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Chapter 1

Introduction

Parallel computing has enjoyed considerable growth in recent years and parallel architec-
tures are assuming an increasingly central role in information processing [8]. The stimulus
behind this growth has been the ever increasing demand for compute power to solve complex
problems in the shortest possible time. This sustained growth has also manifested itself in
the evolution of a diverse design space for parallel machines. In order to exploit the benefits
offered by the multitude of architectures available it is important for parallel applications to
be developed in a machine independent fashion making only the most generally applicable
assumptions about the underlying architecture. This requirement has been addressed by the
developement of the Converse parallel runtime system and the Charm++ parallel program-
ming language. In addition, the scale of parallel applications has been increasing, it is not
uncommon for parallel programs to run on a thousand processors and for long periods of
time. Applications such as these demand a high degree of reliability from the machine and
the runtime system. Parallel programming systems augmented with checkpoint and restart
facilities furnish a mechanism for ensuring reliable execution of programs despite system
failures. The checkpointing and restart facility described in this thesis is intended to be an
extension to Converse and to the Charm++ runtime system. The checkpointing framework
at the Converse level also permits checkpointing modules for other programming languages
and paradigms (that have been ported to Converse) to be easily integrated into the runtime

system.



1.1 Motivation

Checkpoint and restart techniques allow programs to make progress in the face of recurring
system downtime. The program state is periodically recorded on stable storage during execu-
tion. In the event of a system failure, the computation may be restarted and continued from
the ‘frozen’ state on disk. Several factors motivate the need for a general-purpose checkpoint
and restart mechanism for (massively) parallel computing systems. Parallel computers have
traditionally been employed to satisfy the needs of science and engineering applications at the
edges of computational feasibility [16]. Such applications typically have long running times,
ranging from several hours to days at a time, and thus require the systems they run on to
provide long periods of continuous failure-free time [20]. In addition, these applications tie
up the systems resources preventing other less demanding applications from running, thereby
decreasing system throughput and increasing average turnaround time. The increase in the
number of system components causes the mean time between failures of the system to de-
crease. Parallel programs must also successfully contend with this increase in the number
of points of failure. There are exacting demands on the capability of parallel computing
systems to execute long running, compute intensive tasks to completion. Checkpoint and
restart techniques endow parallel programs with a higher degree of fault tolerance than oth-
erwise possible thus enabling complete runs despite non-continuous failure-free time. These
facilities provide a number of other benefits in the context of parallel computing systems.
Large compute intensive tasks may be checkpointed allowing other programs to run, thereby
increasing the average turnaround time of the system. Programs may execute on different
machines during a single run, and also ‘shrink’ and ‘expand’ being checkpointed after run-
ning for a while on a system with a large number of processors, then continuing on smaller,

more easily available systems, and vice versa.



1.2 Thesis Objectives

In this thesis we describe the design and implementation of a checkpoint and restart facility
targeted at Charm+4 — an object-oriented parallel programming language based on C++
and Converse—a parallel runtime system that enables parallel implementations of a variety
of programming languages and paradigms and facilitates interoperability among various

paradigms. The main objectives of the thesis were:

e To implement a checkpoint and restart facility for Converse, which allows checkpointing
modules for different parallel languages to supply callbacks that will be invoked at

checkpoint time.

e To implement a checkpoint and restart facility for the Charm++ programming lan-
guage.

The checkpoint and restart functionality implemented is fully integrated into Converse and

Charm++ and is machine independent in nature.

1.3 Thesis Organization

The thesis consists of 7 chapters. Chapter 2 discusses checkpoint and restart techniques in
general, the notion of program state we use and presents an overview of related work in the
field. Chapters 3 and 4 describe the issues encountered in developing checkpoint and restart
mechanisms for the Converse runtime system and the Charm-++ parallel programming lan-
guage respectively. They include brief discussions of the major design issues. In addition to
the overall architecture, they also describe the alternate designs considered and the rationale
behind choosing one over the other. Chapter 5 deals with the problem of changing the num-
ber of processors that a program runs on after a checkpoint. Chapter 6 gives a step by step
description of the algorithm used to checkpoint Converse/Charm++ programs. Conclusions

and future work are discussed in chapter 7.



Chapter 2

Checkpointing Programs

Checkpointing a running program involves saving enough of the program state on stable
storage so that a recovery point [20] is established. It must be possible for the program to
continue from the recorded state and run correctly to completion. A simplistic approach to
checkpointing might save the entire memory image of the program and reload the same upon
restart. A better approach might save only the global and static variables and the contents
of dynamically allocated memory. Care must be taken to identify exactly what parts of
the program are critical to enabling restart. Extensive research has gone into developing
checkpointing and restart mechanisms that are space and time efficient and as transparent
to the programmer as possible. The next section describes our view of what constitutes a

recovery point. This is followed by a discussion of related work in the field.

2.1 Program State

The Converse runtime system is organized in the form of modules. The state of a Converse
program consists of the global and static variables defined and controlled by each module.
These include message handlers [18], runtime system statistics and several message queues,
among other things. In order to checkpoint a Converse program we must save to disk the
state of each module. It is possible that when a checkpoint is initiated, a large number of

messages are in transit. We must ensure that all messages are accounted for (i.e. have been



received at their intended destinations, if not processed) before we initiate a checkpoint.
This requires a distributed quiescence detection algorithm [24], [9].

The Charm-++ runtime system is in effect a complex Converse module. However, this
complexity and the number of new abstractions it introduces and that it is not an integral
part of Converse warrants that it be treated differently from other Converse modules and
should define its own checkpointing behavior. A Charm++ program at runtime consists
of a number of concurrent objects [17] and its state is completely defined by the states of
each of these objects and a few global readonly and pseudoglobal variables. Checkpointing
a Charm++ program involves saving the state of each object on disk. The structure that
the Charm++ runtime state has due to its being object based makes it easier to checkpoint

than Converse.

2.2 Related Work

There is a substantial body of research dealing with checkpoint and restart issues for se-
quential as well as parallel programs. Checkpointing and restart for sequential programs
under UNIX is described in [20]. Compiler assisted checkpointing is examined in [6]. Hard-
ware support for checkpointing and fault tolerance such as Sheaved Memory [25] and Vir-
tual Checkpoint Architecture [2] has also been studied. Most recent work is in the area of
checkpointing distributed programs, for example [5, 11, 19, 22]. Message passing systems
complicate rollback recovery due to the possibility of rollback propagation [10]. If a process
that sends a message rolls back to a state before it sent the message, the receiving process
must also rollback to a state prior to the receipt of the message. A sequence of rollback prop-
agations of this kind may push the program back to its initial phases thereby losing most
of the useful work done before the failure. Such cascading rollback propagation is called the
domino effect [21]. Existing approaches to checkpointing for message passing systems are

classified into coordinated, uncoordinated and communication induced checkpointing [12].



In a message passing system, each process may perform checkpoints independently of the
other processes, this approach is called uncoordinated or independent checkpointing. The
advantage of this autonomy is lower runtime overhead and the reduction in state informa-
tion stored because each process can be made to checkpoint at times when the state is
small. However, such an approach is susceptible to the domino effect, and requires main-
tainance of multiple checkpoints by each process and periodic garbage collection to remove
aging and unuseable checkpoint information. Coordinated checkpointing involves a global
synchronization among the participating processes so that a system wide consistent state is
established. Coordinated checkpointing simplifies recovery and garbage collection and re-
duces the stable storage overhead of checkpointing. The simplest approaches to coordinated
checkpointing block all communication between processes until the checkpoint is complete
[7, 26]. Nonblocking schemes for coordinated checkpointing put messages recepients in charge
of maintaining checkpoint consistency. A distributed snapshot algorithm for a nonblocking
checkpoint protocol is described in [5].This allows the existence of non-FIFO channels be-
tween the communicating processes. In communication induced checkpointing techniques
each process performs checkpoints upon the receipt of special messages from other pro-
cesses, this approach does not require global synchronization and is thought to scale better
than coordinated checkpointing. These methods are further classified into model-based check-
pointing and indez-based coordination. Several domino effect free models for checkpointing
and communication have been proposed. Models in which all message receive events precede
all message sending events in every checkpoint interval have been shown to be domino effect
free in [23]. A model of this kind, called an MRS model, can be maintained by taking an
additional checkpoint before every message receive that is not separated from its previous

message send by a checkpoint [1, 28].



