Emulating PetarL ops M achines and Blue Gene

Neelam Saboo
Arun Kumar Singla
Joshua Mostkoff Unger
Laxmikant V. Kalé
Dept. of Computer Science
University of Illinois at Urbana-Champaign
1304 W. Springfield Ave.
Urbana, IL 61801
{saboo, asingla, ungerl, kale}@cs.uiuc.edu

Abstract

PetaFLoPs-class computers, based on the current or
foreseeable CMOS generation, appear to be feasible in the
near future. An emulator for a petarFLops-class program-
ming environment is necessary to facilitate offline develop-
ment and debugging of applications, and exploration of pro-
gramming models. Such an emulator must be able to run on
large traditional parallel machines. This paper describes
the design and implementation of an emulator for a class of
petarFLoPS machines. The machine parameters can be var-
ied to cover a variety of possible architectures within this
class, although our current implementation is influenced by
(and is targeted to emulate) an initial design of the Blue
Gene Machine being developed by IBM. Our implementa-
tion is based on Charm++, an object-based message-driven
parallel execution model, which allows emulation of mul-
tiple Blue Gene nodes to a single physical processor. We
demonstrate the feasibility of our approach by emulating
short million-processor programs on less than a hundred
processors of the ASCI-Red machine.

1. Introduction

A petarL oPs computer would be hundreds of times more
powerful than the current largest parallel computer. Several
techniques have been proposed for building such a powerful
machine. Some of the designs call for extremely powerful
(100 GFLOPS) processors based on superconducting tech-
nology. The class of designs that we focus on use current
and foreseeable CMOS technology. It is reasonably clear
that such machines, in the near future at least, will require
a departure from the architectures of the current parallel

supercomputers, which use few thousand commodity mi-
croprocessors. With the current technology, it would take
around a million microprocessors to achieve a petaFLOPS
performance. Clearly, power requirements and cost consid-
erations alone preclude this option.

The class of machines of interest to us use a “processors-
in-memory” design: the basic building block is a single chip
that includes multiple processors as well as memory and
interconnection routing logic. On such machines, the ratio
of memory-to-processors will be substantially lower than
the prevalent one. As the technology is assumed to be the
current generation one, the number of processors will still
have to be close to a million, but the number of chips will
be much lower.

Using such a design, petarLops performance will be
reached within the next 2-3 years, especially since IBM has
announced the Blue Gene project aimed at building such a
machine. However, petarL orPs machines will not be opera-
tional for a few years and once they are built access to them
will be limited. Thus, an emulator for a petarL OPS machine
is needed to develop, and test the applications that will run
on petaFL OPS computers, to experiment with alternative al-
gorithms, and to design new programming models for them.
Even after the machines are available, a programming envi-
ronment emulator will be invaluable for offline debugging,
testing, and possibly performance studies of applications.

We have developed an emulator to meet this goal of pro-
viding a programming environment for application devel-
opment. A major challenge in building such an emulator
is that of capacity: a single processor will not be able to
emulate a program that is designed for a million processor
system, mainly because of memory limits. So, the emula-
tor must be a large traditional parallel computer itself. Our
emulator is capable of utilizing machines with hundreds or

even thousands of processors.

In this paper, we use IBM’s Blue Gene machine
(http://www.research.ibm.com/bluegene) and related archi-
tectural variants as concrete examples. The benchmark
speed of petarLoOPS is very important to Blue Gene’s goal
of running a large scale Molecular Dynamics simulation on
the order of tens of thousands of atoms. In a MD simula-
tion, the forces that each atom exerts on the others and the
resulting kinetics of each atom are calculated for discrete
timesteps, usually on the order of a femtosecond (1015 s).
Even running at one petarL OPS, the algorithm is so compu-
tationaly intensive that Blue Gene will have to run at its full
capacity of over a million processors for a full year in order
to reach its goal of studying the mechanisms and advancing
the science of protein folding.

