
A Malleable-Job Systemfor TimesharedParallel Machines

LaxmikantV. Kalé,SameerKumar, JayantDeSouza
Departmentof ComputerScience

Universityof Illinois at Urbana-Champaign�
kale,skumar2,jdesouza � @cs.uiuc.edu

Abstract

Malleable jobs are parallel programs that can
changethenumberof processorsonwhich they areexe-
cutingat run timein responseto an externalcommand.
Oneof theadvantagesof such jobs is that a job sched-
uler for malleablejobscanprovideimprovedsystemuti-
lization andaverageresponsetimeover a schedulerfor
traditional jobs. In this paper, we presenta program-
ming systemfor creating malleablejobs that is more
general than other current malleablesystems.In par-
ticular, it is not limited to the master-worker paradigm
or theFortran SPMDprogrammingmodel,but canalso
support general purposeparallel programs including
thosewritten in MPI and Charm++, and has built-in
migrationandload-balancing, amongotherfeatures.

1. Intr oduction

Current multiprogrammedparallel systemsaim at
maximizingthroughputandminimizing idle time. Un-
derspace-sharingschedulingpoliciesincomingjobsare
assignedto a subsetof processors.Therigid andinflex-
ible natureof thejobscangreatlyreducethethroughput
of the parallel system. For examplea parallel system
with 100 processorsrunninga single64 processorjob
mustmake a new job that requires40 processorswait
for thecompletionof thefirst job. This wastagecanbe
avoided if othersmallerjobs are readyto be executed
[18]. But this may not always be the case,leadingto
under-utilization of thesystem.Malleablejobsprovide
anexcellentsolutionto this problem.

A usefulclassificationof paralleljobsfrom theview-
pointof schedulingis providedin [6]. Thepaperdivides
paralleljobsinto four classes(i) Rigid, (ii) Moldable(iii)
Evolving, and(iv) Malleable. Rigid jobsrequirea fixed
numberof processorsand cannotexecuteon fewer or
moreprocessors.Moldablejobsareflexible in thenum-
ber of processorsat the time the job starts,but cannot

be reconfiguredduring execution. Both Evolving and
Malleablejobscanchangetheir processorrequirements
during execution. For evolving jobs [8, 7, 23] changes
are applicationinitiated. If the systemcannotsatisfy
the job’s demand,the job cannotproceed. For mal-
leablejobs, the decisionto changethe numberof pro-
cessorsis madeby an external job scheduler. The dis-
tinction betweenevolving andmalleablejobs is fuzzy.
For example,in [8] theevolving job framework supports
specialperformancemonitoringinfrastructurewhichen-
ablesprogramsto decidewhenthey shouldchangethe
numberof processorsthey are running on. Although
thereis no externalscheduler, jobs reactto the system
load.Therefore,weusethetermAdaptiveJob to denote
jobsthataremalleableand/orevolving.

This paperpresentsa framework thatsupportsadap-
tive jobs. Both traditionaladaptive MPI programsand
adaptiveprogramswritten in Charm++[11, 14], aparal-
lel objectlanguage,havebeenimplemented.This paper
alsopresentsanAdaptiveJobSchedulerwhichmanages
theseadaptive jobssoasto maximizethe utilization of
the systemand also improve the responsetime of the
jobs. In the above example,our systemwould enable
job B to be startedafter job A hasbeenshrunkto 60
processors,increasingutilizationof thesystem.

Figure 1 shows the systemcomponents: (1) the
Scheduler, (2) the parallel job runtime support(RTS)
which enablesadaptive migration, and (3) the job-
submissionclient that remotelysubmitsjobs andmon-
itors them. The scheduler(one per workstationclus-
ter or parallelmachine)runsasa server listeningon a
well-known port. A client connectsto it and requests
executionof a job. After somenegotiation,the sched-
uler might acceptthe job, which it startson the cluster
andmanagesvia a network connection. Processoras-
signmentis communicatedby theschedulerto theRTS
componentof eachjob.

With the trend towards supercomputersbecoming
centersthat dispersecomputepower for profit, adap-
tive jobs and schedulerscould play an importantrole.

