
An Interface Model for Parallel Components

Milind Bhandarkar and L. V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign

(bhandark@csar.uiuc.edu, kale@cs.uiuc.edu)

Abstract. Component architectures promote cross-project code reuse
by facilitating composition of large applications using off-the-shelf soft-
ware components. Existing component architectures are not geared to-
wards building efficient parallel software applications that require tighter
runtime integration of largely independent parallel modules. We have de-
veloped a component architecture based on Converse, a message-driven
multiparadigm runtime system that allows concurrent composition. In
this paper, we describe an interface model for this component architec-
ture, which allows reusable component modules to be developed indepen-
dently of each other, and mediates, monitors, and optimizes interactions
between such components.

1 Introduction

Developing scalable parallel applications is a difficult task. Applicability and
availability of different computational techniques and programming models de-
mands that these programs be developed as a largely independent collection of
software modules based on a common framework. Several parallel languages and
application frameworks have been developed to facilitate the implementation
of large-scale parallel applications. These frameworks typically focus on a few
techniques and applications. No single framework is suitable for all numerical,
computational and software engineering techniques employed and under devel-
opment in academia and research laboratories. Thus, one would need to employ
different application frameworks for different modules of a complex application.
However, it is currently impossible to efficiently couple together the software
components built using different frameworks. This is mainly because these ap-
plication frameworks have not been built with a “common component model”.

One way to couple these independent software modules together is to run
them as separate application processes, using mechanisms such as sockets to
communicate. This tends to be extremely inefficient. While we want the individ-
ual software components to be modular and and independently developed, these
components may not always have large enough grainsize to ignore the efficiency
of coupling. Also, in order to be scalable to a large number of processors, espe-
cially while solving a fixed problem, it is required that the coupling efficiency be
maximized. Therefore, it is imperative that the communicating software com-
ponents be part of the same process in order to have efficient coupling between

software components (known in the component terminology as “in-process com-
ponents”.)

In-process components eliminate the inefficiency resulting from separate ap-
plication processes; do not require the data exchange to be serialized; and are
close in efficiency to a procedure call. However, this efficiency must be achieved
without sacrificing independence of the individual components and uniformity
of data exchange.

In order to achieve this, first we make sure that the software components,
which may already be parallel, coexist within a single application. Since these
components often use different parallel programming paradigms and different
programming languages, this is a non-trivial task. We need to keep the seman-
tics of individual programming paradigms, while allowing these paradigms to
cooperate and interact with each other. For this purpose, we need to have a
Common Language Runtime (CLR) for all the programming paradigms we want
to support. Since these programming models differ in the amount of concurrency
within a process and the way control is transferred among different entities of
the programming model, we have developed a runtime system called Converse,
based on message-driven parallel programming paradigm. Converse employs a
unified task scheduler for efficiently supporting different concurrency levels and
“control regimes”. Detailed description of Converse can be found in [4].

While Converse allows us to have multiple “in-process components” within
an application, it does not specify how different components interact with each
other. For this purpose, we need an interface model that allows components to
access other components’ functionality in a uniform manner. Converse being a
message-driven CLR, traditional interface description languages do not perform
well because they assume semantics of a blocking procedure call. Enhancing
the traditional interface languages to allow asynchronous remote procedure calls
results in other problems, such as proliferation of interfaces. We have developed
a different interface model based on separate input and output interfaces, which
enables us to overcome these problems. An orchestration language – a high level
scripting language that utilizes this interface model to make it easy to construct
complete applications from components – is also defined.

This paper describes the interface model for our message-driven component
architecture. Our interface model encourages modular development of applica-
tions yet allows tighter integration of application components at run time.

1.1 Outline

The next section reviews commonly used component architectures for distributed
and parallel computation, and describes their limitations. We list the desired
characteristics of an ideal interface model for parallel components in section 3
and show that extensions of existing interface models do not match these char-
acteristics. We describe our interface model, which is a crucial part of our com-
ponent architecture, in section 4 with several examples, and discuss the runtime
optimizations that become possible due to expressiveness of our interface model.
We conclude in section 5.

2

2 Component Architectures

Software components allow composition of software programs from off-the-shelf
software pieces. They aid in rapid prototyping and have been successfully used
for developing GUIs, database as well as Web applications. A component model
specifies rules to be obeyed by components conforming to that model. A software
component is a set of objects with published interfaces, which obeys the rules
specified by the underlying component model. A component model alongwith a
set of “system components” defines a component architecture.