Chapter 3

Converse and Message Driven
Execution

This chapter describes Converse—a parallel runtime framework. Converse abstracts the un-
derlying architecture from the programmer and supplies him with a uniform and consistent
interface on a wide variety of platforms, and the requirements that the design of Converse
places on the checkpointing facility. Converse has been ported to most commercial parallel
machines and networks of workstations [27].

Converse is an interoperable framework for combining multiple languages and their run-
time libraries into a single parallel program. Its software architecture allows developers
to integrate multiple separately compiled modules possibly written in different languages
without adversely impacting performance. The framework has been verified to support
message-passing systems, thread based languages and message driven parallel object ori-
ented languages [14].

The Converse machine model treats the parallel machine as a collection of nodes where
each node consists of a number of processors (> 1) that share memory. Each processor may
have multiple threads running on it. These threads share the same address space but have
different stacks. Computational entities (threads, objects etc.) on a processor communicate
with entities on other processors by means of messages [18].

The design of Converse is based on the necessity to efficiently handle the different con-



currency models presented by single-threaded modules, message-driven objects and thread
based modules. As a result the design of Converse is component based. A parallel language
implemented on top of Converse should use only the components that it needs. Each Con-
verse module has state associated with it in the form of variables that it defines and controls,
in addition there are several pseudoglobal variables (see Appendix B) that form part of the
runtime state. To successfully checkpoint and restart a Converse program we must save to
disk and restore the state of each module and the states of the pseudoglobal varibles. The
next section is devoted to descriptions of the Converse modules, the state they encapsulate
and the steps taken to checkpoint and recover that state. This is followed by a discusson of
message queues and issues in checkpointing them. The chapter closes with a brief discus-
sion of a library of utility routines that we provide for checkpointing. For a more detailed

description see Appendix A.

3.1 Converse Modules

Each Converse module encapsulates a piece of the runtime-system functionality. This func-
tionality is embodied in the form of pseudoglobal variables defined by the module and func-
tions for manipulating them. Each module also defines an initialization routine that is called
upon system startup. This initialization routine is usually called ModuleNameInit, and is
typically called from the main system initialization routine ConverseCommonInit. To pro-
vide checkpoint and restart functionality, each module has been augmented by two additional
functions, called ModuleNameSave and ModuleNameRestore. These routines embody the
modules checkpoint and restart functionality respectively. To be checkpointable, a module
must provide these two functions. The Save functions provided by the modules are callbacks
that are invoked at checkpoint time. For modules essential to the functioning of Converse,
calls to these functions are explicitly encoded in a function CcpSaveModules (), that is called

at each checkpoint. Other modules can register their Save functions with the checkpointing



facility by calling CmiRegisterCheckpointFn(CcpFn) during initialization, with a pointer
to the Save funtion as the parameter.

The initialization routines do not need to change except for the addition of a call to
the Restore function at restart time. The _IS_RESTART() macro indicates whether the pro-
gram is starting for the first time or recovering from a checkpoint and is used to determine
whether the Restore routine is to be called. File management is completely handled by the
checkpointing facility, modules do not need to be aware of where their data is stored in
the checkpointed state or how the checkpoint data is organized. A function that saves a
modules state only needs to call CcpBeginSave, when it begins and CcpEndSave, when it
ends. Similiarly, the restore function needs to call CcpBeginRestore, when it begins and
CcpEndRestore when it ends. This is best illustrated with an example. Figure 3.1 shows

the general structure of save and restore routines written for module foo.

void fooSave(void) void fooRestore(void)

{ {
CcpBeginSave(‘ ‘foo’’); CcpBeginRestore(‘ ‘foo’’);
//Save module data //Restore module data
CcpEndSave () ; CcpEndRestore() ;

} }

Figure 3.1: Save and Restore functions for module foo

A brief description of Converse modules and their checkpointing behavior follows:

e Converse Statistics - This module keeps track of runtime system statistics such as
memory usage, message send and receive numbers etc. The statistics module is not
critical to the operation of Converse. Its checkpointing behavior consists of saving a
number of counters to disk and restoring the values of these counters when the program

restarts.



e Converse Conditional Callbacks - Converse includes a mechanism that allows the
programmer to insert hooks that are invoked when the system reaches a specific state
or according to certain timing constraints. A conditional callback of this kind consists
of a function pointer and a generic pointer to the argument. Since pointers to functions
are not in general checkpointable (if the program is recompiled after a checkpoint, the
functions may not be loaded at the same virtual addresses), we do not attempt to save
their values to disk. Instead, we save only the arguments to the callbacks. Any module
that registers a conditional callback and requires the callback to be restored at restart
time must supply along with the function pointer and pointer to argument information
that enables the arguments to be checkpointed. This consists of two handles - the
module name and the function name, and pointers to pack and unpack functions for
the arguments to the callbacks. At checkpoint time the arguments are packed and
saved. When the program restarts it is the responsibility of the modules that registered
the callbacks to supply the function pointers together with their handles so that the

callbacks are restored correctly.

e Converse Handlers - This is the module that controls the assignment of handler
numbers. A handler must have the same number on every processor. Also, in the in-
terests of flexibility, it is desirable to make it possible to add and remove modules from
a program once it checkpoints. To make this possible. Handler numbers are treated
specially. Every Converse module registers certain handlers with the CmiHandler mod-
ule. Before registering its handlers each module makes a call to CmiRegisterModule
and registers itself with the CmiHandler module. Checkpointing for the CmiHandler
module is done only on processor 0. Each module name is stored along with the starting
handler number for that module. Upon restart, handler number registration doesn’t
need to change at all. Each module makes the same registration calls as in normal

startup. When a module X registers itself at restart the CmiHandler code checks if

10



module X was part of the program prior to the last checkpoint. If so, it looks up
the starting handler number for module X prior to the checkpoint and assigns handler

numbers to X starting from this value.

The Converse Scheduler - The Converse scheduler (Csd) module manages the sched-
uler queue. Messages in the scheduler queue may need to be packed at checkpoint time,
but only the modules that added these messages can perform this packing correctly.
The job of the Csd module at checkpoint time is to deque all the messages in the
schedulers queue and string them onto another FIFO queue. All modules that add
messages to the scheduler queue examine this FIFO and checkpoint the messages that
they inserted into it. At restart time the Csd module does nothing. The modules
that ‘owned’ messages in the scheduler queue prior to checkpoint re-insert them for

processing.

Converse Client Server - The state of this module consists of a linked list of handler

numbers and names. The checkpointing behavior consists of saving and restoring this

linked list.

Converse Random Numbers - The Crn module manages a stream of random num-
bers. At checkpoint time it saves the current state of the stream and restores it at

restart time.

The Seed Balancer - The function of the seed balancer is to load balance the creation
of message driven objects. When a message requesting the creation of an object is sent
out, it first goes to the seed balancer. The seed balancer then determines, according to
some strategy, where the object should be created. The strategy may be, for instance
that the object is created upon the currently least loaded processor. This is one of the
modules that inserts messages into the schedulers queue. The checkpointing behavior

of the seed balancer thus consists of retrieving its messages (a module can identify

11



messages that it inserts into the scheduler queue by examining the message header)
from the scheduler queue (actually the FIFO queue that the Csd module creates),
packing them if necessary and then saving them to disk. At restart these messages are

recovered and re-inserted into the scheduler queue.

3.2 Messages and Queues

A Converse message is essentially a sequence of bytes. The first few bytes of the message
contain a ‘handler number’ that specifies a function (‘handler’) that processes the message.
Converse maintains a mapping of handler numbers to function pointers in a table. There
are two kinds of messages in Converse, messages that come over the network and locally
generated messages, and these messages reside in different queues. A scheduler runs on ev-
ery processor, all messages handlers in the system are registered with the scheduler, when a
message arrives on any queue; the scheduler examines the message and invokes the appro-
priate handler. There are several message queues that form part of the Converse runtime,
most of them are processor level queues, there are some node level queues as well, and any
processor on a node may handle a message from the node queues.