Parallel System
Processors of the

Scheduler

Processor Assignment
Handler

Send Processor Assignment Vector (1 1 0 0)

Submit
Request

Client

Start Job J1 /

Active Processors for J1

Passive Processors for J1

Figure 1. System Components.

In this scenario,userssubmit jobs from their desktop
computers,typically via webbrowsers.Userswill have
certainquality-of-servicerequirements,suchasthe to-
tal memoryrequirement,anddeadlines.TheComputa-
tional Grid will run the job on someavailableparallel
computer, uploadfiles to it, anddownloadresultsback
to thedesktop,whennecessary. Theparallelcomputers
themselveswill be run as for-profit centerswhich will
charge for the computepower usedby applicationsin
somefashion.1

The restof this paperis organizedas follows. The
next sectiondescribesrelatedwork in developingmal-
leable jobs. Section3 describesthe adaptive runtime
systemthat can redistribute work (MPI threadsor ob-
jects)to a given setof processorson demand,andalso
presentsmeasurementsof theoverheadandinterference
of adaptive jobs. Section4 presentsan Adaptive Job
Schedulerthat shrinks and expandsrunning adaptive
jobsto ensurehighutilization. Thesectionalsopresents
performanceresultsof our schedulerthat show an im-
proved averageresponsetime and systemutilization.
We then presentsomeideasfor future work and con-
cludein Section5.

2. RelatedWork

Malleableand evolving jobs have beenextensively
studiedby theschedulingandload-balancingcommuni-
ties. Severaladaptive systemshave beenimplemented,

1OnecanthenimaginethatfundingagenciessuchasNSFwill pay
thecentersindirectly, by fundingapplicationscientistsfor thecompute
power they plan to use. This may bring aboutadditionalefficiencies
in privatemanagementof suchcenters.

many of whichareprototypesdevelopedfor experimen-
tal purposes.Most suchsystemsbelongto oneof the
following categories:

1. Master-slaveprogrammingmodel(alsocalledtask-
queue, master-worker) in which the granularity
at which reconfigurationtakes place is a task or
thread.[24, 23, 9]

2. Shared-memorymodel in which automaticcom-
piler loop-level parallelismis exploited[8, 7]. The
granularityof work distribution is a set of itera-
tions.

3. FortranSPMD data-partitioningstyle of program-
ming, wherethedatais partitionedacrossthepro-
cessors,anda reconfigurationinvolvesthe global
redistributionof data.[17, 5]

We believe that theseprogrammingmodelsareun-
necessarilyrestrictive,especiallyfor dynamic,irregular
applications,andforcetheprogrammerto useaspecific
programmingmodel.

SomeotherrelatedsystemsareDome[19] andCon-
dor [16]. Dome [19] is an object orienteddistributed
framework whereapplicationsareload-balancedby mi-
gratingparts(i.e. datamembers)of objectsbetweenpro-
cessorsin order to improve the overall executiontime.
A class-specificload balancerhas to be implemented
for eachclass.Condor[16] supportsruntimemigration
of a processfrom one workstationto anotherthrough
checkpointing. This systemonly migratessequential
programsexecutingononeprocessor. CARMI [23], ref-
erencedabove in the master-slave model, is basedon
Condor.

Ouradaptivesystem,whichis basedontheCharm++
runtime system,allows the userto selecttheir desired
programmingmodel,evento theextentof implementing
differentpartsof their programin differentmodels.We
provide the MPI model (without requiring the master-
slave style), and we also provide the object-oriented,
message-driven model of the Charm++programming
language.The systemis extendableandmoremodels
canbe added.In both models,MPI andCharm++,the
granularityof a taskcanbeverysmall.Thesystemhan-
dlesthe mappingof work to processors,measurement-
basedload-balancingandmigrationof objects/threads.
Theruntimesystemalsorespondsto schedulerrequests
for dynamicre-sizingin a transparentmanner.

