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Abstract

Parallel Computational Science and Engineering (CSE) applications often exhibit
irregular structure and dynamic load patterns. Many such applications have been de-
veloped using procedural languages (e.g. Fortran) in message passing parallel program-
ming paradigm (e.g. MPI) for distributed memory machines. Incorporating dynamic
load balancing techniques at the application-level involves significant changes to the
design and structure of applications. On the other hand, traditional run-time systems
for MPI do not support dynamic load balancing. Object-based parallel programming
languages, such as Charm++ support efficient dynamic load balancing using object
migration for irregular and dynamic applications, as well as to deal with external fac-
tors that cause load imbalance. However, converting legacy MPI applications to such
object-based paradigms is cumbersome. This paper describes an implementation of
MPI, called Adaptive MPI (AMPI) that supports dynamic load balancing and mul-
tithreading for MPI applications. Our approach and implementation is based on the
user-level migrating threads and load balancing capabilities provided by the Charm-++
framework. Conversion from legacy codes to this platform is straightforward even for
large legacy codes. We have converted the component codes ROCFLO and ROCSOLID
of a Rocket Simulation application to AMPI. Our experience shows that with a min-
imal overhead and effort, one can incorporate dynamic load balancing capabilities in
legacy Fortran-MPI codes.

1 Introduction

Many Computational Science and Engineering (CSE) applications under development today
exhibit dynamic behavior. Computational domains are irregular to begin with, making it
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difficult to subdivide the problem such that every partition has equal computational load,
while optimizing communication. In addition to that, computational load requirements of
each partition may vary as computation such as simulation of a complex system progresses.
For example, applications that use Adaptive Mesh Refinement (AMR) techniques increase
the resolution of spatial discretization in a few partitions, where interesting physical phe-
nomena occur. This increases the computational load of those partitions drastically. As
another example, in applications such as simulation of pressure-driven crack propagation us-
ing Finite Element Method (FEM), extra elements are inserted near the crack dynamically
as it propagates through structures (such as the casing of solid fuel rockets), thus leading
to severe load imbalance. Another type of dynamic load variance can be seen where het-
erogeneous computational platforms such as clusters of workstations are used to carry out
even regular applications [BK99]. In such cases, the availability of individual workstations
changes dynamically.

Such load imbalance can be reduced by decomposing the problem into several smaller
partitions (much more than the available physical processors) and then mapping and re-
mapping these partitions to physical processors in response to variation in load conditions.
One cannot expect the application programmer to pay attention to dynamic variations in
computational load and communication patterns, due to both internal and external factors
described above, in addition to programming an already complex CSE application. There-
fore, the parallel programming environment needs to provide for dynamic load balancing
under the hood. Traditional runtime systems for message passing paradigms such as MPI do
not allow efficient migration of tasks in order to provide dynamic load balancing capabili-
ties. For the parallel programming environment to effectively load balance the application,
it needs to know the precise load conditions at runtime. Thus, it needs to be supported by
the runtime system of the parallel language. Also, it needs to predict the load patterns of the
future based on current and past runtime conditions to provide an appropriate re-mapping
of partitions.

Fortunately, an empirical observation of several such CSE applications suggests that such
changes occur slowly over the life of a running application, thus leading to the principle of
persistent computation and communication structure [KBB00]. Even when load changes
are dramatic, such as in the case of adaptive refinement, they are infrequent. Therefore, by
measuring variations of load and communication patterns, the runtime system can accurately
forecast future load conditions, and can effectively load balance the application.

Charm-++[KK96] is an object-oriented parallel programming language that provides dy-
namic load balancing capabilities using runtime measurements of computational loads and
communication patterns, and employs object migration to achieve load balance. However,
many CSE applications are written in languages such as Fortran, using MPI [GLS94| (Mes-
sage Passing Interface) for communication. It can be very cumbersome to convert such
legacy applications to newer paradigms such as Charm++ since the machine models of
these paradigms are very different. Essentially, such attempts result in complete rewrite of
applications.