For concreteness, we next describe an initial design of
Blue Gene machine. Our emulator is capable of model-
ing many architectural variants within this genre. Section 3
gives an overview of a low-level, generic programming en-
vironment that the emulator supports. The design of the em-
ulator, along with an overview of the Charm++ system on
which it is built is presented in Section 4. Issues involved
in optimizing the performance of the emulation, along with
some data demonstrating the efficacy of our current imple-
mentation is presented in the Section 5. We view the emu-
lator as a first step on an ambitious research program aimed
at emulating, and simulating petarL oPs computers, and de-
veloping programming environments and applications for
them. The future work planned is discussed in Section 6.

2. Blue Gene Architecture

IBM’s Blue Gene, currently under development, repre-
sents a specific architectural design in the range of potential
petaFLoPs-class computers. The computer’s name, Blue
Gene, reflects its application of studies of proteins and com-
putationally intensive molecular dynamics algorithms. In
this section we describe a possible plan for Blue Gene ma-
chine architecture based on information published on IB-
M’s Blue Gene website [1]. Although the final Blue Gene
architecture may differ from this since the design is still e-
volving, we think it still represents a valid member of the
class of petarL OPS machines we are interested in.

This class of high-performance computers is defined by a
homogeneous collection of interconnected multi-processor
nodes with a relatively low memory to processor ratio. Such
a machine will lead to a substantial performance increase
due to its larger number of nodes. The large number of n-
odes and communication latencies between them uncovers
new problems in Operating Systems and software design for
such machines. For example, the relevance of topology has
again returned to the parallel computing field with comput-
ers like Blue Gene.

In order to achieve performance of one petarL OPS such
a machine may consist of over 1 million processors running
over 8 million concurrent threads. A possible packaging for
such a machine is shown in Figure 1 [1].

1. Processor: Each “processor” includes 8 processing el-
ements(PEs), called thread units, each with its own in-
teger ALU, and 64 registers. The PEs within a proces-
sor share two floating point units (a multiplier and an
adder), an I-Cache and a load-store unit (See Figure 2).
Each processor has its own (DRAM) memory and can
also access local memory of other processors on the
same chip.

2. Node: A node (“chip”) has 25 processors (200 thread-
s) connected in torus topology via a 64-bit local bus to
give a total performance of 25 gigaflops (Figure 3a).
The memory of each processor is available to any of
the processors on the node, totalling a node’s memo-
ry to 12.5 MB. The Input Buffer holds the incoming
messages to a node. Any outgoing messages are s-
tored in Output Buffer and are shuttled to a destina-
tion node by hardware. All message communication
is asynchronous. Each node has six full duplex links
and associated switches, connecting it to its immediate
neighbours in the cube geometry (Figure 3b).

Beyond node level, the chips are physically organized in-
to boards, racks and towers as shown in figure 1. However,
logically the machine can be considered to be a 34 x 34 x 36
three-dimensional grid of nodes for a total of about 40,000
nodes. With each node containing 25 processors (200
threads) the total is well over a million processors and 8
million threads with a theoretical peak performance of over
a petaFLOPS.

Figure 2 shows a more detailed schematic of the Blue
Gene processor. There is a processor-side instruction cache
of about 32 KB with pre-fetch of 32 instructions. The
512 KB of memory associated with each processor has a
memory-side cache. Because each processor on a node
can access other processors’ memory on the same node the
memory-side cache eliminates synchronization problems.
Each processor should really be considered to be 8 pro-
cessing elements since eight threads run concurrently with
round robin scheduling. Multiple independent threads per
processor are supported for tolerating the memory laten-
cy. In one early estimate, it was calculated to be 10 cycles
for a thread to access its local cache, 20 cycles for its local
memory, 20 cycles for cache on remote memory(within the
same chip), and 30 cycles for non-cache remote memory.
While a thread is waiting for its memory fetch to complete,
the other threads can do work. The threads on a processor
share two floating point units: one for add and one for mul-
tiply. A floating point operation takes six cycles to com-
plete. Each floating point unit is pipelined accepting one

PROCESSOR NODE BOARD TOWER BLUE GENE
1 Gigaflop 25 Gigaflops 0.9 Teraflop 3.6 Teraflops 1 Petaflop
0.5MB Memory 12.5 MB Memory 0.45 GB Memory 1.8 GB Memory 0.5 TB Memory

Figure 1. Five Steps to a PetarLops Computer (picture based on data at IBM’s website [1])

instruction each cycle. (All of these specific parameters are
estimates.)

