor. Scheduling each execution (of a mes-
sage or method invocation, for example) requires
less than a microsecond on today’s (2002) pro-
cessors. Across-processor messages may have an
overhead of 10 microseconds per message and a
couple of nanoseconds per byte. The amount of
computation done with each message must be
“substantially larger” than this overhead to jus-
tify a lower granularity. Note that this definition
does not depend on the number of processors,
since the communication overhead (as opposed
to latency) does not depend on the number of
processors. Other factors influencing the deci-
sion are cache effects. With beneficial result of
smaller objects on cache performance, one actu-
ally gets better performance with a higher degree
of virtualization, instead of being dominated by
higher overheads, as shown in Figure 3.

Somewhat more negative are situations where
large ghost regions are required around each vir-
tual processor. Here, the degree of virtualization
must be constrained by the memory overhead of
the extra space also. This situation can be mit-
igated somewhat by using techniques for stor-
ing ghost regions transiently in dynamic storage,
and using schemes to fuse the “touching” objects
that happen to reside on the same processor dur-
ing a load balancing era.

We next describe Charm++, a C++ based
programming system that supports this pro-
gramming model.

2.2 Charm++

The basic unit of parallelism in Charm++ is a
C++ object containing methods which may be
invoked asynchronously from other such objects
(which may reside on other processors). Such
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objects are called chares in Charm++.
Although Charm++ supports important con-

structs such as specifically shared variables, pri-
oritized execution, and object groups, from the
point of view of this paper, the most important
construct in Charm++ is an object array ([3, 4]).

A chare-array has a single global ID, and con-
sists of a number of chares, each indexed by a
unique index within the array. Charm++ sup-
ports 1D through 6-dimensional arrays (sparse
as well as dense). In addition, users may define
a variety of other index types on their own (for
instance, an Oct-Tree might be represented by a
chare array, where the index is a bit-vector rep-
resenting the position of a node in the tree).

Figure 4: Object Arrays

Figure 5: Object Arrays

As shown in Figure 4, the user thinks of the
array as a set of objects, and the code in these
objects may invoke methods of other array mem-
bers asynchronously. However, the system me-
diates the communication between the objects.

As a result, if the object moves from one proces-
sor to another, other objects don’t need to know
this. The system has automatic mechanisms
that efficiently forward messages when needed,
and cache location information so as to avoid for-
warding costs in most situations. ([4]). In addi-
tion to method invocation, chare arrays support
broadcasts (“invoke this method on all live ar-
ray members”) and reductions, which work cor-
rectly and efficiently in the presence of dynamic
creation and deletions of array members as well
as their dynamic migration between processors.

Chare Kernel, the C based version of Charm,
was developed before 1989 ([5]), while the C++
based version (Charm++) was created in 1992.
([6]). The C based version (with its notion of
object encoded as a global pointer, with a func-
tion to execute on the destination processor) has
similarities to nexus ([7]), except that nexus en-
tities were not migratable. Active messages and
message driven execution in Charm++ are quite
similar, althought the original notion of active
messages was interrupt based (and akin to an im-
plementation of inexpensive interrupts on CM-
5). Also, message driven objects of Charm++
are similar to the Actors model ([8]). How-
ever, Charm++ arose from our work on paral-
lel Prolog, and the intellectual progenitors for
our work included the RediFlow project of Bob
Keller ([9]), Our approach can also be consid-
ered a macro-data-flow approach. ([10]). Other
research with overlapping approaches include
work on Percolation and Earth multi-threading
system [11], work on HTMT and Gilgamesh
projects [12], and the work on Diva [13].

2.3 Adaptive MPI (AMPI)

In 1994, we conducted extensive studies ([14]),
and demonstrated that Charm++ had superior
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performance and modulartity properties com-
pared with MPI. However, it became clear that
MPI is the prevalent and popular programming
model. Although virtualization in Charm++
was useful, the split phase programming engen-
dered by its asynchronous method invocation
was difficult for many programmers, especially
in Science and Engineering. MPI’s model had
certain anthropomorphic appeal. The processor
sends a message, waits for a message, does some
computation, and so on. The program speci-
fies the sequence in which a processor does these
things.