Frameworks for computational steering and automatic resource management, such as
AutoPilot [RVSRIS]|, provide ways to instrument parallel programs for collecting load infor-
mation at runtime, and a fuzzy-logic based decision engine that advises the parallel program



regarding resource management. But it is left to the parallel program to implement this
advice. Thus, load balancing is not transparent to the parallel program, since the runtime
system of the parallel language does not actively participate in carrying out the resource
management decisions. Similarly, systems such as CARMI [PL95] simply inform the paral-
lel program of load imbalance, and leave it to the application processes to explicitly move
to a new processor. Multithreaded systems such as PM? [NM96] require every thread to
store its state in specially allocated memory, so that the system can migrate the thread
automatically. Load balancing strategies and instrumentation for performance monitoring
are not integrated within PM?, however. Other frameworks with automatic load balanc-
ing such as the FEM framework [BK00], and the framework for Adaptive Mesh Refinement
codes [BN99] are specific to certain application domains, and do not apply to a general pro-
gramming paradigm such as message-passing or to a general purpose messaging library such
as MPL

In this paper, we describe a path we have taken to solve the problem of load imbalance
in existing Fortran90-MPI applications by using the dynamic load balancing capabilities of
Charm++ with minimal effort. The next section describes the load-balancing framework
of Charm++. Then we describe the multi-partitioning approach that is the basis of our
work. In section 4, we describe the implementation of Adaptive MPI, which uses user-level
migrating threads, along with message-driven objects. We show that it is indeed simple to
convert existing MPI code to use AMPI. We discuss the methods used and efforts needed to
convert actual application codes to use AMPI, and performance implications in section 5.

2 Charm++ Load Balancing Framework

Charm++ is a parallel object-oriented language. A Charm++ program consists of a set of
medium-grained objects called chares. Chares are mapped to available processors by the
message-driven runtime system of Charm++, called Converse [KBJ*96]. Communication
between these chares is through asynchronous object-method invocations. These methods,
called entry methods, when invoked, execute atomically, and cannot block waiting for mes-
sages. Powerful abstractions can be created by making chares members of arbitrarily indexed
collections, such as multi-dimensional arrays of chares.

At the core of Charm++ is a message-driven scheduler that picks messages from a pri-
oritized queue of pending messages, and schedules an object to execute the entry method
of that object indicated in the message. Thus, the runtime system of Charm++ knows
about the object it is executing methods on. It can track execution times (computational
loads) of individual objects. Also, entry method execution is directed at objects, without
having to know which processor it resides on. Therefore, the runtime system can gather
communication patterns between objects.

Charm++ provides a dynamic load balancing (LB) framework, which gathers these load
and communication data, and presents it as a distributed load database to load balancing
strategies. Several such strategies are provided in Charm+-+ that can be plugged in at
runtime into a Charm++ application. The load database can be viewed as a weighted
communication graph, where the connected vertices represent communicating objects. Load
balancing strategies produce a re-mapping of these objects in order to balance the load. This
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Figure 1: Performance of the Crack-Propagation application using Charm++ load-balancing
framework. This experiment was performed on 8 processors of SGI Origin2000 at National
Center for Supercomputing Applications (NCSA).

is an NP-hard multidimensional optimization problem, and producing optimal solution is not
feasible. We have experimented with several heuristic strategies, and they have been shown
to achieve good load balance [KBB00]. The new mapping produced by the LB strategy is
communicated to the runtime system, which then invokes special serialization methods on
objects to be migrated, and carries out the migration.

NAMD [KSB*99], a molecular dynamics application used routinely by biophysicists, is
developed using Charm++. It combines spatial and functional decomposition. As simula-
tion of a complex molecule progresses, atoms may move into neighboring partitions, and can
lead to load imbalance. Charm++ LB framework is shown to be very effective in NAMD and
has allowed NAMD to scale to thousands of processors achieving unprecedented speedups
among molecular dynamics applications (1252 on 2000 processors). Another application that
simulates pressure-driven crack propagation in structures has been implemented using the
Charm++ LB framework [BK00], and has been shown to effectively deal with dynamically
varying load conditions (Figure 1.) As a crack develops in a structure discretized as a finite
element mesh, extra elements are added near the crack, resulting in severe load imbalance.
Charm++ LB framework responds to this load imbalance by migrating objects, thus improv-
ing load balance, as can be seen from increased throughput measured in terms of number of
iterations per second.

In order to use this LB framework, however, one needs to redesign the application to be
object-based, and the entry methods of these objects must execute atomically. Converting
parallel CSE applications written using MPI with blocking receives and /or blocking collective
operations to use the load-balancing framework can be very cumbersome. In the next section



we describe the basic methodology used to adapt existing message-passing applications to
use Charm++ LB framework.