[bram | | bram |
‘ D-CACHE ‘ ‘ D-CACHE ‘

‘ NUMA INTERCONNECT ‘

PE

INTEGER UNIT

INTEGER UNIT

[IT—="T REGISTER FILE

[IT—="T1 REGISTER FILE

FLOATING POINT ADD

‘ FLOATING POINT MULTIPLY‘

Figure 2. Blue Gene Processor, Processing
Elements and NUMA Interconnect

The node architecture is shown in Figure 3. Twenty-five
processor elements are connected in a 64-bit torus connec-
tivity so each processor of the node can access memory on
other processors as described above. Processors do not have
direct access to the memory at other nodes. In order to com-
municate with other nodes, there is an input buffer and an
output buffer where asynchronous packets are exchanged.
Each packet is 128 bytes in length (although not all of the
space is necessarily used) and each buffer can store 32 pack-
ets. If the input buffer is filled, the hardware will wait until
the buffer is free before delivering the packet. If an output
buffer is filled, the thread sending the message must wait.
An outgoing packet has the basic format of an eight byte
header with the Ax, Ay, Az of the destination node fol-

lowed by program-defined payload. Nodes are connected
to their neighbors via full duplex links of 16 bit-width in
each direction operating at 500 MHz for a transfer rate of
one gigabyte per second. As a packet travels from node
to node via this network, the packet header’s Ax, Ay, and
Az is updated. Estimated latencies are int the order of five
cycles per hop from node to node and 75 cycles when the
packet turns a corner.

OUTBUFFER

INBUFFER

Communication Channels
(®)

NUMBER OF PACKETS

PACKET SIZE PACKET SIZE

(@

Figure 3. Blue Gene Node Architecture

3 The Programming Environment

We chose to support a low-level, but fairly general, API
in the emulator. This was necessary, since more sophis-
ticated parallel programming environments have not been
designed yet for petarL opPs machines. A low-level API al-
lows one to build such programming environments on top
of the emulator. We chose an API that mimics the Blue
Gene low-level API, but is quite general to cover other ar-
chitecture variations. Specifically, the API supports multi-
ple instruction streams (threads) within a chip, one for each

processing element. Each thread has its own stack. A sim-
ple access to the reliable communication layer is provided
via calls that send short messages to other nodes, along with
an index of the handler to be invoked the destination. The
message length may be limited depending on the machine
being emulated. For Blue Gene, it is limited to around 100
bytes.

In the model described so far, the threads on a pro-
cessor communicate only via shared memory. Although
this method is adequate to cover all forms of coordination,
we decided to support an additional abstraction: that of a
micro-task scheduler. The scheduler provides access to the
common pool of work from which tasks may be scheduled
on any individual thread.

The emulator supports the following API

e BgNodelnit - is called by the runtime system for ini-
tialization on each node, where application handlers
are registered and computation is triggered by creating
micro-tasks at the required nodes.

e void registerHandler(int handlerID, BgHandler h) - is
invoked to register a handler with each node. Each
handler has a globally unique identifier associated with
it.

e void addMessage(PacketMsg *msgPtr, int handlerID,
int threadCategory) - is called to create a micro-task.

e void sendPacket(int x, inty, int z, PacketMsg *msgPtr,
int handlerID, int threadCategory) - is used to send a
message to a node at location [x,y,z] in the node grid.

e Utility functions - In addition, it supports several utility
functions that allow access to timers, the identity of the
node and the processor on which the invoking thread is
running, etc.

