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Abstract

Many computationally intensive parallel programs are also memory intensive. Even
when the memory required to model a particular application is larger than the avail-
able memory, the virtual memory system permits the program to run. However, this
comes at a substantial performance cost because disk accesses incurred by paging are
substantially slower than memory accesses. Out-of-core techniques are often developed
for each application separately to deal with this issue. We present a generic, applica-
tion independent, technique that automatically improves paging performance, by using
prefetching and multithreading. We take advantage of the virtualization provided by
Charm++ objects in parallel programs. The data driven objects provide the predic-
tion mechanism necessary for an effective prefetching scheme. An analytical model as
well as experimental data is presented to demonstrate the advantages of the proposed
scheme.

1 Introduction

Parallel programs often deal with large problems which are computationally intensive and
have huge memory requirements. In spite of the relatively large amount of memory available
in today’s computer systems, there are many parallel applications that require more mem-
ory than available. Virtual Memory mechanism satisfies the memory requirement of such
applications by paging the required pages of memory from physical memory. However, page
faults take several milliseconds compared to few nanoseconds for memory accesses, leading
to some performance loss. Therefore, reducing or hiding page faults is crucial in achieving
high performance. We aim at improving performance for such programs by exploring and
analyzing the concept of Object Prefetching.

If the data referenced by an application is not in main memory, a page fault occurs and

the page is fetched from secondary memory to main memory. CPU is essentially idle during
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that period. Software prefetching is a technique for tolerating memory latency by explicitly
getting data in memory before it is actually needed. Thus, when the program asks for the
page, the page is likely to be available instantaneously instead of going through a page fault.

The paper explores a multi-threading approach for data prefetching. It creates one or
more threads that will fetch the data in memory before it is actually required. When one
thread is blocked on paging, system passes control to other threads [1]. Thus the performance
loss due to paging can be reduced by overlapping it with computation.

Experiments are conducted on Solaris and Linux platforms using POSIX-threads to study
the behavior of paging with different parameters.

This approach presents a major challenge. To fetch the required data, program should
correctly predict what data is going to be accessed in near future. Data-driven object
paradigms overcome this challenge. In such systems, the execution of objects’ method is
triggered by availability of messages (method invocations) under the control of a prioritized
scheduler. Thus the scheduler has the knowledge of objects that are going to receive messages
in near future. In the following section, we discuss one such data-driven object oriented

paradigm.

2 Data-driven Object Paradigms: CHARM++

CHARM++ is an object oriented parallel language [2]. It is different from traditional parallel
programming paradigms such as message passing and shared variable programming in that
its execution model is message-driven. The computations in CHARM-++ are triggered on
arrival of associated messages. These computations in turn trigger more messages to other
processors that might cause more computations on those processors. CHARM++ is based
on a concept of parallel objects called Chares. Chares can communicate with each other only
through messages. CHARM++ also supports notion of a Group and Array. A Group has
one representative on each processor. Arrays are arbitrarily sized collection of chares. Each

array element can send and receive messages just like chares, and computation is performed



upon arrival of those messages.

Each chare contain a number of entry methods, which are methods that can be invoked
from remote processors. CHARM++ provides system calls to asynchronously create remote
chares and to asynchronously invoke entry methods on remote chares by sending messages
to those chares. This asynchronous message passing is the basic interprocess communication
mechanism in CHARM++. CHARM++ also allows application to associate priorities with
these messages, so that high priority messages will be handled before lower priority mes-
sages. CHARM++ is built on top of the Converse run-time framework. Converse provides
portable, efficient implementations of all the functions typically needed by a parallel lan-
guage of library. For example, Converse provides an architecture-independent interface to
most thread functions, thread scheduling, synchronization of variables, and message passing.
The CHARM++ environment can run on combinations of many different operating systems,
including Linux, Irix, Solaris, Windows N'T' as well as many specialized parallel computers

like Cray T3E, IBM’s SP, etc.