Given this fact, we decided to take the vir-
tualization aspect of the Charm++ model, and
apply it to MPI, so MPI programs can be eas-
ily “converted” to our framework. The resultant
system is called AMPI. In AMPI, as in Charm,
the user programs in terms of a large number of
MPI “processes”, independent of the number of
processors. AMPI implements each “process” as
a user-level light-weight and migratable thread
as shown in Figure 6. This should not be con-
fused with a PThreads style MPI implementa-
tion. We can have tens of thousands of such MPI
threads on each processor, if needed, and the
context switching time is of the order of 2-5 mi-
croseconds on today’s machines. Migrating user-
level threads, which contain their own stacks and
heaps, and which may contain pointers to stack
and heap data, is technically challenging, but has
been efficiently implemented ([15]), based in part
on the isomalloc technique developed.([16]).

Migrating existing codes to AMPI requires
some simple, mechanical transformations to code
(because global variables cannot be shared be-
tween two threads running on the same pro-
cessors). To facilitate migration of applica-
tion codes in Fortran, we developed a source-
to-source translator called AMPIzer ([17]) based

Figure 6: AMPI implements MPI processes as
user-level migratable threads

on the Polaris compiler framework ([18]). AMPI
has been used to parallelize several applications,
including codes at the DOE supported Rocket
Simulation center at Illinois, and early versions
of a Computational Cosmology code (which was
converted to AMPI within one afternoon, sans
the optimizations that followed).

3 Benefits of Virtualization

Charm++ and AMPI are only examples of the
virtualization approach. Just as AMPI “virtu-
alizes” the MPI model, one can imagine creat-
ing virtualized programming models from exist-
ing programming models (such as GPShmem,
Global Arrays, and UPC, for example). In this
section we outline a large number of benefits that
acrue from virtualization. For ease of discussion,
we have grouped them into benefits due to:
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1. Better software engineering (3.1)

2. Message-driven execution (3.2)

3. Ability to dynamically map work to proces-
sors (3.3)

4. The principle of persistence (3.4)

3.1 Software Engineering Benefits

In software engineering, cohesion and coupling
are important concepts. Good software en-
gineering practice requires that program enti-
ties (codes/subroutines/data) should be coupled
only when there is a logical connection between
them. MPI’s processor-centric model often leads
programmers to violate these principles. The
simplest examples are in specifying the number
of processors to be used. A structured-grid ap-
plication may require a uniform 3D decomposi-
tion. An MPI program then requires that it be
run on a cubic number of processors (and often,
a power-of-two cubic number for other reasons!).
In contrast, in AMPI or Charm++, the program
may divide its work into logical entities (a cubic
number of virtual processors, or oct-tree nodes
containing fewer than K particles, for example),
and the physical number of processors is unim-
portant. Since there will typically be tens of VPs
on a physical processor (and as described later,
automatic load balancing will “pack” them uni-
formly onto processors), the performance will be
fine, even when no dynamic behavior is expected.

As another example, consider an early version
of the rocket simulation application: it consisted
of 2 parallel modules: RocFlo (Fluid simulation
of the burning gases in the Rocket interior) and
RocSolid (Structural dynamics of the solid fuel).
These were (derived from) independently devel-
oped codes. Since different mesh decomposition

Figure 7: Rocket simulation via virtual proces-
sors

programs were used by each module, the por-
tion of space simulated by Rocflo on processor i
had no logical connection with that simulated by
RocSolid on processor i. However, an MPI im-
plementation required them to be fused together
on each processor (Figure 7. An AMPI imple-
mentation, on the other hand, provided each
module with its own set of virtual processors,
and allowed for communication across them by
supporting inter-communicators across multiple
MPI_COMM_WORLDs. Among other benefits, this
allows the number of pieces of RocFlo to be de-
termined independently of that of RocSolid, and
the RTS is able to bring together (on one proces-
sor) pieces of Rocflo and Rocsolid that directly
interact (because they are physically abutting,
for example).

3.2 Message Driven Execution

Since there are multiple virtual processors
housed on each processor, it is necessary to have
a dynamic scheduler on each processor, as shown
in Figure 8. The scheduler works with a pool
of “messages”. It picks the next message from
the pool (in accordance with priorities associated
with messages, if any), identifies the charm++
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Figure 8: Message Driven Execution

object it is destined for, and invokes the desig-
nated method on it. The method runs to com-
pletion, producing other messages (method in-
vocations) for objects on this or another pro-
cessor. The scheduler then continues by select-
ing another message. If the message is for an
AMPI thread, it is inserted in the queue of re-
ceived messages, and the thread is awakened (i.e.
marked as ready, and inserted in the scheduler’s
queue).