Much work has beendone on schedulingadaptive
jobs. In generalschedulersfor adaptive jobs perform
betterthanthosefor rigid jobs[24, 15, 21, 10, 20, 8, 7].
Variouscriteria have beenusedto comparescheduling
algorithms,includingsystemutilization,meanresponse
time,meetingreal-timedeadlines,etc. (As anaside,it is

interestingto notethatbackfilling[18] becomeslessrel-
evantfor adaptivejobs,sincetheexisting jobscaneither
expandto occupy holes,or permit a new job to occupy
the hole andexpandlater.) Although many interesting
schedulingalgorithmsarepresented,theperformanceof
eachseemsto dependontheworkload(sizeof programs
in time and space),systemload, and reconfiguration
overheads[9, 3]. We concludethat dynamicequipar-
titioning [21, 3] is a reasonablygoodalgorithm,andwe
currently usea variant of equipartitioningto schedule
adaptive jobsfor our system.

3. AdaptiveJobs

An adaptivejob is aparallelprogramthatcandynam-
ically (i.e. at run-time)shrinkor expandthenumberof
processorsit is running on, in responseto an external
commandor an internalevent. The numberof proces-
sorscanvary within the boundsspecifiedwhenthe job
is started. Typically, the userwill specify the bounds
taking into considerationmemoryusageandefficiency
of thejob on agivennumberof processors.

3.1 MPI AdaptiveJobs

Traditional MPI jobs, using a conventional imple-
mentationof MPI, are incapableof adaptive behavior.
We useanadaptive implementationof MPI (AMPI [1])
to dynamicallychangethe set of processorsbeing ac-
tively usedby a job. To useAMPI, a Fortran90 MPI
programdoesnotneedto bechangedatall. It is prepro-
cessedby a sourceto sourcetranslatorandlinked with
the AMPI library, insteadof the usualMPI library. C
basedMPI programshave to bemodified,but themod-
ification is simpleandmechanical:All globalvariables
mustbe encapsulatedin a dynamicallyallocatedstruc-
ture. This is necessarybecauseAMPI allows multiple
virtual processesper processor, andeachprocessmust
have its global variablesseparatefrom the others. For
Fortran90,our preprocessormakesthe necessarytrans-
formation. Similar translationcan also be donefor C
programs,with additional compiler-preprocessorsup-
port.

AMPI [1] programsconsistof a largenumberof vir-
tual (or logical) MPI processes, implementedas user-
level threads.The numberof suchthreadsis typically
much larger thanthe numberof processors.Userpro-
gramsarenot awareof thephysicalprocessoron which
eachthreadis runningandcommunicateusingtherank
of thecorrespondingMPI virtual processonly. Thisvir-
tualizationprovides the systemthe ability to dynami-
cally adaptits behavior.

In additionto AMPI, adaptive jobsmayalsobewrit-
tenusingCharm++,aparallelC++ systemthatsupports
virtualizationanddatadrivenobjects[12].

3.2 The Runtime System

Adaptive programs(both AMPI and Charm++)are
implementedon top of the Charm++[13] runtimesys-
tem. Charm++provides a sophisticatedload balanc-
ing framework. The load balancingframework keeps
track of the load presentedby eachthreadandobject,
andwhentriggeredby eitheraninternalor externaltrig-
ger, redistributesthe threadsandobjectsto balancethe
load. AMPI usesa sophisticatedschemeto permit mi-
grationof userlevel threads,asdescribedin [1]. The
load balancingframework also supportsplugin strate-
giesthat take relative processorperformanceandback-
groundloadinto account.Somoreloadwill beallocated
to fasterprocessorsand/or processorswith low back-
groundload.

We modifiedthis framework sothat it acceptsa pro-
cessormap and allocateswork to only the processors
enabledin theprocessormap.Thecurrentimplementa-
tion usesa centralizedloadbalancerandloadbalancing
is doneon ‘processor0’ by default. If ‘processor0’ is
not set in the processormap the first processorin the
processormapbecomesthenew loadbalancer.

Whena new paralleljob is createdit is startedon all
theprocessorsin thesystembut loadis only allocatedto
theprocessorsenabledin theprocessormap(if thenum-
berof processorsis large, the job couldbestartedon a
partitionbut theexpansionof thejob wouldberestricted
to thatpartition).Therun-timesystemmapsthethreads
andobjectsto physicalprocessorsunderthecontrolof a
loadbalancer.