2.1 Scheduler Overview

Each processor is running a Converse scheduler [3], which is responsible for all message
reception and scheduling. Each message contains a function pointer and some bytes of user
data . The scheduler’s job is to repeatedly pick and process the messages in the order of
their priority. Messages need to register with converse environment informing it about the
association of handlers with messages. Processing a message consists of calling the handler
which is encapsulated in the message, passing in the message’s data.

Whenever a message is sent from a chare or an array element to another chare or an
array element, the message is inserted in the schedulers’ queue which is a prioritized queue.
The scheduler thread runs a loop which retrieves messages from a prioritized queue and pass
it to a message handler function.

Thus, the scheduler has the knowledge of messages which are going to be executed in



while (true)
{
dequeue a message from csdSchedQueue ;
if (message is present)
handle the message.
else
loop idle until a message is received.

near future and therefore does not need any prediction mechanisms for prefetching.

3 Object Prefetching

In this section we study the feasibility of the concept of prefetching and provide theoretical
support for it. We write a simple benchmark that models the behavior of a data-driven
program which uses a high amount of memory and accesses the data so that it causes
significant amount of paging. The performance of the application is then measured in terms
of access time per object, which is averaged over total number of objects. Experiments are
performed on Solaris and Linux with different scenarios: in absence of paging, with paging,

with prefetching, different computation times.

3.1 Benchmark Application

The benchmark program consists of a dynamically allocated array of objects (N), each object
of size of a page, 4K (S). The program creates a Computation Thread, which selects an object
at a time and performs some computation on it, in a loop for some fixed number of iterations.
Objects are accessed randomly so that consecutive accesses are on different pages. Number
of iterations is 10 times the number of objects to avoid the effect of cold misses due to initial
few access. Effective time per object is measured as the total time divided by the number
of iterations.

A lock-free Producer-Consumer queue is maintained which holds the indices of the objects

in the array. Prefetch thread accesses an object in the array and enqueues the index in the



queue. The computation thread dequeues an index from the queue and performs computation
on that object. Prefetch thread maintains a leash such that it will prefetch only when the
queue size is less than the leash size. This is a programmable parameter to study the effect of
different leash sizes on prefetching. To simplify the benchmark application, prefetch thread
decides what data is going to be accessed in near future instead of computation thread
governing it.

The idea behind this approach is that as prefetch thread accesses the objects, page faults
will be taken by it. As computation thread comes to a point to access that object, it is already
brought in memory. So it will not incur a page fault, assuming the object is not paged out by
this time. Keeping leash to some reasonable size such as 10-30, we can statistically assume
that pages will not be thrown out between the time prefetch thread brings it into memory
and computation thread tries to access it. If LRU page replacement policy is used by the
operating system, it becomes even less likely. By maintaining the leash, there is some work
queued up for computation thread. As prefetch thread is taking a page fault, operating
system will pass the control to other threads. computation thread thus can keep working on
the objects brought in memory earlier. If these two times overlap for a maximum time, the
program performs as though there is no paging. When the queue is filled up to leash size,
prefetch thread yields to computation thread. Also, if queue is empty, computation thread
yields to prefetch thread. Code for prefetch thread and computation thread is in Following
figure.

The benchmark application is similar to CHARM++ scheduler we discussed in the previ-
ous section as prefetch thread knows what data the application needs in near future. Thus,
the same idea of prefetching can be incorporated in CHARM++ scheduler. A prefetch
thread can be introduced in CHARM++ scheduler which will access the schedulers queue
and prefetch the objects which are going to receive message in near future, while computation

thread only handles the messages and performs computation.



void* computationThread (void* info) void* prefetchThread (void *info)

{ {
while(countW < ITER) { while( (countP) < ITER) {
if (PCQueueEmpty (bufQ)) { if (PCQueueLength (bufQ) >= leash) {
sched_yield(); sched_yield();
continue; continue ;
} }
index = PCQueuePop(bufQ) ; randIndex = random() % S ;
for(i =0 ; i < 100; i++) { for(i =0, rand = 0 ; i < 5; i++) {
int rand = random() % N ; rand = random() % N ;
sum += objs[index]->A[rand] ; sum += objs[randIndex]->A[rand] ;
} }
sum = doWork(sum) ; PCQueuePush(bufQ, randIndex);
countW++ ; countP++ ;
} }
} }