Thus, no object (or VP) can hold the processor
idle while it is waiting for its message. Instead
the object that has a message waiting for it is al-
lowed to continue. This execution style is called
message-driven execution (MDE), and leads to
several key benefits.

3.2.1 Adaptive Overlap

One of the issues in MPI programs is that of
overlapping communication with computation.
When the program waits at a receive statement,
we’d like the message it is waiting for to have
already arrived. To achieve this, one tries to
move sends ahead and receives down, so that
between sends and receives one can get some
computation done, giving time for communica-
tion to complete. When multiple data items are

to be received, one has to make guesses about
which will arrive sooner, or use wild-card re-
ceives, which often break the flow of the program
([14]).

With MDE, adaptive overlap between com-
munication and computation is automatically
achieved, without programmer intervention.
The object or thread whose message has already
arrived will be automatically allowed to con-
tinue, via the message-driven scheduler.

This advantage is all the more stronger when
one considers multiple parallel modules (Figure
9). A, B and C are each parallel modules spread
across all processors. A must call B and C,
but there is no dependence between B and C.
In traditional MPI style programming, one must
choose one of the modules (say B) to call first,
on all the processors. The module may contain
sends, receives, and barriers. Only when B re-
turns can A call C on each processor. Thus idle
time (which arises for a variety of reasons includ-
ing load imbalance, and critical paths) in each
module cannot be overlapped with useful com-
putation from the other, even though there is no
depenendence between the 2 modules.

In contrast, with MDE, A invokes B on each
(virtual) processor, which computes, sends ini-
tial messages, and returns to A. A then starts
off module C in a similar manner. Now B and C
interleave their execution based on availibility of
data (messages) they are waiting for. This auto-
matically overlaps idle time in one module with
computation in the other, as shown in the Fig-
ure. One can attempt to achieve such overlap in
MPI, but at the cost of breaking the modularity
between A B and C. With MDE, the code in B
doesn’t have to know about that in A or C, and
vice versa.
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Figure 9: Modularity and Adaptive Overlapping

3.2.2 Predictability of Execution

The scheduler in Figure 8 knows which objects
(and which methods) it will execute next. Look-
ing at the next k items in the queue it can predict
what the next k objects will be. This ability to
predict next code and data to be accessed can be
very beneficial for the RTS. For example, we can
now automatically support out-of-core execution
([19]). The scheduler’s queue is used to prefetch
the next k objects from the disk into memory
(replacing others as necessary).

In processors-in-memory (PIM) style
PetaFLOPS class machines of the future,
this predictability can be used to prefetch data
(and even code) into a cache or RTS controlled
SRAM.

3.3 Dynamic and Flexible Mapping to
Processors

A virtualization based parallel programming sys-
tem is supported by a run-time system that pro-
vides mechanisms and strategies for migrating
the virtual processors among the real processors.
(As discussed earlier, both Charm++ and AMPI
share the same run-time system and provide mi-
gration mechanisms). This capability leads to
several benefits including effective use of clus-
ters that include desktop machines, changing the

set of processors used by a job at run-time, and
supporting automatic checkpointing. Automatic
dynamic load balancing also follows from this ca-
pability, but is discussed in the next subsection
since it benefits even more from another prop-
erty, the principal of persistence, discussed in the
next section.

3.3.1 Flexible Mapping on Clusters

Consider a parallel application running on a clus-
ter that includes some desktop machines. The
owner of a desktop might have allowed the ap-
plication to be run on their machine only as long
as they are not using it. When the owner starts
using the workstation, a program based on vir-
tual processors simply migrates them to the re-
maining processors, and continues execution un-
interrupted. ([20]).

Even if the desktop owner does not insist on
the parallel application vacating his workstation,
the application may still suffer significant perfor-
mance losses, when the owner starts running a
computationally significant application of their
own on that one processor. In a 16 processor
cluster, the parallel application will lose half of
one-sixteenth, or about three percent of the com-
pute power. However, because of the dependen-
cies between application components the entire
application can slowdown to about 50 percent of
its original speed. With migratable objects, run-
time system can migrate about half of the ob-
jects (actually, number of objects equaling half
of the computational load on that processor) to
other processors, and restore performance to al-
most 97 percent of the previous level ([20])

Often, a cluster is built by incrementally
adding new machines to it. Under these condi-
tions, the machines tend to be of different speeds.
The virtualization based run-time system sim-
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Phase 16P3 16P2 8P3, 8P2 8P3, 8P2
w/o LB w/ LB

Fluid update 75.24 97.50 96.73 86.89
Solid update 14.86 52.50 52.20 46.83
Pre-Cor Iter 117.16 150.08 149.01 133.76
Time Step 235.19 301.56 299.85 267.75

Table 1: Performance of Rocket Simulation on Turing Cluster

ply measures the speed of processors at the be-
ginning (or reads it from a configuration file),
and adjusts the allocation of objects to proces-
sors in accordance with their speeds. Table 1
shows this on an old cluster consisting of Pen-
tium 2 and Pentium 3 processors, running the
rocket simulation application. As can be seen,
AMPI achieves the optimal performance using
the mix of processors.