Whentheprocessormapis changedeitherby theap-
plication or by an external job schedulerthe load bal-
ancingframework triggersa thread-migrationphaseto
move the threadsout from the vacatedprocessors.A
skeletonprocessis left behindon eachvacatedproces-
sor to forward messagesmeantfor objects/threadsthat
werepreviouslyhousedonthatprocessor. Theoverhead
of this processis very small andconsistsof a transient
periodof forwardingmessages,andperiodic(but nomi-
nal)participationin globaloperationssuchasreductions
andloadbalancing.Theabove featuresof the loadbal-
ancingframework enableevolving programsto beeasily
written.

We use the Converse[13] client-server interface,
which allows anexternalclient to inject a messageinto
a running parallel applicationover the network, to in-
form theloadbalancermodulewhentheprocessormap
changes.Thenew processormapis sentto theloadbal-

ancingframework by the Adaptive JobScheduler. As
in thecaseof evolving jobsthe loadbalancertriggersa
thread-migrationphaseto movethethreadsout from the
vacatedprocessorsandleavesaskeletonprocessbehind
on thevacatedprocessors.

Two questionsnaturallyariseaboutthe overheadof
this method:(1) how quickly canwe shrink(or expand)
a job? and (2) how much interferencedo the residual
processescauseto theperformanceof anotherjob onthe
sameprocessor?Wenow presentexperimentalresultsto
quantitatively answerthesequestions.

3.3. Performance

To testour Adaptive Jobsystem,we conductedsev-
eral experimentson the NCSA Platinum Cluster (a
Linux clusterwith 512 dual-processor1 Ghz Pentium
III nodesconnectedby Myrinet) andthePSCTCSclus-
ter (which consistsof 750 quad-processorAlphaServer
systemsrunningTru64 UNIX andconnectedby elan).
The benchmarkadaptive job we usedwas a molecu-
lar dynamics(MD) program(a simplified version of
NAMD[2]). We found that two factorsaffected the
shrink/expandtime of theadaptive jobs. Thefirst factor
is the migrateddatasize, which is theamountof mem-
ory perprocessorthatneedsto bemigratedwhenthejob
shrinksor expandsandthesecondfactoris thenumber
of processorsallocatedto thejob.

So we performedtwo setsof experimentsin which
we variedoneof the above mentionedtwo parameters
while keepingthe otherfixed. In the first setof exper-
imentsthe numberof processorsis varied for two mi-
grateddatasizesof 1MB and10MB respectively (total
memorysizesbeing6MB and60 MB perprocessor, the
additionalmemoryin excessof migrateddatasizewas
usedby theMD programfor messagingandbuffering).
Eachrow in theTables1, 2, 3, 4 presentsboththeshrink
andexpandtimes; e.g. it takes86 ms to shrink a job
from 128 to 64 processorson the platinumclusterand
67.6ms to expandit backto 128 processors.The sec-
ondsetof experimentsvarythemigrateddatasizefor 16
and64processors;Figure2 shows theresults.

As seenin Tables1, 2, 3, 4 andFigure2, the adap-
tation time is small andeasilyscalesto 128 processors
with a total migrateddatasize of 1.28 GB (Tables2,
4), thusmakingit feasibleto shrinkandexpandjobsat
eachschedulingdecision(whichtypically occursseveral
minutesapart).2

Whenshrunk,thejob leavesaresidualprocessonthe
processorsit vacatesasdescribedin Section3.2. Fig-

2We are not sure about the reasonsfor the irregular pattern in
shrink/expandtimes.We think it might have to do with network con-
gestion,sincewedid not run thesystemin dedicatedmode.

Processors ShrinkTime (ms) ExpandTime(ms)
128to 64 86.0 67.6
64 to 32 74.3 57.3
32 to 16 72.2 50.4
16 to 8 75.0 54.2
8 to 4 65.7 49.7

Table 1. MD Program with a 1MB migrated
data size on NCSA Platin um

Processors ShrinkTime (ms) ExpandTime(ms)
128to 64 614 502
64 to 32 660 538
32 to 16 696 506
16 to 8 594 461
8 to 4 564 489

Table 2. MD Program with a 10MB migrated
data size on NCSA Platin um

Processors ShrinkTime(ms) ExpandTime(ms)
256to 128 253.3 84.4
128to 64 165.1 90
64 to 32 256.4 182.1
32 to 16 375.4 261.7
16 to 8 185.4 118.7