The various queues and their functions are described below:

e CmiLocalQueue: All local messages, i.e. messages generated on a processor that are

sent to itself reside in this queue.

e CmiNonLocalQueue: This is an abstraction provided by the Converse machine
interface. Converse provides a CmiGetNonLocal, function that is the interface to this
queue and removes a message from it. All non-local processor messages reside in this

queue when they first arrive over the network.

e CmiNonLocalNodeQueue: This is similar to the CmiNonLocalQueue, but is meant

to store non-local messages meant for a node (i.e. messages that may be handled by

12



any processor on a node), when they arrive over the network.

e CsdSchedQueue, CsdNodeQueue: These are two additional ‘scheduler’ queues
that can store prioritized messages and messages that require packing and unpacking,
non-local messages of this type appear in the non-local queues and are then moved to
these queues. The CsdSchedQueue is a processor level queue and the CsdNodeQueue

is a node level queue.

The treatment of these queues at checkpoint and restart time is fairly simple. When a
checkpoint is initiated, the checkpointing algorithm starts with saving the state of all the
Converse modules. It then waits for all messages in transit to arrive at their destinations.
Every message once it arrives at its destination processor resides in one of the above men-
tioned queues. To checkpoint these queues, we simply pluck all the messages out of each
queue andsave them to disk. The scheduler queues are treated a little differently. Since,
messages in these queues may require packing and unpacking, checkpointing of these mes-
sages is delegated to the modules that inserted them in the queue. Each module inspects
the scheduler queue for messages that it inserted and saves them to disk, packing them if
necessary.

At restart time, local queue messages are simply picked up and re-inserted into the local
queue. However, it is not possible to insert messages into the non-local queues, non-local
messages are therefore also inserted into the local queue. Scheduler messages are recovered
by their controlling modules and may be inserted into the scheduler queues or into the local

queue.

3.3 Utility Routines for Checkpointing

As stated earlier, to aid the checkpointing of Converse modules, all the file management is

handled by the checkpointing subsystem. No module ever needs to know what file(s) it is

13



writing data to, what format the data is stored in, the way its state information is stored
relative to the data of any other module etc. The only thing that is required of a modules
checkpointing and recovery code is that data items be retrieved in the same sequence that
they were stored on disk.

If a module absolutely must have some information about the file that its data is stored
in, it can retrieve the file pointer (FILE *) for its data file at any time during checkpointing
or recovery, by calling the CcpGetFp function. Further, the checkpointing subsystem provides
a set of primitives for storing and retrieving data. These primitives deal with all basic data

types and a few more complex data structures. The utility routines provided are:

e CmiSaveChar, CmiReadChar - These functions store and read a single character from
the checkpoint file being processed. A module can use this if it needs to store single
characters that are part of its state. This, however is an unlikely situation. The major
uses of these functions are in defining formatting constructs used in more complex

functions such as CmiSaveArray, CmiReadArray etc.

e CmiSaveInt, CmiReadInt - These functions store and read a single int value from the
checkpoint file being processed. Functions similar to this are available for other built-
in numeric datatypes in C. These functions have names of the type CmiSavedataType,

where dataType, is a numeric datatype such as float or double.

e CmiSaveArray, CmiReadArray - This is perhaps the most versatile pair of functions
available. They are intended to save and recover arrays of arbitrary types. Parameters
to these functions allow the programmer to chose from a rich set of options. For
instance one may specify an array of statically or dynamically allocated objects to be
saved. It is also possible to indicate that an array is sparse, (i.e. not all elements
need to be saved and restored) so that only elements that satisfy certain programmer

specified criteria for ‘non-sparseness’ are dealt with.
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e CmiSaveString, CmiReadString - These functions deal with saving and restoring C-
style null-terminated strings of characters. Since strings are just character arrays,
their implementation consists simply of calls to the analogous functions for Arrays

with appropriate parameters.

e CmiSaveList, CmiReadList - This pair of functions deals with saving and recovering
singly linked lists of objects. Singly linked lists occur frequently enough in code to

merit the inclusion of these functions among the utility routines

e CmiSaveBytes, CmiReadBytes - Functions in this pair deal with raw sequences of
bytes and assume no semantics for the data that is passed to them. They simply save

and recover sequences of bytes to and from stable storage.
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Chapter 4

Charm+-+ and Parallel Objects

Charm++ is an object oriented parallel programming system based on C++4. It is explicitly
parallel in nature and provides a clear separation between sequential and parallel objects.
The execution model of Charm++ is message driven; a Charm++ program in execution
is a collection of concurrent objects of various types (described in more detail later) that
communicate by sending messages to one another [15]. Charm++ programs can freely
use most object-oriented and generic programming features of C++, including multiple
inheritance, polymorphism, overloading, strong typing and templates.

Every Charm++ object is a regular C++ object, i.e. an instance of a C++ class.
Concurrent and replicated objects in Charm++ have several special attributes that are
provided and supported by the run-time system.

A Charm++ object belongs in one of the following categories:

e Chares (Concurrent objects) - Chares are the most important entities in a Charm++
program. Unlike ordinary C++ objects, Chares can be created asynchronously on
remote processors and special methods, called entry methods on these objects may
be invoked asynchronously from remote processors. An entry method is invoked by

sending a message to the Chare.

e Chare Groups - Chare groups are special concurrent objects. Each chare group is a

collection of chares with one branch on every processor. All members of a chare group

16



share a globally unique identifier and messages may be broadcast to the whole group

or to a specific branch.

Chare Nodegroups - Chare Nodegroups are similar to groups and except that instead
of having one branch on every processor, nodegroups have one branch on every SMP

node that the program runs on.

Chare Arrays - Chare Arrays are generalized collections of Chares, however these col-
lections are not constrained by the underlying architecture, chare arrays can have any

number of elements and this number may change at runtime.

Sequential objects - These are regular C++ objects, except that they may not have
static data members. These objects are local to a processor and the Charm-++4 runtime
has no knowledge of their existence, they are typically members of other concurrent

objects.

Messages (Communication objects) - These are entities that constitute the arguments
to asynchronously invoked methods of concurrent and replicated objects. A Charm-++
message consists of an envelope followed by the message body. The envelope is used by
the Charm++ runtime and stores message attributes such as the message type, source
processor etc. Entry methods that handle the messages deal only with the message

body.

Readonly objects - A readonly object represents a global variable in the computation.
Charm++ does not allow mutable global variables in the computation in order to keep
programs portable across a wide range of platforms. Readonly objects are a way to
provide a way to share data amongst all the objects involved in a computation. In cases
where the size of the readonly object is not known at compile time, readonly messages
may be used. Readonly messages are declared as pointers. Pointers to messages are

the only readonly pointers allowed.
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Checkpointing a Charm++ program involves saving the state of each object involved in
the computation, together with any unhandled messages and readonly objects. The design
of the Charm-++ runtime does not lend itself to checkpointing easily, this is largely owing
to the presence of a large number of pointers that form part of the runtime state. The
effort to develop an effective checkpointing strategy for Charm++ programs was therefore
first directed at developing techniques to eliminate these pointers from the runtime system.
The main role of these pointers is as identifiers for objects that exist during the execution
of the program. To make it possible to checkpoint these identifiers so that they correctly
distinguish objects when the program restarts, all pointers were replaced by indices into
tables. The tables store the actual pointers to the objects, upon restart the object pointers
are restored at the same indices in the table that they occupied prior to the checkpoint. The
operation of tables that form part of the runtime system is supervised by an entity called the
object manager, one instance of which exists on every processor. The next section presents
some examples of runtime system identifiers containing pointers and explains how these were
made persistent across checkpoints. This is followed by a description of the object manager
and its operation. The chapter concludes with a discussion of the pack/unpack library
used to checkpoint and recover the state of Charm++ objects. Most of the difficulties are
encountered in the state of the runtime system proper and not in the state of the user

program which typically consists of a number of concurrent objects.