3.3.2 Changing the Set of Processors As-
signed to a Job

Probably one of the most dramatic uses of vir-
tualization is in changing the number of proces-
sors used by application at run-time. Consider a
parallel machine with a thousand processors run-
ning a job on 800. If a new job that needs 400
processors arrives, it will have to wait for the
first job to finish, while the system wastes 200
processors. With virtualization, our run-time
system is capable of shrinking the first job to
600 processors, by migrating objects away from
the 200 additional processors needed by the sec-
ond job. Further, when the second job finishes,
the system can expand the set of processors al-
located to the first job to the original 800 again.
We have already demonstrated a cluster sched-
uler ([21]) that makes use of this capability to
optimize its utilization, and response time. This
is especially useful for interactive parallel jobs,

which are slowly becoming popular (for exam-
ple, interactive molecular dynamics, or cosmol-
ogy analysis and visualization).

This capability is also useful for jobs that
themselves know when they need more or fewer
processors, based on their application’s dynamic
structure, as well as jobs that are perpetually
“hungry” for more processors, which are willing
to run in the background at a lower priority.

3.3.3 Automatic Checkpointing

Checkpointing is simplified considerably for ap-
plications using the virtualized run-time system.
After all, checkpointing is nothing but migrating
the virtual processor to the disk, and we already
have support for migration in the run-time sys-
tem. What is more, a job checkpointing on 2048
processors can be restarted on 1900 processors,
or 2500 processors if necessary. This is possible
because restarting a job simply involves migrat-
ing the objects from disk to the available set of
processors. Of course, several run-time struc-
tures must be properly restored, but this is done
by the run-time system writer once. ([22]).

3.4 Principle of Persistence

The Principle of Persistence is a heuristic that
can be thought of as the parallel analog of the
principle of locality that we “discovered” while
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examining the success of our runtime system for
dynamic load balancing. As you will see, this is
an obvious principle.

Principle of persistence: Once an appli-
cation is expressed in terms of its natural ob-
jects (as virtual processors) and their interac-
tions, the object computation times and commu-
nication patterns (number and bytes of messages
exchanged between each communicating pair of
objects) tend to persist over time.

This heuristics holds for most parallel appli-
cations, including many with dynamic behav-
ior. For example, some applications such as
those using adaptive mesh refinement may in-
volve abrupt but infrequent changes in these pat-
terns. Other applications such as molecular dy-
namics may involve slow changes in these pat-
terns. In either case, the correlation between
recent past and near future, expressed in terms
of interacting virtual processors, holds. In rare
cases, applications may involve rapid and large
changes, which can still be handled by our RTS
as best as the application programmer will be
able to handle it, by migrating work away from
busy processors as they are detected. (The obvi-
ousness of the principle arises from the fact that
most parallel applications are iterative in nature,
and the physical system being simulated change
gradually, due to numerical constraints).

The real benefit of this principle is that it al-
lows for measurement-based load balancing and
optimization algorithms (such as for communi-
cation libraries) that can adapt to application
behavior.

3.4.1 Dynamic Load Balancing

Armed with the principle of persistence, the
Charm RTS employs a measurement based load
balancing scheme. It instruments the RTS (with-

out user intervention) to collect statistics on each
object’s computational load and communication
patterns, to build a load database. A suite of
dynamic load balancing strategies (some central-
ized, some fully distributed, some incremental
and others periodic and comprehensive) can tap
into this database to make decisions about when
and where to migrate the objects.

Figure 10: Automatic Load Balancing in Crack
Propogation

An example of dynamic load balancing in ac-
tion is shown in Figure 10. An FEM-based
structural dynamics application is running on a
parallel computer. The y-axis shows its through-
put (i.e. the number of iterations completed
per second), while the x-axis shows the iteration
number. At timestep 37, the application experi-
ences an adaptive event (some new elements are
added as a result of a crack propagating into the
domain). At the next load balancing event (the
system is using a periodic load balancer), the
performance is brought back to almost the orig-
inal level, by migrating objects precisely from
the overloaded processors to others, based on the
measurement of load each object presents.