Figure 1: Worker Thread and Prefetch Thread Code

3.2 Analysis

Let us start by considering how paging affects the system performance. Consider an access

pattern in an application which repeatedly accesses some data and performs some computa-

tion on it.
N = the number of objects. S = the size of each object in bytes.
M = the available memory. t. = the computation time.
t, = page fault service time. fp = page fault frequency.
t = total completion time. to = %, effective time taken per object.

3.3 Large Computation Time

This section analyses different memory access patterns when the computation time per object
is larger compared to page fault service time, i.e. t. > t,.
When all the required data is available in physical memory, access time is very small

compared to computation time. Most of the time is spent in computation. The behavior is
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Figure 2: Timeline: Computation time higher than page fault servicing time

modeled in Figure 2 (a). Total time taken is given by the equation

t=N-t,
t

t():N

= ¢, (1)

As the amount of memory used in the application increases, not all the data will fit in
memory and application might start paging. When a page fault occurs, time spent in access
is high as compared to memory access with no page faults. This behavior degrades the

overall performance of the application. Figure 2 (b) models the paging effect.

t:N(tC‘i'fp'tp)

t
tOZN :tc+fp'tp (2)

Let us calculate f, now. When required memory is less than the available memory, i.e.

S-N < M , every access will be in memory, and there will not be any page faults.

f,=0,S-N<M (3)
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As the problem size increases, we can define probability of a page not being in real

memory as,
_S-N-M M

h=—%sw~ ~'7g~wn

Asymptotically, required memory reaches infinity and page fault frequency f, approaches

, S-N>M (4)

fp—1, S-N—= o0 (5)

From equations 2, 3, 4 and 5, we have

to = t. S N< M (6)
M
— tc+1, , SN — o0 (8)

From equations 6, 7 and 8, we conclude that time per object remains constant at ¢, when
the available memory is sufficient to fit the given problem, starts increasing with f,, for some
time and then asymptotically approaches t, + t, for infinitely large problem size. These
equations are plotted as in Figure 3.

As seen in Figure 2 (b), computation thread needs to wait for the data to be brought in
memory. The performance can be improved by overlapping page access with computation.
To do so, a prefetch thread is introduced that will access any data before a computation is
performed on it. At any point, when prefetch thread is blocked on a page fault, computation
thread still continues to perform computation on earlier data prefetched. As seen in 2 (c),
most of the computation is overlapped by page fault servicing time. Computation thread
need not wait for next object access as in 2(b). We observe that computation time t,

dominates the total time taken. Thus, we conclude that
to = t, (9)

From equations, 8 and 9, we conclude that asymptotically, ¢, will reach ¢, + ¢, without
prefetching, while with prefetching it remains constant at ¢.. Figure 3 models the above

analysis.
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Figure 3: Large Computation Time: Time per Object Vs Problem Size

The break in the curve demonstrates the asymptotic behavior at infinite memory require-

ments. This analysis ignores second-order effects, such as

e the prefetch thread encountering multiple page faults in succession and thus making

the computation thread wait although the average page fault rate isn’t increased.
e a prefetched page getting replaced before it is accessed by the computation thread.

The slight difference between t, for prefetch thread and ¢, is due to overheads of thread

creation, thread context switches and redundant accesses by the prefetch thread.

3.4 Small Computation Time

The analysis in the previous section assumed that ¢, > ¢,. This section analyzes the scenario
when the computation time is small compared to page fault service time. We observe that
prefetching has advantages even when computation time is smaller than page fault service
time.