4.1 Issues in Checkpointing Charm-++

4.1.1 Object IDs

Concurrent objects (objects possessing methods that can be invoked asynchronously) in a
Charm++ program require identifiers that are unique across all processors. Chares are
identified by handles called CkChareIDs. A CkCharelD is a system defined structure and

is essentially a global pointer that uniquely designates the object across all processors. A
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CkChareID as defined in the Charm-++4 runtime cannot persist across checkpoints and there-
fore has to be modified. Figure 4.1 shows the definitions of the persistent and non-persistent

CkCharelID structures.

typedef struct { typedef struct {
int onPE; int onPE;
int magic; int magic;
void *objPtr; unsigned int objNum;
} CkCharelD; } CkCharelD;
(a) (b)

Figure 4.1: CkCharelD definitions. (a) Non-persistent CkChareID - the object is iden-
tified by processor number and a pointer to the object. This handle loses its validity upon
restart. (b) Persistent CkCharelID - the object is now identified by processor number
and object number, the object number is an index into a table and is assigned by the object
manager. This number remains unchanged upon restart.

A CkCharelID is a structure that contains as members a processor number and a pointer
to a dynamically allocated object. Together these two members suffice to identify the object
uniquely among all the processes that constitute the Charm++ program. Even if the object
is correctly restored when the program restarts there is no guarantee that memory for the
object will be allocated at the same heap address, therefore object pointers in CkChareIds
will be invalid at restart time. A possible solution is to augment the CkChareID with an
object number that is assigned by an object manager and refresh the object pointer at
restart by querying the object manager on the appropriate processor. However, this solution
has the drawback that it leads to additional message passing upon restart. In addition,
messages to objects cannot be sent using the pointers until we are certain that they have

been refreshed. We chose therefore to replace the object pointer by an object manager
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assigned object number. The only overhead of this solution is the additional table lookup

that occurs every time a message is sent to an object and this is a small constant cost.

4.1.2 Dynamic Group Creation

A Group is a replicated object, one branch of which exists on every processor. A Group
is identified by an integer called the groupID. The grouplD is assigned when the group is
created, since multiple group creations may occur concurrently there must exist a mechanism
to ensure that different groups are not assigned the same grouplID. This is accomplished
by making a specific processor (in this case processor 0, since it is guaranteed to exist)
responsible for assigning groupIDs. All requests for groupIDs are therefore serialized. Group
creation starts with an asynchronous invocation of the group class’ constructor by some
object. The constructor must be invoked on all processors (i.e. the message argument
must be broadcast to all processors). However, before the messages are sent a groupID
must be obtained. For this purpose the message argument is stashed away on the calling
processor and a request message is sent to processor 0. The request message holds a pointer
to the constructor argument. When processor 0 receives the request message it replies with
a number message that contains the groupID. Processor 0 also copies the pointer to the
constructor argument from the request message to the number message. When the reply is
received by the requesting processor it uses the pointer in the number message to access the
constructor argument and then broadcasts it to all processors along with the groupID. This
scheme impedes the ability to checkpoint because if a checkpoint is initiated while a group
creation is in progress, then the pointers in the request and number messages will be invalid
when the program restarts. We circumvent this difficulty by replacing the pointer in the
messages in the group creation protocol by indices into a table of messages. These indices

remain valid across checkpoints.
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4.1.3 Virtual Object IDs

A virtual ID is similiar to a CkChareID but is closer in nature to a proxy for a Chare rather
than being a simple handle to a Chare. When a Chare creation message is sent there is no
way to find out the CkChareID of the chare being created, unless the Chare itself reports
its identity to the creating object when it comes into existence. This causes a problem if a
programmer wants to send messages to a chare immediately after invoking the constructor
without waiting for it to actually come into being. Virtual IDs alleviate this problem, when
a chare is created a virtual ID is created for it, messages may be sent to the virtual id
immediately after the asynchronous constructor invocation. The virtual id queues up the
messages until the real chare comes into existence, it then redirects all the messages it has
queued up and all subsequent messages to the real chare. A CkChareID that is a virtual id
contains instead of an object pointer a pointer to a prozy, the prozy is responsible for queueing
and redirecting messages. Pointers to prozies that reside in CkChareIDs do not persist across

checkpoints and have now been replaced by indices into a table of such proxies.

4.2 The Object Manager

The object manager is responsible for the management of all the pointer tables that exist
on a processor. It presents an interface that is a facade to three tables that contain pointers
to Chares, Virtual IDs and Messages. The object manager supplies methods for adding
pointers to the tables, retrieving pointers and querying the tables for attributes of pointers,
for instance whether a particular table index is occupied or not, whether the object it points
to is still alive or has expired. In addition the object manager is completely responsible
for co-ordinating the checkpointing of all chares in the system and for checkpointing all the

proxies and pending group creation messages in the system.
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4.3 The Pack/Unpack Library

The pack/unpack or “pup” library is a collection of efficient and elegant classes that enable
the state of Charm-++ objects to be checkpointed and recovered from disk. The pup library
can be extended to provide services to any operation that requires a traversal of the object
state (typically a traversal over the objects data members).

To checkpoint a Charm-++ program, we need to save the state of all the concurrent
objects in the system to disk. The state of sequential objects is subsumed by the state of
the concurrent objects since, in a Charm++ program, every sequential object is a member
of or is pointed to by a member of a concurrent object. Chares and replicated objects may
contain dynamically allocated data the size of which varies at runtime. All of this data also
needs to be saved to disk and faithfully recovered at restart. Also concurrent objects such
as chare array elements need to migrate at runtime. To accomplish this, the state of the
object must be ‘packed’ into a memory buffer; the memory occupied by the object released
on the processor where the object resides; the object state transported to the new processor
where the object is to be migrated and the object recreated at the new location. Migration of
array elements for load balancing was supported by the Charm-++ runtime system before the
checkpointing project was undertaken [13, 3, 4]. We chose to view checkpointing as a variant
of migration. When a checkpoint is made, the Charm++ objects are seen as ‘migrating’ to
disk, and upon restart they return to their respective processors. To migrate an object its
data needs to be ‘packed’, i.e. serialized either into a memory buffer or to disk and then
‘unpacked’ into memory.

Migration and checkpointing for objects can be handled in several ways. A possible
approach is to require each class to implement static pack and unpack methods. If an
object is required to migrate to another processor while the program is executing, the class
method pack is invoked with a pointer to the object as argument. The pack method allocates

a memory buffer large enough to hold all the objects data and then proceeds to serialize the
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objects data into the memory buffer. The memory buffer is then inserted into a message
and sent to the processor where the object is to be migrated. When this message containing
the object state is received by the new processor, a new instance of the class is created by
calling a special migration constructor. The migration constructors task is to simply create
an uninitialized instance of the class. The unpack class method is invoked with pointers to
the migration message and the newly created raw object. The unpack method proceeds to
stuff the new object with data from the old one. At the end of the unpack method, migration
is complete.

With class methods available for packing to memory and unpacking from it, it is easy
to implement methods that serialize objects to disk and recover object state from disk. A
serialize method could be as simple as a wrapper around the pack method, it just grabs
the contiguous memory buffer produced by the pack method and writes it to disk. The
problem with this approach is that for objects whose members reference large quantities
of dynamically allocated memory a contiguous buffer needs to be produced for writing the
object state to disk, which is wasteful. Secondly, this approach creates difficulties in the
way of implementing platform independent checkpointing for objects. Another approach to
writing a serialize method does not use the pack method. Rather the serialize method is
completely self-contained and writes the object state to disk. The problem with this approach
is code duplication, both the pack and the serialize method must perform a traversal of the
objects members and perform different operations on the members.

The above discussion suggests that the pack and the serialize methods have a common
‘skeleton’, with only the actual operation the methods perform on the data members being
different. The pup library has been designed with this intent. The programmer of a par-
ticular class only needs to implement a single method, called pup. The pup method takes
a single parameter, which is an instance of a packer/unpacker or pupper. The nature of
puppers shall be dealt with subsequently. The role of this method is to perform a traversal

of the object state. The actual operations that need to be performed on the data members
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are executed by the pupper.