(This experiment used an artificial refinement
event. Real application will take much longer
to induce the refinement and insertion of new
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elements).

3.4.2 Communication Optimizations

Figure 11: All to all on Lemieux

Object communication patterns provide an-
other fertile ground for optimization by the
RTS. For example, we have developed a suite
of libraries that include several different algo-
rithms for common communication alogirthms
among objects (e.g. each-to-all-individualized
messages). The library provides a common in-
terface for these operations. However, at run-
time, based on its observation of the number of
bytes, number of objects, and number of proces-
sors involved (among other things), the library
may switch from one algorithm to another, and
tune an individual selected library’s parameters
to the prevailing communication conditions. It
can also take into account concurrently execut-
ing communication operations (say from other
modules) in making these decisions. We have
explored this approach in ([23]).

A recent example of optimizing performance
for an all-to-all operation is shown in Figure 11.

If the user provides control-points (“knobs”)
to the RTS to control the degree of virtual-
ization, the system can even optimize the de-

Figure 12: Pipelining

Figure 13: Effect of Pipelining

gree of pipelining. Manual optimization along
these lines is illustrated in Figures 12 and
13, which arose in a recent collaborative work
with QM/MM applications Scientists (Glenn
Martyna and Mark Tuckerman, authors of the
PinyMD ([24]). This code involved multiple con-
current 3D FFTs and the performance is clearly
affected by the degree of pipelining (number of
virtual objects per real processor) as seen in
the snapshots from our performance visualiza-
tion tool projections.
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4 Case Studies

Figure 14: Grainsize Analysis

One of the early applications developed us-
ing Charm++ is NAMD ([25, 26]). It is a pro-
duction quality molecular dynamics program for
biomolecules such as proteins, DNA and cell
membranes, as well as water molecules. Applica-
tions need to run for millions of timesteps, each
simulating a femtosecond in the life of the molec-
ular system, which typically consists of 10,000 to
several hundred thousand atoms. This makes it
a hard problem to scalably parallelize. In the
Charm++ based implementation, NAMD cre-
ates many computational objects (e.g. 30,000
objects of about 1 msec work each, in a recent
run). The load balancers maps these objects to
processors periodically, taking several complexi-
ties of the communication patterns involved into
account.

The details of the application parallelization
([25, 26]) are beyond the scope of this paper,
but we note here that object granularity often
becomes very important in such applications.
NAMD completes each timestep in 10-20 msecs
on the largest processor configurations we have
used. So, no single object can be allowed to be
large. Analysis tools in 2000 identified (See Fig.

Figure 15: Improved Performance Data

Figure 16: Namd2 Speedup on Lemieux

14) some objects with “large” execution times,
which were eliminated by increasing the degree
of virtualization in a systematic way, to lead to
a speedup of about 1250 on 2000 processors (See
Fig. 15), with 40 GF performance, leading to a
finalist position for the Gordon Bell (special cat-
egory) award at SC2000. Current performance
of the application is of the order of 0.65 Ter-
aFLOPS (See Fig. 16), on about 2000 pro-
cessors of the HP/Compaq LeMieux machine at
Pittsburgh Supercomputing Center (which con-
sists of about 3000 processors), even though the
newer version includes Particle-Mesh Ewald, an
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Figure 17: Time per step for a scaling paral-
lel benchmark, with a fixed 65,536 polygons per
processor.

alogrithm that requires 3-D FFT.

Another example of the utility of the virtual-
ization is provided by Orion Lawlor’s work on
collision detection [27] (or “contact” detection
in the structural dynamics parlance). We con-
centrated on the problem of contact detection,
leaving aside the domain dependent problem of
how to deal with the contact to the application
program. Virtual processor based collision de-
tection algorithms divide space into voxels, and
sends each geometric surface object (say a trian-
gle) to all the voxels it intersects with. Although
many voxels that are not near the boundary of
potentially colliding surfaces get no triangles at
all, the algorithm is able to scalably detect col-
lisions at the speed of a few microseconds per
triangle involved. Performance data from a re-
cent paper [27] is shown in Figure 17.