The above API has the advantage of being small yet com-
plete. Other functions, such as “get”, and “put”, as well as
high-level models can be built on top of this simple layer.

Application programming using this API is similar to
that using other data-driven systems, such as our own Con-
verse [2] and Charm++ [3] systems, as well as others such
as active messages [4]. The difference lies primarily in the
message-length limitation. In the version supported by our
emulator, messages are only 128 bytes in length, so func-
tions must break their data into discrete parts of at most 128
bytes each. The handler function that receives the discrete
parts must stage the data until the complete data is ready,
and then call a separate function to process the data. Alter-
natively, they may pipeline the computation itself, so some
computation gets done every time a packet arrives.

4 Emulator design

For emulation, it is necessary to model the petaFLoOPS
machine using a traditional parallel programming system.
Notice that the emulation is feasible only because of the
low memory-to-processor ratio on the petaFLoPs machine
simulated. For example, Blue Gene is likely to have about
0.5 TeraBytes of total memory. So, even if all the memo-
ry is being used by an application, it can be emulated (for
example) on 2000 processors of a traditional parallel ma-
chine with 256 MB each. A parallel emulation poses an-
other potential problem: messages may be delivered in a
different order compared with their delivery on the emulat-
ed machine. Therefore, the application must be written so
as to handle out of order message delivery. This is not a sig-
nificant obstacle as many parallel programming paradigms
and their runtime systems already handle this behavior.

Charm++, the parallel object system developed at Uni-
versity of Illinois, is well-suited for this purpose. In the fol-
lowing subsection, we briefly summarize features of Char-
m++. The architecture of the emulator is described next.

4.1 Charm++: Parallel Programming M odel

Charm++, used to emulate the functional architecture de-
scribed above, is described in detail in [3]. For complete-
ness we include a brief summary of its features taken from
[5]. Charm++ implements an object-based message-driven
execution model [6], where entry methods of objects are in-
voked by messages received on the processor where the ob-
ject resides. Object methods are executed non-preemptively
and new messages are retrieved from a scheduler queue
when an entry method is completed. This simplifies pro-
gramming because applications need not worry about in-
consistencies that might arise in a preemptive environment.

There are three types of objects in Charm++. Chares are
single instances of objects. Once a chare is created, it may
send its chare ID to other objects, who may then use that
ID to invoke methods on that chare. The second type of
Charm++ objects are Groups. Creation of an object group
results in the creation of one object instance on each proces-
sor, identified by a group ID. Individual objects in an object
group are accessed using the pair of group ID and processor
number. Other objects may invoke entry methods on any
particular processor of an object group, or may broadcast
method invocations to every member of the group. The third
type of objects, object arrays [7], are arbitrarily-sized sets
of objects. The size of an array can either be defined during
array creation or changed during program execution. Ar-
ray elements communicate via remote method invocation,
using their array ID and element index.

Charm++ objects can migrate from one processor to an-
other during run-time without requiring other objects to

know their physical location explicitly. The run-time sys-
tem forwards messages to objects as necessary. A load bal-
ancer controls the migration of objects to optimize the usage
of all processors.

o
=
. 5
@

L[0] M[0]

Q0] | RO

L[

QoY

)

(=))

PEO PE1
C 1) Cd)
Ci)
Chere seed
Scheduler Scheduler
Queue Chare

Group Member
Array Element | Q(0,0)

:
1y

Q

I
-

)

(=) (o) () (=)

Figure 4. A typical object distribution on two
processors in a Charm++ program.

Figure 4 shows various objects in a Charm++ program.
Several chares have been created on the two processors,
and several chare seeds are awaiting creation in the mes-
sage queue. Two object groups, L and Mhave been created,
each with one object on each processor. Finally, two ob-
ject arrays, Qand R, have elements distributed across the
processors.