Figure 4 models the behavior of the application with small computation time. The

analysis for the case with no prefetching remains same as given by the equations 6, 7 and 8.
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Figure 4: Timeline: Computation time smaller than page fault servicing time

When prefetching is introduced in such an application, an overlap is achieved between
the paging time and the computation time as shown in Figure 4 (¢). When f, - ¢, < t., by
the time the computation thread finishes executing K objects in time K - t., the prefetch
thread incurs f, - K page faults, taking K - f, - t, time units. Thus, assuming that the access
time spent by the prefetch thread is negligible and so is the context switching overhead, the

computation thread is never kept waiting by the prefetch thread. Therefore, we have,

t=N-te, if fp-t, <t

to=te, if fp-tp, <te (10)

This analysis also ignores second-order effects, as analysis in previous section.

If f,-t, > t., on the other hand, the total time is decided by the page fault time. For a
service of K accesses, the prefetch thread incurs K - f, - ¢, time in servicing the page faults.
The computation thread finishes its computations in time K - ¢, which is less than K - f, -,

during page fault servicing. Therefore,

t:N'(fp'tp)a if fptp>te
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lo = (fp ) tp)a if fp : tp >t (11)

The condition f, -, < ¢, can be rewritten as

oty < e
(1 - slzv) 'tp < L
i
ie. S-N < M(—2—) (12)
tp — te
According to our assumption, ¢, < t,. Thus, the quantity ( tpt_” tc) is greater than 1. Thus,

we observe that when prefetching is introduced in the program, ¢y remains at ¢, for ( tptf )
times more than in program without prefetching.

Let us now consider the case when f, approaches 1. According to equations 2 and 11,

to = t. +1t, , Without Prefetching (13)

to =1, , With Prefetching (14)

Thus, when computation time is high ( ¢, & t,), prefetching makes the program twice
as fast as the original program. The expected performance of the application is shown in

Figure 5
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t
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-
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Figure 5: Small Computation Time: Time per Object Vs Problem Size
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3.5 Asymptotic Behavior

Keeping N constant at very large value such that f, — 1, if we vary ¢, following graph can

be plotted.

No prefetch

Prefetch

(1)

()
Effetive Time per Object

(1)

Computation time per object( t.)

Figure 6: Asymptotic Analysis for different computation time per object

Without prefetching, effective time per object is given as t, = ¢, +t,, which is plotted as
a straight line in Figure 6. When prefetching is introduced, ¢, depends on relative values of
computation time per object & page fault service time. When ¢, < t,, effective time taken is
dominated by the page fault service, ¢y = t,, which is independent of {.. When computation

time is high compared to page fault service time, ¢y is dominated by the computation time,

4 Performance Evaluation

The benchmark application we discussed in previous section is run on Linux and Solaris ma-
chines to study the paging behavior. The function do Work characterizes the work performed
per object. It can be tuned to set time per object, t.. Graphs are plotted between number of
objects (N) and effective time taken per object, ¢y. As we increase N, program starts paging
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at some value of N. We study this behavior for different values of ¢, different leash sizes. We
also study the asymptotic behavior of the program for different values of .. It takes several
hours to complete all the data points in the graphs depending on the values of ¢, and N. To
perform more experiments in given time, we also wrote a simulator that will produce similar

results in much shorter time.

4.1 Different Leash Size

Prefetch thread maintains a leash so that even when it is blocked at a page fault, computation
thread can continue working. When the leash is 1, computation thread has to wait at
every object until prefetch thread has enqueued it in the queue, showing no performance
improvements. As the leash is increased, computation thread has more work to do when
prefetch thread is waiting on a page fault. Thus, computation thread needs to wait for little
or no time for work to be enqueued. Leash should not be selected so high that prefetch thread
prefetches too much data which might get paged out before it is needed, thus causing even
more page faults. Experimental results show that leash size of 10-30 show same performance

benefits.

4.2 Large Computation Time

Figure 7 demonstrates the behavior of the program with computation time 20 ms. It shows
that as N increases, effective time per object for No Prefetch program increases, but for
Prefetch program it does not increase that much. The behavior is in accordance with equa-

tions, 8 and 9.