Various component architectures such as COM [9], CORBA [8], and Jav-
aBeans [7] have been developed and have become commercially successful as
distributed application integration technologies. Parallel computing community
in academia and various U.S. national laboratories have recently formed a Com-
mon Component Architecture forum (CCA-Forum [1]) to address these needs
for parallel computing.

Current component technologies cross language barriers, thus allowing an
application written using one language to incorporate components written using
another. In order to achieve this, components have to provide interface specifica-
tion in a neutral language called Interface Description Language (IDL). All com-
ponent architectures use some form of Interface Description Language. Though
these IDLs differ in syntax, they can be used to specify almost the same concept
of an interface. An interface consists of a set of “functions” or “methods” with
typed parameters, and return types. Caller of a method is referred to as “Client”,
whereas the object whose method is called is referred to as “Server”. Client and
Server need not reside on the same machine if the underlying component model
supports remote method invocation.

Remote method invocation involves marshaling input parameters (or serial-
izing into a message), “stamping” the message with the component and method
identifier, dispatching that message, and in case of synchronous methods, wait-
ing for the results. On the receiving side, parameters are unmarshalled, and the
specified method is called on the specified instance of the component. Similar
technique is employed for creating instances of components, or locating compo-
nents, by invoking methods of system component instances, which provide these
services. The server machine, which contains the server component instances,
employs a scheduler (or uses the system scheduler) that waits continuously for
the next message indicating a method invocation, locates the specified compo-
nent instance, verifies access controls, if any, and calls the specified method on
that component instance.

2.1 Limitations of Current Component Architectures

Component architectures in the distributed programming community (such as
COM, JavaBeans, CORBA) do not address issues vital for coupling parallel
software components. Though all of them support in-process components, they
incur overheads unacceptable for the needs of parallel application integration.
Microsoft COM has limited or no cross-platform support vital for the emerging

3

parallel computing platforms such as the Grid [3]. JavaBeans have no cross-
language support, and needs components to be written only using Java, while
FORTRAN dominates the parallel computing community. CORBA supports a
wide variety of platforms and languages, but does not have any support for
abstractions such as multi-dimensional arrays.

Common Component Architecture (CCA) [2] is one of the efforts to unify
different application frameworks. The CCA approach tries to efficiently connect
different applications developed using various frameworks together by provid-
ing parallel pathways for data exchange between components. They have devel-
oped a Scientific Interface Description Language (SIDL) to allow exchange of
multi-dimensional arrays between components, and have proposed a coupling
mechanism (CCA-ports) using provides/uses design pattern. For parallel com-
munication between components, they have proposed collective ports that im-
plement commonly used data transfer patterns such as broadcast, gather, and
scatter. In-process components are connected with “direct-connect” ports, which
are close in efficiency to function calls. However, these component method in-
vocations assume blocking semantics. Also, CCA restricts itself to SPMD and
threaded programming paradigms, and does not deal with coexistence of mul-
tiple non-threaded components in a single application. Hooking up components
dynamically is listed among future plans, and it is not clear how the efficiency
of coupling will be affected by that.

The most suitable way of combining multiple components using CCA is by
developing wrappers around complete application processes to perform parallel
data transfer, delegating scheduling of these components to the operating sys-
tem. Heavyweight process scheduling by the operating system leads to coupling
inefficiencies. If the communicating components belong to different operating
system processes even on the same processor, invoking a component’s services
from another component requires an inefficient process context-switch. For ex-
ample, on a 500 MHz Intel Pentium III processor running Linux, invocation of a
“null service” (that returns the arguments passed to it) takes 330 microseconds
when the service is resident in another process, while it takes 1.3 microseconds
for service residing within the same process (Corresponding times on a 248 MHz
Sun Ultra SPARC workstation running Solaris 5.7 are 688 and 3.2 microseconds
respectively.)

Our component architecture is complimentary to the CCA effort. We support
coexistence of multiple components (threaded and non-threaded; based on differ-
ent programming paradigms) within an application process. Our proposed inter-
face model uses asynchronous method invocation semantics and can be thought
of as a lower-level substrate on which CCA ports could be implemented.