Charm-++ is built on top of the Converse run-time frame-
work. Converse provides portable, efficient implementa-
tions of all the functions typically needed by a parallel
language of library. For example, Converse provides an
architecture-independent interface to most thread function-
s, thread scheduling, synchronization of variables, and mes-
sage passing. The Charm++ environment can run on combi-
nations of many different operating systems, including Lin-
ux, Irix, Solaris, Windows NT as well as many specialized
parallel computers like Cray T3E, IBM’s SP, etc.

4.2 TheEmulator Interface

Writing an application for our emulator requires: 1)
defining the initialization functions specifying the basic ar-
chitectural features of the machine and 2) writing the ap-
plication code, creating a set of handler functions that can
be run on each node. Once the application is created, it is
compiled and linked into the emulator library and the ap-
plication is simulated on existing platforms. The same ap-
plication code, sans calls to the emulator API, will be then
able to compile on the actual machine.

The following initialization functions are supported by
the emulator, that are relevant only for the emulation and
not part of a real-machine program.

e void Bglnit(Main *) - This user-defined function is
called by the runtime system, where the execution be-
gins. The machine is configured by calling Create-
BlueGene in this function.

e void CreateBlueGene(..) - is used to specify machine
configuration parameters, such as the number of nodes,
the number of processors per node, etc. This function
triggers the execution of various application threads on
the emulated processors.

4.3 Emulator Implementation Details

The petarL oPs machine discussed in this paper is com-
posed of a three dimensional grid of nodes. The nodes
are modeled by a Charm++ 3-D object array. The other
emulator objects (Input Buffer, Scheduler Queue, thread-
s) are implemented using a combination of Charm++ and
Converse. Charm++ is used for machine initialization and
sending packets from node to node. Converse is used as
an interface to thread creation and scheduling. The use of
Charm++/Converse ensures that the emulator can be run on
multiple operating systems without changing the emulator
code.

OUT BUFFER X

-

IN BUFFER

Figure 5. Functional View of aBlue Gene Node

SHARED MEMORY

WORKER THREADS

COMMUNICATION THREADS

SCHEDULER POOL

The machine nodes are modeled in the emulator as a 3-D
grid of Charm++ array objects. The Charm++ entry method
sendPacket is the main interface for internode communica-
tion. The functional view of a node is shown in Figure 5.
When a node calls sendPacket to send a message to another
node located at position [X,y,z], the runtime system sends
it via Charm++ to the destination node object where it is
added to the InBuffer.

A node consists of multiple non-preemptive user-level
threads divided between those primarily devoted to moni-
toring the InBuffer (Communication Threads, each emulat-
ing a P.E.) and those that are devoted to computation (Work-
er Threads). Work performed on a node is categorized into

work generated by that node (MicroTasks) and work gener-
ated by other nodes (driven by packets arriving in the In-
Buffer.)

On a real machine, all the threads will run continuous-
ly, busy-waiting when no work is available for them. Such
busy-waiting will be wasteful in an emulation. Instead, an
efficient synchronization scheme is used, as described be-
low.

Upon receiving a new message, the InBuffer module ex-
amines the threads in its Communication Thread Queue. If
any communication thread is idle, the InBuffer adds the
thread to the local machine’s dispatch queue to be awak-
ened. If no threads are idle, the message remains in InBuffer
until an active communication thread processes it. FIFO or-
dering of messages ensures fair scheduling.

When a communication thread is awakened, it examines
the InBuffer. If the InBuffer contains a message, the thread
calls getMessage to extract the first message. Messages are
sent with a ThreadCategory specifying whether a communi-
cation or a worker thread should do the work. It is efficient
to execute a small piece of work directly by communication
thread because of overheads involved in scheduling. For
example, contributing the results of a computation in reduc-
tions should be handled by a communication thread.

If the ThreadCategory specifies a communication thread,
the thread handling the message simply does the work. If
the ThreadCategory specifies a worker thread, the commu-
nication thread assigns the work to a worker thread in the
following manner: The communication thread first exam-
ines the threads in the Worker Thread Queue. If any work-
er thread is idle, the work is assigned to it and the worker
thread is awakened. If all the worker threads are busy, the
communication thread performs non-busy waiting. Worker
threads behave in a simpler manner. When a worker thread
resumes execution, it retrieves the message assigned to it
and executes the handler function associated with the mes-
sage.