The pup library contains the following important classes:

e class PUP::er - This class is the abstract superclass of all the other classes in the
system. The pup method of a particular class takes a reference to a PUP: :er as param-
eter. This class has methods for dealing with all the basic C++ data types. All these
methods are expressed in terms of a generic pure virtual method. Subclasses only need

to provide the generic method.

e class PUP: :packer - The abstract superclass of all classes that ‘pack’ objects. It is not
clear here what packing means, but it may be considered as any operation that performs
a non-destructive transformation on the objects state, i.e. the ‘packing’ operates on
the data that constitutes the object state and creates a different representation of that
state. The object does not change as a result of this operation. Introduces additional
methods isPacking and isUnpacking that may be used to query the class to determine

its mode of operation

e class PUP::unpacker - The abstract superclass of all classes that ‘unpack’ objects.
Unpacking is the opposite of packing as described in the previous item. An unpacking
operation works with a ‘raw’ (uninitialized) object and a some representation of the
object state. The process of unpacking involves a traversal of the object state, at each
step of the traversal, part of the object state is ‘converted’ from the given representation
into a piece of memory holding the right bit pattern. When the unapcking is complete,

the entire object state has been recovered.

e class PUP::sizer - This is a subclass of the PUP: :er class. It’s function is to deter-

mine the size (in bytes), of the object that it operates on.

e class PUP::toMem - This is a subclass of the PUP: : packer class. The role of this class

is to pack the object it operates on into a preallocated contiguous memory buffer. The
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most general way to pack an object into a memory buffer is to invoke pup on the object
with an instance of PUP: :sizer to determine the size of the object. Then a buffer of
the required size is allocated and pup is invoked again with an instance of PUP: : toMem

that has been initialized with the allocated buffer.

class PUP::fromMem - This is a subclass of the PUP: :unpacker class. The role of
this class is to unpack the state of the object it operates on from a given contiguous

memory buffer.

class PUP::toDisk - This is a subclass of the PUP: :packer class. The role of this
class is to save the state of the object it operates on into a disk file. To serialize an
object to disk pup in invoked on the object with an instance of PUP: :toDisk that has

been initialized with a file pointer.

class PUP::fromDisk - This is a subclass of the PUP: :unpacker class. The role of

this class is to unpack the state of the object it operates on from a given disk file.

Figure 4.2 shows the shows a class declaration that includes a pup method:

class foo {

private:

bool isBar;

int x;

char y;

unsigned long z;

float q[3];

public:

void pup(PUP::er &p) {

}s

}

p(isBar);
p(x);p(y);p(2);
p(q,3);

Figure 4.2: A simple class declaration showing the pup method
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The routine in Figure 4.3 presents an example of how an instance of the foo class may

be packed and unpacked from a memory buffer.

int main()

{

//Build a foo

foo f;

f.isBar=false;

f.x=102;f.y="y’;f.2=1234509999;
f.ql0]l=(float)1.2;f.q[1]1=(float)2.3;f.q[2]=(float)3.4;

//Collapse f into a memory buffer
//Allocate a buffer for the foo object
PUP::sizer s;

f.pup(s);

void *buf=(void *)malloc( s.size() );
//Pack f into preallocated buffer
{PUP: :toMem m(buf);f.pup(m);}

//Unpack the foo object
foo £2;
{PUP: : fromMem m(buf);f2.pup(m);}

}

Figure 4.3: Packing and unpacking a foo object

The following more complex example shows how an instance of the bar class may be
serialized to disk and then recovered from stable storage. The bar class has an instance
variable of type foo. To pack/unpack or checkpoint/recover an object of type bar we must
apply the same operation to the instance variable foo f. This is accomplished by having the
pup method of the bar class invoke pup on the member of type foo with the pupper passed
to it. Figure 4.4 shows the declaration of the bar class, including the pup method. Figure
4.5 shows sample code illustrating how instances of the bar class may by checkpointed to

disk and how their state may be restored from disk files.
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class bar {

public:
foo f;
int nArr;//Length of array below
double *arr;//Heap-allocated array

bar() {}

bar(int len) {nArr=len;arr=new double[nArr];}

void pup(PUP::er &p) {
f.pup(p);
p(nArr) ;
if (p.isUnpacking())
arr=new double[nArr];
p(arr,nArr);

Figure 4.4: Declaration of the bar class showing the pup method.
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int main()
{
//Build a foo
foo f;
f.isBar=false;
f.x=102;f.y="y’;f.2=1234509999;
f.ql0]=(float)1.2;f.q[1]=(float)2.3;f.q[2]1=(float)3.4;

//Build a bar

bar b(2);

b.f=f;//Just copy our old f.
b.arr[0]=876543.21;
b.arr[1]1=-345.67;

//Write the bar to disk
{
FILE *f=fopen("bar.bin","wb");
PUP: :toDisk d(f);
b.pup(d) ;
fclose(f);

}

bar b2;

{

FILE *f=fopen("bar.bin","rb");
PUP: :fromDisk d(f);

b2.pup(d) ;

fclose(f);

}

return O;

Figure 4.5: Sample code for checkpointing and recovering a bar object
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Chapter 5

Shrinking and Expanding

In the previous chapters we have described in detail the functionality provided by the check-
pointing subsystems written for Charm++ and Converse. The discussion so far has been
conducted under the implicit assumption that when a Converse/Charm++ program check-
points, it is restarted on the same number of processors that it was originally running on. The
checkpointing subsystem described in this thesis also gives Converse/Charm++ programs
to shrink and expand. This means, that once a program checkpoints it may be restarted
on a smaller or larger number of processors than it was originally running on. This is an
important benefit for parallel programs. Large parallel machines are often not available to
a program for exclusive use. With the ability to change the size of the set of processors that
the program runs on a program can use all of a large parallel machine for as long as it is
available and then simply checkpoint and restart using a smaller set of processors. If all par-
allel programs running on a machine had the ability to shrink and expand after a checkpoint,
an operating system scheduler could implement a swapping scheme that took advantage of
this ability. The throughput of parallel machines could be substantially increased by imple-
menting such a scheme. Providing parallel programs with the ability to shrink and expand
implies that they must somehow be made independent of the number of processors that they
run on. This is not in general possible at all levels, the lowest level message passing and
routing algorithms and libraries must know the size of the platform that they are dealing

with. But it is possible to create the illusion of platform size independence at higher levels,
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particularly when dealing with Charm-++ objects. A concurrent object in Charm-++ should
not need to know exactly what processor another object that it communicates with resides
on. At the same time some abstractions such as that of object groups are tightly bound
to the platform size, and these are necessary in certain situations particularly when dealing
with data exchange between modules. Making parallel programs execute on platforms of dif-
ferent sizes raises a whole new set of issues. This chapter describes the strategies employed
to deal with these issues. The next section describes the behavior of Converse modules with
varying numbers of processors. This is followed by a discussion of the behavior of Charm++

programs in such a scenario and the notion of virtual processors.

5.1 Changing the Platform Size: Converse

When a parallel program checkpoints and then restarts on a different number of processors,
the main questions that arise are as follows. If the number of processors that the program is
running on decreases after restart then the program state that existed on the ‘lost’ processors
must somehow be distributed and integrated into the state existing on the remaining smaller
number of processors. If the number of processors increases, then the variables that embody
the program state must be meaningfully initialized on the new processors that are added.
We have seen that the state of a Converse program is embodied by the variables defined
and controlled by the various Converse modules, and by the state of the several message
queues in the system. There is a clear separation between the states of different modules.
Though the state of a module, may be referenced and even modified by another module, for
the purposes of checkpointing and recovery, the state of the runtime is split up among the
modules. Every piece of data has exactly one module ‘in charge’ of it. Though the separation
is not formally enforced by means of programming constructs (e.g. modules are not objects
or namespaces), it is natural and logical. The next two subsections discuss the strategies

employed at restart when the number of processors decreases and increases respectively.
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5.1.1 Decreasing the Number of Processors

The strategy used when the size of the platform that a program is running on decreases
is fairly simple. Every module ‘knows’ what part of the runtime state it is in charge of.
In general, it is not possible for the checkpointing subsystem to determine how state data
for a module on a ‘lost’ processor is to be integrated with the data on a currently existing
processor. Also, care must be taken to ensure that messages that exist at checkpoint time
go to the right places when the program restarts. The checkpointing subsystem therefore
only determines the general scheme for redistributing state, the details of integrating the
data from two instances of the same module are left to the module itself. The overall data
redistribution scheme is as follows:

Let = be the number of processors prior to checkpoint and let y, y < x, be the number of
processors at restart. Then at restart processor p, takes charge of the data of all processors
numbered, p,p+y,...,p + ky, where:

L 1] , p<zxzmody

4] -1 , p>zmody
So when processor p is recovering from the checkpoint, each Converse module on p reads
in its own data and also reads in the state of its instances that existed on processors p + y

etc.