Table 3. MD Program with a 1MB migrated
data size on PSC TCS

Processors ShrinkTime (ms) ExpandTime(ms)
128to 64 2116 790.2
64 to 32 766.8 874
32 to 16 637 516.2
16 to 8 559.6 382

Table 4. MD Program with a 10MB migrated
data size on PSC TCS

#Jobsin thesystem PerformanceCost
2 1.98%
4 1.43%
8 3.24%

Table 5. Adaptive Job Performance Cost

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35 40 45 50

S
hr

in
k/

E
xp

an
d

T
im

e
(m

s)

�

Migrated Memory per Processor (MB)

16 to 8 Processor Shrink Time
8 to 16 Processor Expand Time
64 to 32 Processor Shrink Time

32 to 64 Processor Expand Time

Figure 2. Shrink and Expand Times on the
Platin um Cluster at NCSA

0

20

40

60

80

100

120

0 20 40 60 80 100 120

P
ro

ce
ss

or
 U

til
iz

at
io

n
(%

)

Time (s)

MD Job Utilization

Figure 3. Residual Load after Shrinking.

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350

Job1: Utilization
Job2: Utilization

Figure 4. Proof of Concept of
Shrink/Expand.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Jo
b

T
hr

ou
gh

pu
t (

cy
cl

es
/s

)

�

Time (s)

Adaptive Job on 16 processors

Figure 5. Job Throughput for an Adaptive
Job

ure3 shows the loadon oneof the processorsafter the
job hasbeenvacatedat time 38. This loadis zeromost
of thetimebut hasperiodicpeaksof about2%. Figure5
shows the throughputof anotheradaptive job running
on16processorsafterit hasbeenshrunkto 8 processors
andthenexpandedto 16 processors.Figure4 shows the
utilization of a processorby two adaptive jobs. When
Job2arrives, the Adaptive Job Schedulerfirst shrinks
Job1andthenstartsJob2. In this way the shrinkingof
Job1is overlappedwith the start up time of Job2and
loadsharingbetweenthejobsis minimized.WhenJob2
finishes,the schedulerasksJob1to expand. Thus,de-
spitethe presenceof Job1’s residualprocess,Job2gets
mostof theCPU.Apartfrom occupyingvirtual memory,
theimpactof residualprocessesis very minor. We plan
to do somework on eliminatingthem.

Table5 shows theperformancedropdueto theinter-
ferenceby otheradaptive jobs. The tablepresentsthe
performancecost of running two 8-processor, four 4-
processorandeight 2-processoradaptive jobs on a 16
processorcluster, as a percentincreasein total execu-
tion time, e.g. running two 8-processoradaptive jobs
togethertakes1.98percentmoretime thanrunningtwo
8-processorrigid jobs. As can be seenin Table 5 the
lossof performanceis very smallevenfor a reasonable
numberof jobspresentin thesystem.

4. The Adaptive Job Scheduler

To test our Adaptive Job Systemwe developedan
Adaptive Job Scheduler. In this paperwe presentre-
sults from our Adaptive Job Schedulerwith a simple
schedulingstrategy which is a variantof equipartition-
ing [21, 3, 24, 9]. Eachincomingjob specifiesthemin-

imum andmaximumnumberof processorsit canuse.
Whenanew job arrives3, theschedulerre-calculatesthe
numberof processorsallocatedto eachrunningjob. All
jobs,includingthenew one,areallocatedtheirminimum
numberof processors.Leftover processorsare shared
equally, subjectto eachjob’smaximumprocessorusage.
If it is not possibleto allocatethenew job its minimum
numberof processors,it is enqueued.Whena running
job finishes,the schedulerappliesthe above algorithm
to eachjob in thequeueagain.

After runningthis algorithmsomejobsmightshrink,
somemightexpand,andsomemightremainunchanged.
The resultsare communicatedto the running jobs by
sendingeacha bit-vectorof the processorsavailableto
thejob. Thejobswill thenresizethemselves.