5 Summary and Future Issues

We described the virtualization model, its cur-
rent state of art in terms of Charm++ and AMPI
systems, and applications, and illustrated the
benefits of this approach. Virtualization leads to
better software engineering for parallel programs
because it frees one from organizing applications
in terms of the number of physical processors.
Virtualization support leads to message driven
execution, which promotes modularity, adap-
tively overlaps computation and communication
and engenders execution predictability. Virtu-
alization allows the RTS to assign and reassign
virtual processors (objects or AMPI threads) to
processors at runtime, leading to better perfor-
mance of time-shared clusters, shrinking-and-
expanding the sets of processors assigned to a
job, and support for automatic checkpointing.
The Principle of Persistence can be observed to
hold for most parallel programs when expressed
in terms of their natural pieces (as virtual proces-
sors). This leads to measurement based load bal-
ancing, and learning algorithms, including com-
munication libraries that can tune their behavior
to the application’s dynamic and evolving char-
acteristics. We alluded to a few applications be-
ing developed using this approach and the ex-
cellent performance results we have obtained so
far.

The promise of the virtualization model is yet
to be fully realized. More research is needed on
strategies (including scalable load balancers, al-
ternative communication libraries, compiler sup-
port for optimization and ease of use and more
aggressive use of prefetching, for example).

Some directions of future research we are ex-
ploring include:

1. Domain specific frameworks: Referring back
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Figure 18: Component Frameworks

to the “parallel programming approaches”
diagram we started with (See Fig 18),
we believe that to go a higher level from
Charm++/AMPI, the most fruitful way
is to go in the horizontal direction, to
more specialization (rather than vertically
to automatic parallelization for general pur-
pose sequential programs). To this end,
we are building frameworks for structured
and unstructured grid computations [28],
AMR, and particle based computations,
built on top of the virtualization model of
Charm++.

2. Components and Orchestration: Ability to
connect independently developed parallel
components quickly and efficiently is crucial
for modular development of complex appli-
cations. The CCA architecture ([29]) is a
major effort in this direction. The virtu-
alization model fits very well in this con-
text, because of its flexibility in supporting
“loose” communication among its compo-
nents (Figure 5). We have started building
a framework called Charisma ([30]) to this
end. Further we are developing “orchestra-
tion languages” that express the control and
data flow of a multi-component application,
spanning over several sets of virtual proces-
sors across multiple independent modules.

Further, cutting across all the set of ap-
plications we are collaborating on, we are
building a “standard library” of virtualized
parallel components.

3. PetaFLOPS and PIM computers: The
virtualization model is especially suited
for PIM based and other massively par-
allel machines being contemplated today.
We are building a programming environ-
ment for the Blue Gene (BG/L) Machine,
which is likely to have 64K dual-processor
nodes, and for a conceptual design for Blue
Gene/Cyclops, the million processor ma-
chine, with many simple mutlithreaded pro-
cessors on a chip. We expect to collaborate
with IBM and other researchers to develop
and test such programming models and
applications, using a emulation/simulation
system we have built [31, 32].

4. Virtualizing other models.: To allow for
modules written in different parallel pro-
gramming languages to coexist, we built a
framework called Converse [33]. We’d like
to invite other researchers to use Charm++
and its underlying Converse framework to
virtualize their languages, and experiement
with multi-paradigm parallel program-
ming, where each module is written in the
paradigm best suited for its algorithms, and
pre-written libraries can be used irrespec-
tive of the parallel language (or paradigm)
they are written in. We are beginning a
small effort of our own in this direction.
(http://charm.cs.uiuc.edu/research/converse).

Virtualization based approaches are mature,
and ready for the next generation application
machines and applications. Further collabora-
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tions to explore this model jointly, as a commu-
nity, will be very fruitful.
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Parallel Framework for Explicit FEM. In
M. Valero, V. K. Prasanna, and S. Va-
jpeyam, editors, Proceedings of the Inter-
national Conference on High Performance
Computing (HiPC 2000), Lecture Notes in
Computer Science, volume 1970, pages 385–
395. Springer Verlag, December 2000.

[29] Scott Kohn, Gary Kumfert, Jeff Painter,
and Cal Ribbens. Divorcing language de-

pendencies from a scientific software library.
In Processings of the 10th SIAM Converence
on Parallel Processing for Scientific Com-
puting. Society for Industrial and Applied
Mathematics, 2001.

[30] Milind A. Bhandarkar. Charisma: A Com-
ponent Architecture for Parallel Program-
ming. PhD thesis, Dept. of Computer Sci-
ence, University of Illinois, 2002.

[31] Neelam Saboo, Arun Kumar Singla,
Joshua Mostkoff Unger, and L. V. Kalé.
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