3 Interface Models

Software components in an application interact with each other by exchanging
data and transferring control. An interface model defines the way these compo-

4

nents interact with each other in an application. The ideal interface model for a
parallel component architecture should have the following characteristics:

– It should allow easy assembly of complete applications from off-the-shelf
components. An interface description of the component alongwith the doc-
umentation of the component’s functionality should be all that is needed to
use the component in an application. Thus an interface model should be able
to separate the component definition from component execution.

– It should allow individual components to be built completely independently,
i.e. without the knowledge of each other’s implementation or execution en-
vironment or the names of entities in other components.

– Components should make little or no assumptions about the environment
where it is used. For example, a component should not assume exclusive
ownership of processors where it executes.

– It should be possible to construct parallel components by grouping together
sequential components, and this method of construction should not be ex-
posed to the users of the resultant parallel component.

– It should not impose bottlenecks such as sequential creation, serialization etc
on parallel components. In particular, it should allow parallel data exchange
and control transfer among parallel components.

– It should enable the underlying runtime system to efficiently execute the
component with effective resource utilization.

– It should be language independent and cross-platform.

Traditional component architectures for distributed components use a func-
tional representation of component interfaces. They extend the object model by
presenting the component functionality as methods of an object. Thus, a compo-
nent interface description is similar to declaration of a C++ object. Components
interact by explicit method calls using the interface description of each other.

A straightforward extension of such interface models for parallel components
would be to provide a sequential component wrapper for the parallel component,
where functionality of a parallel component is presented as a sequential method
invocation. This imposes serialization bottleneck on the component. For exam-
ple, a parallel CSE application that interfaces with a linear system solver will
have to serialize its data structures before invoking the solver. This is clearly
not feasible for most large linear systems representations that need hundreds of
megabytes of memory.

Another extension of the traditional interface models is to treat each par-
allel component as a collection of sequential components. Within this model,
the interaction between two parallel components takes place by having the cor-
responding sequential components invoke methods on each other. While this
model removes the serialization bottleneck, it imposes rigid restrictions on the
structure of parallel components. For example, a parallel finite element solver
will have to partition its mesh into the same number of pieces as the neighboring
block-structured CFD solver, while making sure that the corresponding pieces
contain adjacent nodes.

5

A major disadvantage of extending the interface models based on method-
calls is that they make data exchange and control transfer between components
explicit. Thus, they do not provide control points for flexible application com-
position and for effective resource management by the runtime system.

Lack of a control point at data exchange leads to reduced reusability of
components. For example, suppose a physical system simulation component in-
teracts with a sparse linear system solver component, and the data exchange
between them is modelled as sending messages or as parameters to the method
call. In that case, the simulation component needs to transform its matrices to
the storage format accepted by the solver, prior to calling the solver methods.
This transformation code is part of the simulation component. Suppose, a better
solver becomes available, but it uses a different storage format for sparse matri-
ces; the simulation component code needs to be changed in order to transform
its matrices to the new format required by the solver. If the interface model
provided a control-point at data-exchange, one could use the simulation compo-
nent without change, while inserting a transformer component in between the
simulation and the solver.

Lack of a control point for the runtime system at control transfer prevents the
runtime system from effective resource utilization. For example, with blocking
method invocation semantics of control transfer, the runtime system cannot
schedule other useful computations belonging to a parallel component while it
is waiting for results from remote method invocations.

Asynchronous remote method invocation provides a control-point for the run-
time system at control-transfer. It allows the runtime system to be flexible in
scheduling other computations for maximizing resource utilization. However, ex-
tending functional interface representations to use asynchronous remote method
invocations pose other problems. It introduces “compositional callbacks” as a
mechanism for connecting two components together.

When a component (caller) invokes services from another component (callee)
using asynchronous remote method invocation, it has to supply the callee with
a its own unique ID, and the callee has to know which method of the caller to
call to deposit the results (see figure 1.) This is referred to as the “compositional
callback” mechanism.

Compositional callback mechanism is equivalent to building an object com-
munication graph (object network) at run-time. Such dynamic object network
misses out on certain optimizations that can be performed on a static object
network [10]. For example, if the runtime system were involved in establishing
connections between objects, it would place the communicating objects closer
together (typically on the same processor).