5.1.2 Increasing the Number of Processors

When increasing the number of processors a program runs on, no data redistribution is done.
Each processor that existed prior to the checkpoint reads in its own state from disk. All the
new processors added must however initialize the runtime state. Usually default initialization
suffices for most modules, but in some cases some special actions may need to be taken. Since

no redistribution is done, the role of the checkpointing subsystem in this case is minimal.
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It leaves the initialization to the modules. All that the checkpointing subsystem provides is
the ability for a module to determine whether its processor existed before the checkpoint or
not. If it did it can read in its own data, if it did not, it may perform initialization any way

it desires.

5.1.3 General Structure of Module Restart Routines

The form of a restart routine for a module now takes the form shown in Figure 5.1, for
module foo. Note the differences between this restart routine and that shown in Figure 3.1.
If CcpBeginRestore returns -1, the module infers that its processor did not exist prior to
the checkpoint. If its processor did exist it goes through the do loop, reading in the state
data for all instances of itself that existed on its own processor p and on processors p + y
etc. If module foo is reading in the state data of its instance on processor p + ky, then
the function CcpNextPe makes available for reading data belonging to foo that existed on
processor p + (k + 1)y if that processor existed before the checkpoint. In such a case it
returns an integer greater than or equal to zero. If the module has read all the data it needs

to CcpNextPe returns —1.

void fooRestore(void)

{

if (CcpBeginRestore(‘‘foo’’) < 0) return;
do {
//Restore module data

} while (CcpNextPe() >= 0);
CcpEndRestore() ;
}

Figure 5.1: General form of restore routine for module foo. This is when shrinking and
expanding is permitted
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5.2 Charm-+-+ and Virtual Processors

Recovering the state of the Charm-++ runtime on a different number of processors raises
the same issues as with Converse. These issues are however much more complex in the
context of Charm++, so that the straightforward techniques applied to recovering Converse
modules run into several difficulties. In order to use the same techniques successfully, several
changes to the Charm++ runtime were required. We now proceed to describe some of these
problems. This is followed by a discussion of wirtual processors and how they are used to

simplify the recovery of Charm++ programs when the platform size changes.

5.2.1 Difficulties in Charm++ Recovery

Consider, the object manager, as described in Section 4.2, the object manager is an en-
tity one instance of which exists on every processor. The object manager is responsible for
holding pointers to all Chares that exist at runtime and for co-ordinating the checkpointing
and recovery of these objects. A straightforward way to recovering the state of the object
manager when the number of processors decreases is to have each existing instance take own-
ership of the objects belonging to the other processors. This, however leads to difficulties in
passing messages to Chares. Chares are identified by CkChareIDs, which are global pointers.
CkChareIDs include the processor number for the object. If the object manager were to
simply take ownership of objects on another processor, then CkChareIDs cached by objects
might no longer be valid. A different message routing scheme would have to be devised for
sending messages to Chares whose ids contain processor numbers that no longer exist.
Another problem arises when recovering data belonging to object groups. When recov-
ering the state of an object an uninitialized instance of the class is created and then the pup
method is invoked. The pup reads in the objects data from disk and initializes the object
as needed. Recovering object groups on a different number of processors creates additional

difficulties. We need to either redistribute the data of all branches that existed before the
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checkpoint among the currently existing branches when the number of processors decreases
or to meaningfully initialize newly created branches when the platform size increases. Doing
this for Converse modules is fairly easy, but objects groups, for instance, the array managers
can encapsulate extremely complex functionality and combining the state of these objects
can be a difficult task. It is possible to write combine methods for classes that represent
groups, but the code complexity required can easily lead to hard to diagnose errors. It also
puts additional responsibility on the programmer and goes against one of the main goals of

the checkpointing subsystem which is to minimize programmer intervention.

5.2.2 Virtual Processors

To circumvent the difficulties mentioned above an additional level of abstraction was added to
the Charm++ runtime system by the introduction of virtual processors. A virtual processor
is simply a wrapper C++ class or facade around all the state in the Charm+-+ runtime
that exists on a processor. The major components of which are the object manager which
handles the pointers to Chares and messages, the groupTable which manages all interaction
with object groups and the quiescence detection state. A quiescence detection module exists
as part of both Charm++ and Converse because in a situation where modules written in
several different languages need to interact it may be desirable to detect quiescence w.r.t
Charm++ alone and not w.r.t the system as a whole. Instead of interacting directly with
these components of the runtime state, the Charm kernel instead interacts only with the
virtual processor which forwards all requests to the appropriate component.

Virtual processors are a simple mechanism to evade the difficulties highlighted in the
previous subsection. A physical processor has one or more virtual processors residing on it.
A Charm++ program running for the first time has exactly one virtual processor assigned
to each physical processor. A Chare, instead of being bound to a physical processor now
belongs to a virtual processor. Regardless, of whether the platform size changes or not it

ownership of a Chare is retained by the virtual processor that it was created on. Due to this,
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CkChareIDs remain valid even after restarting on a different number of processors.

The problems with writing combine methods for groups are also removed. A branch
now belongs to a virtual processor and only recovers data that belongs to it. In the event
that the number of physical processors increases new virtual processors are created on the
added physical processors and new branches for all existing groups are created on these
processors. These branches contain no meaningful state data when they are first created
and need to be explicitly initialized. No messages are sent to these branches until they have
been initialized. Every group class needs to supply an entry method that can be used to
initialize empty branches. The semantics of this method are not otherwise constrained in any
way. It may take any kind of message as argument and may have any name the programmer
chooses. However, to make this scheme work each group class also needs to provide a method
called getBranchInitMsg, whose signature is void* getBranchInitMsg(int &eIdx). This
method should return a pointer to an initialization message that must be sent to all new
branches. The parameter eIdx, is an output parameter that is used to specify the entry indez
of the method to be invoked on the new branches. Group class writers need not be concerned
with what the entry index means. All that is required of them is that getBranchInitMsg
initialize eIdx with the return value from CProxy_ClassName::ckIdxMethodName, where
ClassName is the name of the group class and MethodName is the name of the method used
to initialize the new branches.

Virtual processors also provide additional benefits for Charm++ programs, the additional
degree of freedom that they provide when restarting a program is accessible at runtime also.

It now becomes possible to shrink and expand a Charm++ job at runtime.

35



Chapter 6

The Checkpointing Process

We now present an overview of the entire process of checkpointing a Converse/Charm++
program. Most of the details of the process have already been covered in previous chapters.
This chapter is meant to give a step by step outline of the process filling in miscellaneous
details that have been omitted in previous portions of the text. The steps involved in a
co-ordinated checkpoint are also described in [16]. The chapter includes a section describing

the layout of the program state on disk.

6.1 Checkpoint Initiation

The most suitable locations (i.e. points in the execution of a parallel program) for creating
checkpoints are application dependent. It is usually suitable to checkpoint a program at
the end of a phase in the computation when the program state is the smallest. Also, the
frequency with which checkpoints are invoked depends on the frequency of faults and the
space and time overheads imposed by checkpointing. Programmers may also want to initiate
checkpoints ‘on-demand’. The checkpointing subsystem can be triggered by a call to the
CmiCheckpoint function. The signature of this function is:

void CmiCheckpoint(CcpType t, CcpWhen w, unsigned int deltaT).

The CcpType argument is either CCPQUIT or CCPPERIODIC or CCPONCE.This signifies

whether the program should stop execution after the checkpoint or if it should checkpoint
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periodically or if it should checkpoint once and then continue execution. The period is
given in milliseconds by the argument deltaT. The CcpWhen argument is either CCPNOW or
CCPAFTER specifying whether the checkpoint is to be initiated immediately or after an inter-
val given by deltaT. Checkpointing may also be triggered from the command line using the
“+checkpoint s” parameter where s specifies the period in milliseconds. We can also specify

that the program stop after the checkpoint by using the “4-ccpquit” parameter.

6.2 Steps in the Checkpointing Process

A checkpoint may be initiated on any processor at any point in the program. At this point
a message is sent to processor 0, which acts as the co-ordinating processor. This choice
is arbitrary, any scheme could be used to determine the co-ordinating processor. The co-
ordination strategy employed has the same general steps as in [5]. However, our scheme is
more general in that it does not assume in-order delivery of messages.