4.3 Small Computation Time

We discuss behavior of the benchmark application when computation time is small compared
to page fault servicing time. Figure 8 and 9 show that for large values of N, difference between
No Prefetch and Prefetch curve is approximately equal to t. as in equation 13 and 14. Also,

we observe that With Prefetch curve starts rising at a later point than the No Prefetch curve,
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Figure 7: Runs on Linux with computation time of 20 ms

as expected in analysis done in equation 12.
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Figure 8: Runs on Linux with computation time of 1 ms

4.4 Runs on Solaris

Similar experiments were performed on Solaris to confirm the behavior of prefetching on
Solaris. Experiments are performed with a fixed computation time of 1 ms while varying

object data sizes. Graph is shown in Figure 10.
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Figure 10: Runs on Solaris with computation time of 1 ms

4.5 Simulator

Benchmark application runs are limited by the length of time it takes to perform each run.
It takes few days to perform a complete experiment to study a particular behavior. On
the other hand, the equations we studied in section 4.1 ignore second order effects. Thus,
we developed a a simulator which will take into account second order effects, but will not
perform any actual work thus saving the execution time. The simulator does not perform

any page accesses or any computation. It maintains two timer values, one for computation
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thread and one for prefetch thread. It simulates the probability of the page faults depending
on the data size. It also simulates the context switch between the two threads when queue
is full or empty or when prefetch thread is taking a page fault. With the simulator, we can
perform the experiment for much larger data size and computation time per object in much
shorter time. The simulation data confirms the equations derived in section 3. Figure 11

plots the simulation data for computation time per object as bms.
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Figure 11: Simulator runs with computation time as 5 ms

Figure 12 shows the asymptotic behavior of programs when the object size is very high.
The simulation environment assumes a large data size so that page fault rate is 95%. Com-
putation time is varied from 1 ms to 40 ms. We can observe the change in prefetch curve
as computation size increases beyond 20ms. The simulation graph is in accordance with the

theoretical analysis in figure 6.

5 Summary and Future Work

For applications with large memory requirements, reducing or hiding paging costs is crucial.
We proposed a multithreaded approach with a prefetch thread that accesses objects that
are needed in near future, while computation thread is working on the objects available.

data-driven object paradigms, such as CHARM++, facilitates this approach, since they
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Figure 12: Simulation runs for asymptotic behavior with varying computation time

can “predict” the objects needed in near future. Benchmark application demonstrates the
results of the prefetching concept and confirm that prefetching improves the performance
of an application by overlapping paging and computation time. When computation time
is higher than the page fault servicing time, computation time overlaps most of the paging
costs and 7y remains constant at ¢., while with no prefetching ¢, approaches ¢. + t,. For
smaller computation times, prefetching performs better by t.. Asymptotically, prefetching
approaches t,. Also, with prefetching, paging behavior shows effect at a larger data size
hiding the effect of paging.

If more than one prefetch thread are introduced in the program, even when one prefetch
thread is blocked on a page fault, other prefetch threads can keep prefetching objects produc-
ing more work for computation thread. Of course, the benefits will be limited by the ability
of the paging system and disks to overlap multiple disk accesses. More experiments need
to be performed for N prefetch thread approach. Also, interaction between paging behavior
and context switch behavior of pthreads need to be studied more carefully, since we found
several instances of inexplicable behavior in the course of this work.

To get explicit control of objects that are to be paged out and to avoid the overheads

of thread creation and context switching between threads, we plan to experiment with an
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approach using asynchronous I/O mechanisms. Objects are serialized and stored on disk.
To prefetch an object, it is asynchronously read, deserialized and brought in memory. Asyn-
chronous operations can be overlapped with the computation. This approach of prefetching
needs more careful design and feasibility study. To compete well with the other explicit
out-of-core approaches [4], [5], we plan to experiment with schedulers that are aware of

which objects are in memory and reorder method invocation to minimize paging.
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