
Parallel Object-oriented Simulation Environment

An Overview

Terry Wilmarth
Parallel Programming Laboratory

University of Illinois at Urbana-Champaign
September 1, 2001

Terry WilmarthPOSE: An Overview

Background
Discrete Event Simulation (DES)
Parallel Discrete Event Simulation (PDES)

Parallel Object-oriented Simulation Environment (POSE)
Objectives
Object-oriented DES
Mixing sychronization protocols & global virtual time
Current performance
Load Balancing in POSE

Outline of Talk

Terry WilmarthPOSE: An Overview

Discrete Event Simulation (DES): simulation of complex
systems in which state changes or events occur at discrete
points in simulated time, typically at irregular time intervals
Data structures for sequential DES:

State variables describe the state of the system
The event queue contains pending scheduled events
The global clock keeps track of simulation progress

Each event has a timestamp and typically changes or accesses
the state variables in some way
An event can also schedule new events for the simulated
future
Always select event with minimum timestamp from event
queue to avoid causality errors

Discrete Event Simulation

Terry WilmarthPOSE: An Overview

Discrete Event Simulation

Terry WilmarthPOSE: An Overview

How can we parallelize DES?
Distribute the events across processors, shared memory

Need sequencing constraints to ensure correctness

Parallel Discrete Event Simulation

Terry WilmarthPOSE: An Overview

Distribute the state variables across processors as well

Still must handle event causality errors

Parallel Discrete Event Simulation

Terry WilmarthPOSE: An Overview

Physical processes in the system being modeled are mapped
onto logical processes (LPs), each containing a portion of the
state and a local clock. LPs interact via timestamped event
messages.
To ensure no shared-state causality errors, LPs process events
in nondecreasing timestamp order, i.e. they adhere to the
local causality constraint
Preventing event causality errors is more difficult --
sequencing constraints are complex and highly
data-dependent
Two broad categories of mechanisms for handling sequencing
restraints: conservative and optimistic

Parallel Discrete Event Simulation

Terry WilmarthPOSE: An Overview

Conservative Mechanisms
Avoid the possibility of the occurrence of causality errors
Rely on the ability to determine when it is safe to process an
event

Optimistic Mechanisms
Detect and recovery: detect causality errors and rollback the
computation to recover from them

PDES Mechanisms

Terry WilmarthPOSE: An Overview

Optimistic mechanisms speculate that a causality error will
not occur, i.e. they perform speculative computations
An event arriving with a timestamp earlier than events that
were executed speculatively, or a straggler event, causes a
rollback.
A rollback involves undo-ing executed events: the local state
must be restored (possibly from checkpointed state data), and
any caused events must be cancelled.
We still monitor safety, via the global virtual time (GVT): the
smallest timestamp among all unprocessed event messages
Actions performed with timestamp prior to GVT can be
committed: allows for reclaimation of checkpoint space and
committing irrevocable operations (such as I/O)

PDES Mechanisms

Terry WilmarthPOSE: An Overview

A usable language: focus on modeling the system, hide the
parallelism, hide much of the simulation engine

POSE is a C++-like subset of Charm++

Good performance: scalable to large numbers of processors
Base implementation of POSE scales well to 16, to 32 on
larger problems, and to 64 on the largest problems
Develop load balancers that take into account the special
irregularities of PDES system models
Explore hierarchical approaches to modeling for PDES

POSE Objectives

Terry WilmarthPOSE: An Overview

The object-oriented programming paradigm offers a natural
approach to modeling both data and processes
LPs and state variables translate directly into objects
Event messages correspond to timestamped method
invocations
Data encapsulation will make load balancing straightforward
later on
Charm++ provides much support for PDES (without ever
meaning to!)
LPs and state variables are easily distributed via chares with
event messages provided as chare entry points
Prioritized messages and the scheduler act to presort
timestamped events before delivery

Object-Oriented DES

Terry WilmarthPOSE: An Overview

POSE allows for both conservative and optimistic methods in
the same simulation; two simple versions are provided

GVT algorithm drives the very simple conservative mechanism
that uses no lookahead or deadlock detection

Optimistic mechanism uses checkpointing and has a "flexible
leash" to control its speculativeness

Synchronization Protocols and the GVT

Terry WilmarthPOSE: An Overview

Speedups beyond 16 are difficult
Load balancing could answer this problem

Fine-grained simulations are the hardest to scale up
More time is spent on communication
Could load balance based on object interactions to reduce
communication overhead

Current Performance

Terry WilmarthPOSE: An Overview

Speedup: Medium-grained Traffic Simulation

Terry WilmarthPOSE: An Overview

Speedup: Medium-grained Traffic Simulation

Terry WilmarthPOSE: An Overview

Speedup: Fine-grained Traffic Simulation

Terry WilmarthPOSE: An Overview

Speedup: Fine-grained Traffic Simulation

Terry WilmarthPOSE: An Overview

Speedup: Coarse-grained Traffic Simulation

Terry WilmarthPOSE: An Overview

Speedup: Coarse-grained Traffic Simulation

Terry WilmarthPOSE: An Overview

Ordinary LB strategies insufficient: cannot balance to
minimize idle time!
Should take into account type of load: forward execution,
speculative computation, or rollbacks
Simulation priority load balancing: determines execution
priorities for simulation objects and balances to even out the
priority load
Execution priority has four determiners: object virtual time,
execution forecast, speculative forecast, and rollback overhead
Given execution priorities for each object, find Ai, the average
execution priority on processor i. Priority load Pi on processor
i is (oi + w)/Ai. oi is the number of objects on Pi, and w is a
weight.

Load Balancing

Terry WilmarthPOSE: An Overview

Given priority loads for all processors, how should we design
our LB strategy?

A strategy can even out the priority loads on all processors,
and/or it can strive for mix quality on all processors

What does it mean to be priority balanced?
What migrates?
How thorough should the strategy be?
When should the load balancer be invoked?

Load Balancing

Terry WilmarthPOSE: An Overview

Two target strategies:
"Perfect" Load Balancing Strategy (PLBS) : attempts to
achieve nearly identical Pi on all processors and good mix
quality; migrates whatever is necessary to improve the load;
execution priority update is constant; changes trigger
imbalance check; rebalance performed whenever slight
imbalance is detected
"Quick" Load Balancing Strategy (QLBS): prepares for future
balance by moving medium and low priority objects;
invoked periodically; requests priority updates from objects;
checks for imbalance above a generous threshold; moves
lightweight objects to get imbalance below threshold

Load Balancing