A time line depicting the coordination steps is shown in Figure 6.1. A steps involved are

as follows:

1. Initiate checkpoint - Once a call is made to the checkpointing subsystem triggering a
checkpoint, the co-ordinating processor is informed. The co-ordinating processor then

broadcasts a message to all processors in the system asking them to checkpoint.

2. Suspend Processing - When a processor receives a message initiating a checkpoint,
it suspends processing of all subsequent messages. Neither does it send out any new

messages. All messages that are recieved over the network are queued up to be saved

to disk.
3. Begin Saving State Data - The processors start their state data to disk.

4. Detect quiescence - A necessary condition for ensuring a consistent state of the

parallel program (after all processors have stopped executing application code) is that
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all messages which have been sent must also have been received. In the absence of
low level support for clearing the network and if machine independence is desired, the
processors need to wait till all messages in transit are received. A scalable quiescence
detection algorithm [24] is used to detect this. Since message-order reversal is possible,
marker messages cannot be used to indicate that a channel is cleared. Hence the
quiescence algorithm is based on counting the total number of messages sent and
received over all processors. When quiescence is detected, all pre-checkpoint messages
have been received. The coordinating processor then broadcasts a Quiescence message

to all processors whereupon they start saving their message states to disk.

. Final synchronization - After all processors have received the Quiescence message,
they inform the coordinating processor, which then broadcasts a “resume” message.
This final synchronization is required to prevent post-checkpoint messages from reach-
ing a processor before the Quiescence message. On receiving the resumption messages,
processors unfreeze their state and continue with the application. The final synchro-
nization ensures that all messages received before the Quiescence message are pre-
checkpoint messages. Thus we do not need to tag messages as pre- or post-checkpoint

messages.

6.3 Data Organization

We now describe the layout of a Converse/Charm++ programs state on stable storage.

Several possible schemes for organizing program state on disk were considered. Broadly all

of these could be classified into two categories. Those that store the entire programs state

as a single disk file and others that use a hierarchy of files and directories. For concurrent

programming systems the latter were seen to be superior. Storing the state as a single file

results in either increased complexity of the checkpointing and recovery protocols or a loss
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Figure 6.1: Time-line for processor co-ordination steps

in concurrency. If complete concurrency during checkpointing is desired (i.e. any process
can write to the file any time it is ready with data) then we need to maintain a large number
of indices into the file as pointers to the data stored by each process. In addition, allowing
multiple processes to write to the same file at the same time requires the implementation
and enforcement of a suitable locking protocol. In the absence of a shared file system it also
requires that the checkpointing subsystem transport the data of each process to the right
processor. On the other hand, if these difficulties are to be avoided then we must serialize
the saving of data to disk by the different processes which poses another set of problems.
The tasks involved in checkpointing are greatly simplified by moving the complexity to the

file system. We choose the checkpointing protocols to be simple and have a high degree of
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concurrency. Data layouts for Converse and Charm+-+ are now described:

e Converse Data Layout - To checkpoint Converse state, the user must have a di-
rectory named CCPConverse in each processes’ working directory, on every machine
that the program runs on and that has an independent filesystem. If several machines
share a filesystem, the checkpoint directory needs to be created only once. Converse
uses this directory as the root for all its checkpoint files and directories. Each pro-
cessor saves its data in a directory called CCPPE[n], where n is the processor number.
These directories are one level down from CCPConverse. Module data is stored under
each of the processors directories, with a different file for each module. In addition
the CCPConverse directory also holds a file called ConverseGlobals that stores the

programs global data. Figure 6.2 shows the data layout for Converse state.

e Charm-++ data layout - For Charm++ state, the user must create a directory named
CCPCharm in the same locations as CCPConverse. This directory is used as the root
checkpointing directory by the Charm++ checkpointing subsystem. This directory
holds several files, one for each virtual processor named VirtualPE[n], where n is the
virtual processor number. In addition it holds a file names CharmGlobals for storing

Charm-++ global data. Figure 6.3 shows the data layout for Charm++ state.
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Figure 6.2: Organization of Converse state on disk

Figure 6.3: Organization of Charm++ state on disk
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Chapter 7

Conclusions

We have presented here the design of a general purpose checkpointing facility for the Converse
runtime system and Charm++ parallel programming system. The checkpointing subsystem
provides several benefits to Converse/Charm-++ programs. Among these are increased fault
tolerance and the ability to ‘shrink’ and ‘expand’. The ability to change the platform size
after a checkpoint also provides a way to increase throughput of parallel machines running
these programs. The checkpointing facility at the Converse level is extensible and check-
pointing subsystems written for other parallel languages can be easily integrated into the
program. The checkpointing subsystem provides the programmer with a uniform and con-
sistent interface and is portable across all the platforms supported by Converse. Other

strengths of the checkpointing facility are ease of use and low overhead.

7.1 Future Work

The area of checkpointing and restart for parallel programming systems presents several
avenues for further exploration. The facility described in this thesis can serve as a founda-
tion for developing more sophisticated checkpointing subsystems. We have described how
Charm++ objects are required to have pup methods for the purposes of checkpointing and
migration. The checkpointing subsystem can be further enriched by developing compiler

support for automatically generating these methods, so that programmer involvement is fur-
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ther reduced. Automatic generation of pup methods for statically allocated objects is fairly
straightforward. Doing the same for objects that contain pointers into the heap requires sup-
port from the memory management subsystem. Converse includes a rudimentary memory
management module that can be developed further to make this possible. Another possible
attractive enhancement is making the checkpoint data platform independent, so that a pro-
gram may checkpoint on say a cluster of Linux machines and then restart on a machine like
the Origin2000. Addition of these capabilities would make the checkpointing subsystem a
powerful tool that programmers can use to make their applications more resilient to system

downtime and better able to exploit available computational resources.
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Appendix A

Converse Interface

The programming interface for the Converse checkpointing subsystem has routines for trig-
gering checkpoints, creating files and directories for checkpointing and saving and retrieving
checkpoint data. Routines for triggering checkpoints are of interest mostly to application
developers. File and directory management facilities oriented towards developers of check-
pointing subsystems for parallel languages and programming systems. Checkpointing sub-
systems for parallel languages may use the routines for saving and accessing data or they
may provide their own. Declarations for all of these functions occur in converse.h. These

functions are described below:

A.1 Checkpoint Invocation

e void CmiCheckpoint (CcpType type, CcpWhen when, unsigned int deltaT)

This function is used to invoke a checkpoint. The first parameter type may take the val-
ues CCPQUIT specifying that the program must stop after it checkpoints or CCPPERIODIC
specifying that the program must checkpoint at regular intervals of time or CCPONCE
specifying that the program should checkpoint once and then continue execution. The
when argument may take the values CCPNOW specifying that the checkpoint must be
invoked immediately or CCPAFTER specifying that the checkpoint must be taken after

a given interval of time. The deltaT argument is used when a timing parameter is
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needed be it a delay or a period. It represents time in milliseconds. In circumstances
where both are required the same value is used for both. Programmers should be
careful when using deltaT as both a delay and a period. In particular, small values of

delay should not be specified.

e void CmiRegisterCheckpointFn(CcpFn fn)

Though not an invocation function, a call to CmiRegisterCheckpointFn is used by
a checkpointing module for a parallel language to register its primary checkpointing
routine with the Converse checkpointing subsystem. The fn argument should have the

type CcpFn given by: typedef void (*CcpFn) (void)

A.2 File and Directory Management

e void CcpSetChkptRoot(char *dirname)

This function sets the root directory for checkpointing to dirname. Each checkpointing
subsystem involved will typically have its own root directory under which it saves all
its data. The dirname parameter may specify either an absolute pathname or relative

to the processes’ working directory.

e void CcpMkDir(char *dirname)

This function creates a directory with name dirname under the checkpoint root di-
rectory and sets it as the current checkpointing directory. A checkpointing subsystem
needs to be aware of two special directories its root checkpointing directory CcpRoot
and the current checkpointing directory. The current checkpointing directory is always
located under the directory tree rooted at CcpRoot. All I/O is done with files residing
under the current checkpointing directory. It may be changed by calls to CcpMkDir or

CcpSetDir; dirname must be a relative pathname.
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void CcpSetDir(char *dirname)

This function sets the current checkpointing directory to dirname which must be a
path relative to the current CcpRoot.

int CcpOpenFile(char *fname, char mode)

The CcpOpenFile function is used to open a file in the current checkpointing directory.
The fname parameter gives the name of the file. The mode parameter may take the
values ‘r’ or ‘w’ for read and write mode respectively. Upon failure, the function returns
a value less than zero.