The study in [3], presentsthe performancegainsof
thedynamicequipartitioningstrategy, with anoverhead
of a 5 secondstall for eachreconfiguration.Basedon
theperformancedatapresentedin 3.3 our systemcom-
fortably meetsthe 5 secondrequirementfor mostjobs.
We will also show in the next sectionthat the simple
schedulingstrategy mentionedabove alsoprovidesim-
proved performanceover traditional First Fit queuing
systems(suchasDQS[4], PBS[22], etc.)Ourscheduler
infrastructureallows us to plug in differentscheduling
strategies, and more sophisticatedstrategies are being
explored.

4.1. Adaptive Job Scheduler Performance Re-
sults

To demonstratetheeffectivenessof ourAdaptiveJob
Systemwe performedexperimentson a parallelLinux
cluster[25]. Theseexperimentswereperformedsepa-
ratelyfor bothadaptiveandtraditional(rigid) jobs. The
benchmarkprogramusedfor the experimentswas the
sameMD programdescribedin Section3.3,but with a
smallerproblemsizeof 50,000atoms(about5MB total
memory). The programtakesapproximately64.5 sec-
ondsto complete100iterationson64processors.It uses
a naive parallelalgorithm,andhasa sub-linearspeedup
characteristic,as shown in Figure 6. We usedit as a
realisticexampleapplication.

4.1.1 Experiments on the Linux Cluster

The experimentswere performedon a Linux cluster
with 32 dual 1 GHz PentiumIII nodesconnectedby
100 Mbps Ethernet.A randomjob generatorwasused
to fire jobs to the schedulerand job arrival was Pois-
son distributed. Each job submissionran the bench-
mark programmentionedabove for different number

3Onaproductionsystem,thefrequency of job arrivalsis oneevery
severalminutes.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

S
pe

ed
up�

Processors

Benchmark Application

Figure 6. Benc hmark Program Speedup

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

M
ea

n
R

es
po

ns
e

T
im

e
(s

)

�

Load Factor

Adaptive Jobs
Traditional Jobs

Figure 7. Mean Response Time on the
Lin ux cluster with benc hmark application

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

S
ys

te
m

 U
til

iz
at

io
n

�

Load Factor

Adaptive Jobs
Traditional Jobs

Figure 8. System Utilization on the Lin ux
cluster with benc hmark application

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1

M
ea

n
R

es
po

ns
e

T
im

e
(s

)

Load Factor

Adaptive Jobs
Traditional Jobs

Figure 9. Mean Response Time (MRT) for
sim ulated jobs with sub-linear Speedup

of iterations. The numberof iterations with an ex-
ponentiallydistributed with a meanof 100 iterations,
to model an exponential service time. The experi-
mentscomputedthemeanResponseTimeandthemean
SystemUtilization. All experimentshad 50 job ar-
rivals and the resultsare presentedin Figures7 and
8. Here �	� is the meanload factor (i.e. �	��
���������������������� ���"!#�$���&%('*)�+��,�-��.�.���+(.�/

, where � is the
meanarrival rate). The traditionaljobs weresubmitted
to a schedulerthat emulatestraditionalschedulerslike
PBS[22] andDQS[4]. Adaptivejobsweresubmittedto
ourAdaptiveJobScheduler.

In theseexperimentstheminpe(minimumnumberof
processorsrequestedby eachjob) of theadaptive jobsis
uniformly distributedfrom 1 to 64 andthemaxpeis set
to 64. For thetraditionaljobsthethenumberof proces-
sorsis uniformly distributedbetween1 and64.

4.1.2 Simulations

We believe that the performanceof the Adaptive Job
Systemwould improve with the numberof jobs sub-
mitted. So we performedsimulationsto computethe
meanResponseTime and the meanSystemUtilization
after10,000job submissions.Thesimulationsmodeled
aclusterwith 64processorswith anAdaptiveJobSched-
uler anda Traditional JobScheduler. The simulations
usedthesamerandomnumbergeneratorfor generating
job arrival timesandexecutiontimesastheLinux clus-
terexperiments.Thesimulationsalsomodeledthesame
benchmarkprogrammentionedabove.Theresultsof the
simulationsareshown in Figures9 and10whichpresent
the meanresponsetime andthe meanutilization of the
systemrespectively, for differentloadfactors.Thesim-
ulationsreflect the long-termsteadystateperformance

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

S
ys

te
m

 U
til

iz
at

io
n

�

Load Factor

Adaptive Jobs
Traditional Jobs

Figure 10. System Utilization for sim ulated
jobs with sub-linear Speedup

gainsour AdaptiveJobSystem.