Another problem associated with the callback mechanism is that it leads
to proliferation of interfaces, increasing programming complexity. For example,
suppose a class called Compute needs to perform asynchronous reductions using a
system component called ReductionManager and also participates in a gather-
scatter collective operation using a system component called GatherScatter.
It will act as a client of these system services. For ReductionManager and

6

Client::invokeService() {
ServiceMessage *m = new ServiceMessage();
// ...
m->myID = thishandle;
ProxyServer ps(serverID);
ps.service(m);

}

Server::service(ServiceMessage *m) {
// ... perform service
ResultMessage *rm = new ResultMessage();
// ... construct proxy to the client
ProxyClient pc(m->myID);
pc.deposit(rm);

}

Client::deposit(ResultMessage *m) {
// ...

}

Fig. 1. Asynchronous remote service invocation with return results

GatherScatter to recognize Compute as their client, the Compute class will have
to implement separate interfaces that are recognized by ReductionManager and
GatherScatter. This is shown in figure 2. Thus, for each component, this would
result in two interfaces: one for the service, and another for the client of that
service. If a component avails of multiple services, it will have to implement all
the client interfaces for those services.

4 Our Interface Model

Our interface model requires components to specify the data they use and pro-
duce. It takes the connection specification (glue) between components out of
the component code into a scripting language that is compiled into the appli-
cation. This provides the application composer and the runtime system with a
control-point to maximize reuse of components. Asynchronous remote method
invocation semantics is assumed for dispatching produced data to the compo-
nent that uses them, thus supplying the runtime system with a control-point for
effective resource utilization.

We mandate that the interface of a component consist of two parts: a set
of input ports, and a set of output ports. A component publishes the data it
produces on its output ports. These data become visible (when scheduled by the
runtime system) to the connected component’s input port. Connection between
an input port of an object and an output port of another object are specified

7

class ReductionClient {
virtual void reductionResults(ReductionData *msg) = 0;

}

class GatherScatterClient {
virtual void gsResults(GSData *msg) = 0;

}

class Compute : public ReductionClient, public GatherScatterClient
{

//
void reductionResults(ReductionData *msg) { ... }
void gsResults(GSData *msg) { ... }

}

Fig. 2. Proliferation of interfaces

“outside” of the object’s code, e.g. using a scripting language. Each object can
be thought of as having its own scheduler which schedules method invocations
based on the availability of data on any of its input port, and possibly emits data
at the output ports. Input ports of components have methods bound to them,
so that when data become available on the input port, a component method is
enabled1.

For example, a simple producer-consumer application using this interface
model is shown in figure 3. Note that both the producer and the consumer know
nothing about each other’s methods. Yet, with very simple scripting glue, they
can be combined into a single program. Thus we achieve the separation of ap-
plication execution from application definition. Individual component codes can
be developed independently, because they do not specify application execution.
They merely specify their definitions. The scripting language specifies the actual
execution.

In figure 3, the data types of the connected ports of producer and consumer
match exactly. For base types, wherever transformations between data types
is possible, the system will implicitly apply such transformation. For example,
if the type of producer::Data is double, and the type of consumer::Data is
int, the system will automatically apply the requested transformations, and will
still allow them to be connected. However, if producer::Data is Rational and
consumer::Data is Complex, then system will not allow the requested connec-
tion. Thus, the application composer will have to insert a transformer object (see
figure 4) between the producer and the consumer. A performance improvement

1 Enabling an object method is different from executing it. Execution occurs under
the control of a scheduler, whereas a method is enabled upon availability of its input
data. This separation of execution and enabling objects methods is crucial to our
component model.

8

class producer {
in Start(void);
in ProduceNext(void);
out PutData(int);

};
producer::Start(void) {
data = 0;
PutData.emit(0);

}
producer::ProduceNext(void) {
data++;
PutData.emit(data);

}

(a) A Producer Component

class consumer {
in GetData(int);
out NeedNext(void);

};

consumer::GetData(int d) {
// do something with d
NeedNext.emit();

}

(b) A Consumer Component

producer p;
consumer c;

connect p.PutData to c.GetData;
connect c.NeedNext to p.ProduceNext;
connect system.Start to p.Start;

(c) Application Script

Fig. 3. A Producer-Consumer Application

hint “inline” can be interpreted by the translator for the scripting language
to execute the method associated with the input port immediately instead of
putting it off for scheduling later. This hint also guides the runtime system to
place the transformer object on the same processor as the object that connects
to its input.