Storing results of a computation accross several message
executions is neccessary for any parallel processing system.
We provide this functionality in the form of Node Private
Variable (Npv). It is a data structure stored in the shared
memory of each node so that all the threads can access it.
Since the threads are non-preemptive, access to the Node
Private Variables does not lead to any race conditions.

5 Emulator Performance | ssues

To carry out emulations of realistic parallel programs
meant for a petarLOPS computer in a reasonable time re-
quires that the emulation slowdown be relatively small. The
emulation slowdown is defined as the ratio of time to em-
ulate a program to the time needed on a real petaFLoPS
machine. A portion of the slowdown is inevitable: emulat-

ing a system with million (GigaFL OPS) processor system on
2,000 (GigarFLoPs) processor parallel computer, a 500-fold
slowdown is acceptable because we have that many few-
er processors. To separate this factor, we define the notion
of emulation efficiency: ratio of ideal emulation time for a
program to the actual emulation time for it. The ideal emu-
lation time is simply the (estimated) execution time on the
petaFL oPs machine divided by the ratio of processing pow-
ers.

Ty = Actual Emulation Time on Host Machine

T, = Ezecution Time on Emulated Machine
r = Ratioof Processing Power of Emulatedpeta flops
Machine tothat of Host Machine

T; = Ideal Emulation Time =T, x r

T
Emulation Slowdown = =
T,

T,
Emulation Ef ficiency = T—’
h

The emulation efficiency is affected by the scheduling over-
head in the emulation, and the communication cost during
emulation. We next describe optimizations we implemented
to increase emulation efficiency.

5.1 Charm++ optimizations

Charm++ is designed for relatively coarse grained com-
putations, compared to those needed on a petaFLOPS com-
puter. The typical average grainsize (amount of computa-
tion per message) in Charm++ is of the order of several
milliseconds or higher. Thus, if the overhead associated
with a message (either between objects within a processor,
or objects across processors) is even as large as a hundred
microseconds, the application performance of typical Char-
m-++ programs is not affected significantly. As a result sev-
eral inefficiencies had crept into the Charm++ system that
needed to be optimized for the efficiency of the emulation.

Event scheduling overhead: The raw overhead for
scheduling events via the Charm++ system is typically a
few microseconds (around 2-3 microseconds for short mes-
sages on Origin 2000). However, we found that the emu-
lator required over 100 microseconds for this purpose. The
difference was accounted for by dynamic allocations of sev-
eral small structures, which was quite slow on the machines
we used. With a few techniques for reusing messages, tak-
ing advantage of the fact that the messages were of limited
(short) length, we optimized the overall performance close
to the level supported by Converse, to under 3 microseconds
per event.

The communication cost is an important factor in em-
ulation efficiency. If two nodes are emulated on the same
physical processor, the communication between the two n-
odes is modeled by local message passing. If they are on
different processors, the emulation involves sending across-
processor messages. The cost in two cases differs substan-
tially, by a factor of 20 or more. As an aside, it was observed
that messages that cross physical processor boundaries took
much more time than expected; again because of dynamic
allocation of messages. Reducing this factor by eliminating
dynamic allocation brought the across-processor message
overhead to around 40 microseconds per message.

The communication overhead can therefore be mini-
mized by using a block decomposition of the node array
onto the processors. (Due to the almost inevitable bisection
bandwidth limitations of petaFLoPs machines, the algo-
rithms running on them will typically involve near-neighbor
communication. The block decomposition makes a large
fraction of neighbor communication local to the physical
processor doing the emulation). Further optimization of the
communication overhead is possible by combining multi-
ple messages going to the same physical processor into one
message, using an appropriate buffering algorithm. The lat-
ter technique is currently being implemented, whereas the
blocking has been implemented in the emulator.