5. Summary and Future Work

We describedthemotivation,design,andimplemen-
tation of an adaptivejob system,andan Adaptive Job
Schedulerfor parallelmachines.Adaptive applications
canbe written in a varietyof languagesincludingMPI
andCharm++.Theadaptivesystembuilds upona mea-
surementbasedload balancingsystem. The original
loadbalancers,whichaimedat resolvingapplicationin-
ducedloadimbalances,wereextendedto shrink,expand
or to changethesetof processorsallocatedto ajob. This
is accomplishedby migratinguserlevel entities(suchas
MPI threadsand Charm++objects)acrossprocessors.
Mechanismsfor controllingthebehavior of theloadbal-
ancervia bit vectorsof available processorswere im-
plementedandvalidated.We alsodescribedandimple-
menteda simplejob schedulingstrategy, andpresented
someperformancedata.

The systemdescribedis a part of a wider Faucets
project,which aimsat supportingthemetaphorof com-
puting power as a utility. Our future work will in-
cludeexpandednotionsof quality-of-servicecontracts,
andcorrespondinglysophisticatedschedulingstrategies
that attemptto optimize more complex utility metrics
than just systemutilization. The current systemhas
beentestedon clustersof workstations. We plan to
port andevaluatethe systemon dedicatedparallelma-
chines,suchasthe IBM SP, which allows socket based
communicationwith outsideprocesses.We plan to uti-
lize Globus components,andmake the job schedulera
Globus server. We also intend to develop techniques
to eliminatethe residualprocessesleft behindwhenan

adaptive job vacatesa processor, in orderto reducethe
admittedlytiny residualload. We expectour scheduler
to bein productionuseonthe400processorCSEcluster
at Illinois for runningASCI CenterandCSEjobs.

The software can be downloadedat our website:
http://charm.cs.uiuc.edu/.and a demonstrationof the
Faucetsproject is also available by clicking on the
Faucetslink.

References

[1] M. Bhandarkar, L. V. Kale, E. de Sturler, and J. Hoe-
flinger. Object-BasedAdaptive LoadBalancingfor MPI
Programs. In Proceedingsof the International Con-
ferenceon ComputationalScience, SanFrancisco,CA,
LNCS2074, pages108–117,May 2001.

[2] J. A. Board, L. V. Kalé, K. Schulten,R. Skeel, and
T. Schlick. Modeling biomolecules: Larger scales,
longerdurations.IEEE ComputationalScienceandEn-
gineering, 1(4),1994.

[3] S.-H. Chiangand M. K. Vernon. Dynamic vs. static
quantum-basedparallel processorallocation. In D. G.
Feitelson and L. Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, volume 1162 of
Lecture Notes in ComputerScience, pages200–223.
Springer-Verlag,1996.

[4] D. W. Duke, T. P. Green,andJ. L. Pasko. Researchto-
warda heterogenousnetworkedcomputingcluster:The
distributedqueueingsystemversion3.0. Technicalre-
port,FloridaStateUniversity, May 1994.

[5] G. Edjlali, G. Agrawal, A. Sussman,andJ.Saltz. Data
parallel programmingin an adaptive environment. In
Proceedingsof the9thInternationalParallel Processing
Symposium, 1995.

[6] D. G. Feitelson and L. Rudolph. Toward conver-
gencein job schedulersfor parallelsupercomputers.In
D. G. FeitelsonandL. Rudolph,editors,JobScheduling
Strategiesfor Parallel Processing, volume1162of Lec-
ture Notesin ComputerScience, pages1–26.Springer-
Verlag,1996.

[7] M. W. Hall andM. Martonosi. Adaptive parallelismin
compiler-parallelizedcode. Concurrency: Practiceand
Experience, 10(14):1235–1250,1998.