The real power of this interface model comes from being able to define col-
lections of such objects, and with a library of system objects. For example, one
could connect individual sub-image smoother components as a 2-D array (fig-
ure 5) to compose a parallel image smoother component (see figure 6).

The composite ImageSmoother component specifies connections for all the
InBorder and OutBorder ports of its SubImage constituents. Note that by speci-
fying connections for all its components’ ports, and providing unconnected input
and output ports with the same names and types as SubImage, ImageSmoother
has become topologically similar to SubImage and can be substituted for SubImage
in any application. Code for ImageSmoother methods InBorder and InSurface
is not shown here for lack of space. InBorder splits the input pixels into sub-

9

class transformer {
inline in input(Rational);
out output(Complex);

};

transformer::input(Rational d) {
Complex c;
c.re = d.num/d.den; c.im = 0;
output.emit(c);

}

Fig. 4. Transformer Component

Fig. 5. Construction of a 2-D array component from elements

arrays and emits them on OutSurface ports. InSurface buffers the pixels until
all the border pixels are handed over to it from a particular direction. It then
combines all the pixels into a single array, and emits them onto corresponding
OutBorder port.

Also, notice that the ImageSmoother component can configure itself with pa-
rameters N and M. N and M determine the number of rows and columns in a 2-D ar-
ray of SubImages. They can be treated as attributes of the class ImageSmoother,
which can be set through a script.

In this example, the interface of SubImage was serial. User of this component
was expected to feed and receive one pixels array in each direction. The point of
this example was to demonstrate the even after parallelization, the component
interface can remian identical to the sequential component. If parallel interface
is desired, that is also feasible, as our next example illustrates.

10

enum {EAST=0, WEST=1, NORTH=2, SOUTH=3};

class SubImage {
in[4] InBorder(Pixels *);
out[4] OutBorder(Pixels *);

}

class ImageSmoother <int N, int M> {
in[4] InBorder(Pixels *);
out[4] OutBorder(Pixels *);
in[2*N+2*M] InSurface(Pixels *);
out[2*N+2*M] OutSurface(Pixels *);

SubImage si[N][M];
// Make the east and west elements connections to surface
for(int i=0; i<N; i++) {
connect si[i][0].InBorder[WEST] to this.OutSurface[i];
connect si[i][0].OutBorder[WEST] to this.InSurface[i];
connect si[i][M-1].InBorder[EAST] to this.OutSurface[i+N];
connect si[i][M-1].OutBorder[EAST] to this.InSurface[i+N];

}
// Similarly connect north and south border elements to surface
for(int j=0; j<M; i++) {
// ...

}
// Now, make internal elements connect to each other
for(int i=1; i<=(N-1); i++) {
for(int j=1; j<=(M-1); j++) {
connect si[i][j].InBorder[0] to si[i-1][j].OutBorder[2];
// ...

}
}

}

Fig. 6. A Parallel image smoother construction from sub-image smoother com-
ponents

Consider the problem of interfacing Fluids and Solids modules in a cou-
pled simulation. Each of the Fluids and Solids components is implemented as
a parallel object. (Constituents of these modules, namely FluidsChunk and
SolidsChunk, are not shown here for the sake of brevity.) A gather-scatter com-
ponent FSInter specific to the application-domain can be used to connect an
arbitrary number of Fluids chunks to any number of Solids chunks by carrying
out the appropriate interpolations. The core interface description of this situa-
tion is shown in figure 7.

11

class Fluids<int N> {
in[N] Input(FluidInput);
out[N] Output(FluidOutput);

};
class Solids<int N> {
in[N] Input(SolidInput);
out[N] Output(SolidOutput);

};
class FSInter<int F, int S> {
in[F] FInput(FluidOutput);
out[F] FOutput(FluidInput);
in[S] SInput(SolidOutput);
out[S] SOutput(SolidInput);

};

(a) Component Interfaces

Fluids f<32>;
Solids s<64>;
FSInter fs<32,64>;

for(int i=0;i<32;i++){
connect f.Output[i] to fs.FInput[i];
connect fs.FOutput[i] to f.Input[i];

}
for(int i=0;i<64;i++){
connect s.Output[i] to fs.SInput[i];
connect fs.SOutput[i] to s.Input[i];

}

(b) Component Connections

Fig. 7. Fluids-Solids Interface in Coupled Simulation

Though most application compositions can be specified at compile (or link)
time, for some applications (such as symbolic computations, branch-and-bound)
it is necessary to dynamically specify connections, or to dynamically create ob-
jects. For such applications, apart from a scripting language, an API must be
provided. This API will be available as an interface between the creator of the
component and a “system” component. For example, creator’s output port con-
nects to the system’s input port (system component is special in that it has
infinite input and output ports), and emits the class type to be created, and also
specifies connection information.