The Charm++ system stores a map of the likely location
of each object. With millions of objects, such a map will
be highly space inefficent. This map has been optimized
so that it caches only the relevant objects (with a fallback
mechanism for the remaining objects).

Stack-size: The stack allocated to each thread could af-
fect the capacity of our emulation significantly. Essentially,
the problem with the stack is that it requires space to be allo-
cated based on a “high-water-mark” of usage, for the entire
duration of its use. On petaFL OPS machines, one must limit
the stacksize (by storing most of the data on the heap in-
stead). We used the Charm++ capabilities to allocate short
stacks (2KB) to emulate each PE.

With these optimizations, we were able to emulate rel-
atively large configurations on parallel machines. Specif-
ically, we did simulations on the ASCI-Red machine. On
ASCI-Red machine, we could model 34 x 34 x 36 (41,616)
node with 200 threads per node on 96 physical processors
for programs that don’t use the full memory of each Blue
Gene node such as the benchmarks for broadcasts and re-
duction described in the next section.

5.2 Emulation Benchmarks

In order to measure emulation efficiency, we needed an
estimate of execution time on the emulated petaFLOPS ma-
chine. This was achieved by adding timestamps to messages
and having each thread maintain its current time. (A true

simulation would require more sophisticated timing mech-
anisms.)

Broadcast: We implemented the following two algo-
rithms for broadcasting data to all the nodes using the emu-
lator.

e Line Broadcast - In Line Broadcast, the overall pattern
of transmission is a stream of messages originating on
one face of the machine’s cube traveling to the oppo-
site face of the cube. The message originates in the
corner of the cube of nodes, so there is some sharing
of message creation and propagation in staging the ini-
tial broadcast from the corner of the cube to the face.

e OctTree Broadcast - In OctTree Broadcast, the mes-
sage originates in the center of the cube of the nodes.
The origin location partitions the cube of nodes into
eight parts and recursively propagates the broadcast to
each of the eight sub-cubes. Of the two methods de-
scribed here, this one has the greater ratio of message
creation to propagation for a theoretically faster broad-
cast.

The benchmarks were run on the ASCI-Red with 96 pro-
cessors. It was observed that line broadcast would take
110 microseconds to complete on a full scale bluegene ma-
chine, where as the broadcast based on OctTree takes 8.9
microseconds, given our assumptions about the basic time
constants: 1 nanosecond for each hop of communication
and 75 nanoseconds for turning a corner, 1 microsecond for
execution of handler within a thread.

It was observed that emulation of the OctTree Broad-
cast took 1.95 seconds, while that of the Line Broadcast
took 1.99 seconds on the 96 processors of ASCI-Red. Al-
though both emulations processed around 42000 messages,
the OctTree emulation utilizes the host processors more ef-
ficiently with higher parallelism.

Reduction: We emulated a simple reduction algorithm
which computes the global maximum. The algorithm se-
lects the maximum number in an array on each node. Each
node waits for data from its predecessors and then con-
tributes the result to the next node in the reduction sequence.
The reduction sequence follow the path of the Line Broad-
cast in reverse. Our emulator calculated that the time for the
reduction algorithm would be around 95us on emulated ma-
chine, and it took around 1.25s to run on the host machine
(ASCI-red).

We implemented two small applications using the en-
vironment provided by our emulator. One is a prototype
molecular dynamics application based on some of our prior
work [8], which implements the core functionality of elec-
trostatic force calculation and integration. The other appli-
cation performs the Jacobi relaxation.

6 Summary and Future Work

In summary, we have shown that it is indeed feasible
to do a thread-level simulation of a million-processor pe-
taFLOPS computer on existing technology. IBM’s Blue
Gene architecture was used as a specific example. We
described our initial scheme for modeling a massive
“processor-in-memory” architecture through a parallel em-
ulator, and have presented preliminary performance data.