CcpCloseFile()

This is a macro used to close the current checkpoint file.

void CcpBeginSave(char *fname)

This is used to open a file for writing to at checkpoint time, fname specifies the filename.
The file is opened in the current checkpoint directory.

void CcpEndSave(void)

At checkpoint time, used to close the current checkpoint file.

int CcpBeginRestore(char *fname) Unlike the Save functions this routine is Con-
verse specific. Other checkpointing subsystems should use CcpOpenFile instead. At
restart time, this function opens for reading a file in the current checkpoint directory.
In the case that a program expands after a checkpoint and the processor on which this
function is called did not exist before the checkpoint it returns —1.

CcpEndRestore (void)

Also Converse specific, used at restart time to close the current checkpoint file.
int CcpNextPe(void)
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Another Converse specific function, CcpNextPe is used to take care of cases where a
program shrinks after a checkpoint. A module recovering its data calls CcpPe every
time it finishes recovering the data for an instance of itself. If no more instances remain

CcpPe returns a value less than zero.

e FILE* CcpGetFp(void)

This function returns a pointer to a FILE structure that represents the current check-

point file.

A.3 Utility Routines for Saving and Restoring Data
All of these routines operate on the current checkpoint file.
e void CmiReadInt(int *pi), void CmiSaveInt(int i)
Used to read and save an integer respectively.

e void CmiReadChar(char #*pch), void CmiSaveChar (char ch)

Used to read and save a character respectively.

e void CmiReadDouble(double *pd), void CmiSaveDouble(double d)

Used to read and save a double respectively.

e void CmiReadFloat(float *pf), void CmiSaveFloat(float f)
Used to read and save a float respectively.

e void CmiReadBytes(void *p, int nBytes)
void CmiSaveBytes(void *p, int nBytes)

Used to read and save an arbitrary sequence of bytes to disk, nBytes specifies the

number of bytes to be processed starting at the address p.
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e void* CmiReadArray(void *array, int eltSize, CmiArrayEltReadFn readFn)

This function is used to read generic arrays of arbitrary sized elements from disk.
The array parameter is a pointer to a chunk of memory where the elements must be
stored. If array is NULL, the appropriate amount of memory will be allocated. The
eltSize parameter specifies the size in bytes of each array element. In some cases
where the array is an array of pointers a CmiArrayEl1tReadFn must be provided whose
type is given by: typedef void (*CmiArrayEltReadFn) (void *);. The readFn
must allocate memory for the element and set the pointer it is passed to reference the
freshly allocated array element. A readFn may also be used if specialized processing

of data while reading is required. A pointer to the array read in is returned.

e void CmiSaveArray(void xarray, int eltSize, int numElts,

CmiArrayEltSaveFn saveFn, CmiSparseCheck isSparse)

This function is used to save generic arrays of arbitrary sized elememts to disk. The
array parameter is a pointer to a chunk of memory where the elements are stored.
The eltSize parameter specifies the size in bytes of each array element and numElts
gives the number of array elements. In some cases where the array is an array of
pointers a CmiArrayEltSaveFn must be provided whose type is given by: typedef
void (*CmiArrayEltSaveFn) (void *);. The saveFn is passed a pointer to the array
element to be saved. A saveFn may also be used if specialized processing of data while
saving is required. Sometimes arrays are sparse, i.e. several elements contain trivial
values which may not need to be stored. If this is the case the programmer may supply
a CmiSparseCheck, whose type is given by: typedef int (*CmiSparseCheck) (void
*);. A CmiSparseCheck is passed a pointer to an array element and should return
a non-zero value if the element is sparse and zero otherwise. Every element is then

checked with isSparse to determine if it needs to be saved or not.

e char* CmiReadString(void), void CmiSaveString(char *s)
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These functions are special cases of the array routines and are used to read and store

C-style strings. CmiReadString returns a pointer to the string read in.

void* CmiReadList(CmiListEltReadFn readFn)

Used to read singly-linked lists of arbitrary structures from disk, CmiReadList returns
a pointer to the list that is read in. A CmiListEltReadFn whose type is given by:
typedef void* (x*CmiListEltReadFn) (void *); must be passed to this function.
The function has been designed with the view that elements of linked lists have a
member that points to the next element. The readFn is passed a pointer, it must read
in an element and set the ‘next’ member of this element to its parameter. It must then
return a pointer to the element just read in. A problem with this function is that lists

are read in reversed.

void CmiSaveList(void *1list, CmiListEltSaveFn saveFn)

Used to read singly-linked lists of arbitrary structures from disk, CmiSaveList must be
passed a pointer to the list to be saved. In addition a CmiListEltSaveFn must also be
passed. The type of the saveFn is given by: typedef void* (*#CmiListEltSaveFn)
(void #); The saveFn is passed a pointer to a list element. It is expected to save the
element to disk and return a pointer to the next element in the disk. The list functions

are therefore simple iterators over a singly linked list.
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Appendix B

Converse PseudoGlobals

Different vendors are not consistent about how they treat global and static variables. Most
vendors write C compilers in which global variables are shared among all the processors in
the node. A few vendors write C compilers where each processor has its own copy of the
global variables. In theory, it would also be possible to design the compiler so that each
thread has its own copy of the global variables.

The lack of consistency across vendors, makes it very hard to write a portable program.
The fact that most vendors make the globals shared is inconvenient as well, usually, you don’t
want your globals to be shared. For these reasons, we added “pseudoglobals” to Converse.
These act much like C global and static variables, except that you have explicit control over
the degree of sharing.

Three classes of pseudoglobal variables are supported: node-private, process-private, and

thread-private variables.

Node-private global variables are specific to a node. They are shared among all the

processes within the node.

Process-private global variables are specific to a process. They are shared among all

the threads within the process.

Thread-private global variables are specific to a thread. They are truely private.
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There are five macros for each class. These macros are for declaration, static declaration,
extern declaration, initialization, and access. The declaration, static and extern specifications
have the same meaning as in C. In order to support portability, however, the global variables
must be installed properly, by using the initialization macros. For example, if the underlying
machine is a simulator for the machine model supported by Converse, then the thread-private
variables must be turned into arrays of variables. Initialize and Access macros hide these
details from the user. It is possible to use global variables without these macros, as supported
by the underlying machine, but at the expense of portability.

Macros for node-private variables:

CsvDeclare(type,variable)
CsvStaticDeclare(type,variable)
CsvExtern(type,variable)
CsvInitialize(type,variable)
CsvAccess(variable)

Macros for process-private variables:

CpvDeclare(type,variable)
CpvStaticDeclare(type,variable)
CpvExtern(type,variable)
CpvInitialize(type,variable)
CpvAccess(variable)

Macros for thread-private variables:

CtvDeclare(type,variable)
CtvStaticDeclare(type,variable)
CtvExtern(type,variable)
CtvInitialize(type,variable)
CtvAccess(variable)
A sample code to illustrate the usage of the macros is provided in Figure B.1. There are

a few rules that the user must pay attention to: The type and variable fields of the macros

must be a single word. Therefore, structures or pointer types can be used by defining new
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types with the typedef. In the sample code, for example, a struct point type is redefined
with a typedef as Point in order to use it in the macros. Similarly, the access macros contain
only the name of the global variable. Any indexing or member access must be outside of the
macro as shown in the sample code (function func1). Finally, all the global variables must
be installed before they are used. One way to do this systematically is to provide a module-
init function for each file (in the sample code - ModuleInit (). The module-init functions of
each file, then, can be called at the beginning of execution to complete the installations of

all global variables.

File Modulel.c

typedef struct point

{

float x,y;
} Point;

CpvDeclare(int, a);
CpvDeclare(Point, p);

void ModuleInit()

{

CpvInitialize(int, a)
CpvInitialize(Point, p);

CpvAccess(a) = 0;
}
int func1Q
{
CpvAccess(p) .x = 0;
CpvAccess(p) .y = CpvAccess(p).x + 1;

}

Figure B.1: An example code for global variable usage
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