12

4.1 Runtime Optimizations

Several new runtime optimizations become feasible with our interface model
because the composition and connectivity information is explicitly available to
the runtime system. A few of them are described here.

Consider an example in a molecular dynamics application based on spatial
decomposition [6], where each pair of subdomains (patches) has a compute ob-
ject associated with it, which is responsible for computing pairwise cutoff-based
interactions among atoms in those patches. If the patch neighborhood informa-
tion is specified using our interface model (by constructing a 3-D grid of patches
with a scripting language), these patches could be placed automatically by the
runtime system on the available set of processors by taking locality of commu-
nication into account. Further, specification of connections between patches and
compute object would allow the runtime system to place the compute objects
closer to the patches they connect. Also, information about communication vol-
ume available from the Converse load balancing framework would enable the
runtime system to place a compute object on the same processor as the patch
that sends more atoms to it. We provide such runtime optimization techniques
by incorporating the connectivity information in the Converse load balancing
framework.

Connection specification also enables the runtime system to optimize data
exchange between components that belong to the same address space. This can
be achieved by allowing the components to publish their internal data buffers
to the output ports. In the normal course, the published data will be sent as a
message directed at the input port of the connected component. If the connected
component belongs to the same address space, the runtime system may pass the
same buffer to the input port of the connected component in the same process,
when the corresponding input port declares itself to be readonly.

We are currently implementing the scripting language on top of the Charm++
runtime system [5], which is a C++ binding for the message-driven execution
environment provided by Converse. An interface translator is being developed
for translating the class definitions into C++ classes, and a small compiler is
being written for the scripting language.

5 Conclusion

Efficient and scalable integration of independently developed parallel software
components into a single application requires a component architecture that
supports “in-process” components. We have developed a component architec-
ture based on Converse, an interoperable parallel runtime system that supports
message-driven execution.

We described an interface model and a scripting language to make the ap-
plication composition and connectivity among components explicit. We are cur-
rently implementing this interface model and the scripting language, and carry-
ing out optimizations enabled by them on top of the Charm++ language.

13

References

1. Common component architecture forum. See
http://www.acl.lanl.gov/cca-forum.

2. Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn, Lois
McInnes, Steve Parker, and Brent Smolinski. Toward a Common Component Ar-
chitecture for High-Performance Scientific Computing. In Proceedings of the 1999
Conference on High Performance Distributed Computing, pages 115–124, Redondo
Beach, California, August 1999.

3. I. Foster and C. Kesselman (Eds). The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.

4. L. V. Kalé, Milind Bhandarkar, Narain Jagathesan, Sanjeev Krishnan, and Joshua
Yelon. Converse: An Interoperable Framework for Parallel Programming. In Pro-
ceedings of the 10th International Parallel Processing Symposium, pages 212–217,
Honolulu, Hawaii, April 1996.

5. L. V. Kale and Sanjeev Krishnan. Charm++: Parallel Programming with Message-
Driven Objects. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming
using C++, pages 175–213. MIT Press, 1996.

6. Laxmikant Kalé, Robert Skeel, Milind Bhandarkar, Robert Brunner, Attila Gur-
soy, Neal Krawetz, James Phillips, Aritomo Shinozaki, Krishnan Varadarajan, and
Klaus Schulten. NAMD2: Greater scalability for parallel molecular dynamics. Jour-
nal of Computational Physics, 151:283–312, 1999.

7. Richard Monson-Haefel. Enterprise Javabeans. O’Reilly and Associates, 2000.
8. Alan Pope. The Corba Reference Guide : Understanding the Common Object Re-

quest Broker Architecture. Addison-Wesley, 1998.
9. Dale Rogerson. Inside COM. Microsoft Press, 1997.

10. Joshua Yelon. Static Networks Of Objects As A Tool For Parallel Programming.
PhD thesis, Department of Computer Science, University of Illinois, Urbana-
Champaign, 1999.

14