APPLICATION

APPLICATION

PETAFLOPS EMULATOR LIBRARY

CHARM++
CHARM++

PETAFLOPS EMULATOR LIBRAR
CONVERSE -CONVERSE

(@) (b)

Figure 6. Proposed Software Hierarchical
Layers

We have plans for several areas of research to further op-
timize our existing emulator and build applications using
our emulator. We plan to provide a version of Charm++
as a possible programming environment for Blue Gene and
other simulated machines. Implementing Charm++ on the
emulator which itself is implemented in Charm++ presents
name conflicts (see Figure 6a). The proposed software hier-
archical layer that solves this problem is shown in Figure 6b.
The emulator and programming environment AP1 will ex-
ist at the most basic thread and message-passing level of
Converse. This will enable us to implement a version of
Charm++ optimized for a petaFL ops architecture. Thus all
existing programs that are currently built on Charm++ will
be able to run on the emulator. Charm++ implements an
automatic object-based load balancing strategy which will
need to be updated for our emulator to take into account the
topology of the multi-processor nodes and the communica-
tion patterns that develop in a scientific application.

A much larger undertaking is to enhance the emulator in-
to a full fledged simulator capable of accurate performance
prediction. This will require research on techniques for ac-
curate modeling of components such as memory hierarchies
and communication networks along with the contention for
resources.

Based on such an emulator, one can compare sever-
al architectural variants for their performance. Also, in a
million-processor machine, there are bound to be hardware
failures. We plan to simulate the impact of missing proces-
sors on overall performance.

7. Acknowledgments

We thank Dr. Marc Snir, Dr. Jose Moreira, Dr. Manish
Gupta and the entire Blue Gene team at IBM T.J. Watson

Research Center at Yorktown Heights, NY for discussions
on Blue Gene and petarLoPS architectures. We also thank
the group members of the Parallel Programming Laboratory
at University of Illinois Urbana-Champaign.

References

[1] IBM announces $100 million research initiative to
build world’s fastest supercomputer, December 1999.
http://www.research.ibm.com/news/detail/bluegene.html.

[2] Robert Brunner L. V. Kale, Milind Bhandarkar and
Joshua Yelon. Multiparadigm, Multilingual Interop-
erability: Experience with Converse. In Proceedings
of 2nd Workshop on Runtime Systems for Parallel Pro-
gramming (RTSPP) Orlando, Florida - USA, Lecture
Notes in Computer Science, March 1998.

[3] L. V. Kale and Sanjeev Krishnan. Charm++: Parallel
Programming with Message-Driven Objects. In Grego-
ry V. Wilson and Paul Lu, editors, Parallel Program-
ming using C++, pages 175-213. MIT Press, 1996.

[4] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E.
Schauser. Active Messages: a Mechanism for Integrat-
ed Communication and Computation. In Proceedings
of the 19th International Symposium on Computer Ar-
chitecture, Gold Coast, Australia, May 1992.

[5] Robert K. Brunner and Laxmikant V. Kalé. Handling
application-induced load imbalance using parallel ob-
jects. Technical Report 99-03, Parallel Programming
Laboratory, Department of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, May 1999. Sub-
mitted for publication.

[6] L. V. Kalé and Attila Gursoy. Modularity, reuse and
efficiency with message-driven libraries. In Proc. 27th
Conference on Parallel Processing for Scientific Com-
puting, pages 738-743, February 1995.

[7] Robert K. Brunner and Laxmikant V. Kalé. Adapting
to load on workstation clusters. In The Seventh Sym-
posium on the Frontiers of Massively Parallel Compu-
tation, pages 106-112. IEEE Computer Society Press,
February 1999.

[8] R. Brunner, J. Phillips, and L.V.Kalé. Scalable molec-
ular dynamics for large biomolecular systems. In Pro-
ceedings of SuperComputing 2000, 2000. To be pub-
lished.

[9] W. Dally et al. The j-machine : A fine grained concur-
rent computer. In Information Processing 89, Proceed-
ings of the IFIP Congress, pages 1147-1153, August
1989.