[8] S. Ioannidis, U. Rencuzogullari, R. Stets, and
S. Dwarkadas. CRAUL: Compiler and run-time inte-
grationfor adaptationunderload. Journal of Scientific
Programming, Aug. 1999. Invited paper.

[9] N. Islam, A. Prodromidis, and M. Squillante. Dy-
namic partitioning in different distributed memoryen-
vironments. In Job SchedulingStrategies for Parallel
Processing, volume1162of Lecture Notesin Computer
Science. Springer-Verlag,1996.

[10] Jansen and Porkolab. Linear-time approximation
schemesfor schedulingmalleableparallel tasks. In
SODA: ACM-SIAMSymposiumon DiscreteAlgorithms
(A Conferenceon Theoretical andExperimentalAnaly-
sisof DiscreteAlgorithms), 1999.

[11] L. Kalé and S. Krishnan. CHARM++: A Portable
ConcurrentObjectOrientedSystemBasedon C++. In
A. Paepcke, editor, Proceedingsof OOPSLA’93, pages
91–108.ACM Press,September1993.

[12] L. Kale andS.Krishnan.Charm++:A portableconcur-
rentobjectorientedsystembasedon C++. In Proceed-
ingsof theConferenceonObjectOrientedProgramming
Systems,LanguagesandApplications, September1993.

[13] L. V. Kale, M. Bhandarkar, N. Jagathesan,S. Krishnan,
andJ. Yelon. Converse: An InteroperableFramework
for ParallelProgramming.In Proceedingsof the10thIn-
ternationalParallel ProcessingSymposium, pages212–
217,April 1996.

[14] L. V. KaleandS.Krishnan.Charm++:ParallelProgram-
mingwith Message-DrivenObjects.In G.V. Wilsonand
P. Lu, editors,Parallel ProgrammingusingC++ , pages
175–213.MIT Press,1996.

[15] W. Y. Lee,S. J. Hong,andJ. Kim. On-linescheduling
of scalablereal-timetaskson multiprocessorsystems.

[16] M. Litzkow andM. Solomon.Supportingcheckpointing
andprocessmigrationoutsidetheunix kernel.In Usenix
Winter Conference, 1992.

[17] J. E. Moreira and V.K.Naik. Dynamic resourceman-
agementondistributedsystemsusingreconfigurableap-
plications. IBM Journal of Research andDevelopment,
41(3):303,1997.

[18] A. W. Mu’alem andD. G. Feitelson. Utilization, pre-
dictability, workloads, and user runtime estimatesin
schedulingthe IBM SP2with backfilling. IEEE Trans.
onParallel andDistributedSystems, 12(6),June2001.

[19] J. Nagib, C. Árebe, A. Beguelin, and B. Lowekamp.
Dome:Parallelprogrammingin adistributedcomputing
environment.In Proceedingsof theInternationalParal-
lel ProcessingSymposium, 1996.

[20] T. D. Nguyen,R. Vaswani, andJ.Zahorjan.Usingrun-
time measuredworkloadcharacteristicsin parallelpro-
cessorscheduling. In D. G. FeitelsonandL. Rudolph,
editors,Job SchedulingStrategiesfor Parallel Process-
ing, volume1162of LectureNotesin ComputerScience.
Springer-Verlag,1996.

[21] J. Padhye and L. Dowdy. Preemptive versus non-
preemptive processorallocation policies for message
passingparallel computers:An empirical comparison.
In Proceedingsof the2ndWorkshopon Job Scheduling
Strategiesfor Parallel Processing, Apr. 1996.

[22] Portablebatchsystem.http://pbs.mrj.com/.
[23] J. Pruyneand M. Livny. Parallel Processingon Dy-

namicResourceswith CARMI. In D. G. Feitelsonand
L. Rudolph,editors,JobSchedulingStrategiesfor Paral-
lel Processing– IPPS’95Workshop, volume949,pages
259–278.Springer, 1995.

[24] A. TuckerandA. Gupta.Processcontrolandscheduling
issuesfor multiprogrammedshared-memorymultipro-
cessors.In Proceedingsof the12thACM SIGOPSSym-
posiumon OperatingSystemsPrinciples, Dec.1989.

[25] Turingcluster. http://turing.cs.uiuc.edu/.