3 Multi-partitioning Approach

The key to effectively using the Charm++ load-balancing framework is to split the compu-
tational domain into several small partitions, much more than the available physical proces-
sors. These smaller partitions, called virtual processors, (or chunks) are then mapped and
re-mapped by the load-balancing framework in order to balance the load across physical pro-
cessors. In message-driven object-based parallel programming paradigm, such as Charm++,
chunks are implemented as objects. Communication between objects is accomplished with
asynchronous remote method invocation. These methods execute atomically, i.e. they do
not block waiting from messages. Since the Charm++ runtime system schedules objects
to execute their entry methods, and routes remote method invocations to processors where
the objects reside, chunks need not be aware of their physical location within the parallel
system. Therefore, the runtime system is free to migrate these chunks to available physical
Processors.

Having more chunks to map and re-map results in better load balance. Large number of
chunks can also result in better cache behavior because the resultant smaller partitions may
utilize the cache better. Also, having more independent pieces of computation per proces-
sor results in better latency tolerance with computation/communication overlap. However,
mapping several chunks on a single physical processor reduces the granularity of parallel
tasks and the computation to communication ratio. Thus, chunks present a tradeoff in the
overhead of virtualization and effective load balance. In order to study this tradeoff, we
carried out an experiment using a Finite Element Method application that does structural
simulation on an FEM mesh with 300000 elements. We ran this application on 8 processor
Origin2000 (250 MHz MIPS R10000) with different number of partitions of the same mesh
mapped to each processor. Results are presented in figure 2. It shows that increasing number
of chunks is beneficial up to 16 chunks per physical processor. This increase in performance
is caused by better cache behavior of smaller partitions, and overlap of computation and
communication (latency tolerance). Further, the overhead introduced for 32 and 64 chunks
per physical processor is very small. Though these numbers may vary depending on the
application, we expect similar behavior for many applications that deal with large data sets
and have near-neighbor communication.

3.1 Challenges for Existing MPI Applications

Converting the existing message-passing applications to the multi-partitioned approach is
tricky. Such applications assume a distributed memory architecture, where each process
contains data that can be accessed only by that process. Each process communicates with
other process using point-to-point messages or with collective operations such as barriers,
reductions, and broadcasts. When a process issues a receive request, it blocks the process
until the requested message arrives from another process. If the process-to-processor map-
ping is one-to-one, blocking receives typically waste processor cycles on a dedicated machine.
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Figure 2: Effects of multi-partitioning in an FEM application.

When such mapping is many-to-one, the operating system can schedule another process to
run instead of the blocked process, but such inter-process context switch is costly. Applica-
tion programmers use non-blocking sends and receives to overlap communication with useful
computation, but it requires careful tuning of applications to maximize such overlap. In any
case, such techniques do not perform well, when the computational load dynamically varies,
because the amount of overlap is typically determined by the useful work within a process,
which may vary during the lifetime of the running process.

In order to convert the legacy MPI codes with blocking operations, we need to find
locations in the program where it performs blocking operations (receives, barriers, and other
collective operations.) At each of these locations, we need to break the flow of execution,
so as to ensure atomicity of entry methods of chunks. We can achieve this by splitting
the program or subroutine at the blocking call into two separate subroutines. In the first
subroutine, we replace the blocking receive call by non-blocking receive, and specify the
second subroutine as a continuation to the runtime system when the non-blocking receive is
complete.

While this approach allows us to port our legacy MPI codes to take advantage of the
Charm++ LB framework, it alters the structure of the program considerably. This is es-
pecially true if there are many blocking operations requiring us to split many subroutines.
Also, if the blocking operation is performed in a subroutine, then that subroutine, as well as
all its callers should be split. This has to be done recursively up to the outermost scope. This
can lead to rise in the complexity of the resulting code (especially, when the communication
is performed deep in the subroutine call hierarchy, or if such calls are made conditionally.)

Our Adaptive MPI implementation uses user-level threads, and allows blocking receives,
so that with a slight overhead, MPI codes can use Charm++ LB framework with efforts less



than that of the original multi-partitioning approach.

4 Adaptive MPI

The main disadvantage of the message-driven multi-partitioning approach described earlier is
that it significantly alters the original program structure, by forcing the use of non-blocking
sends and receives. Also, since subroutines are split, the local variables in the original
subroutines are not retained in the new program structure, and have to be made part of
the dynamically allocated per-chunk data. This may disable some compiler optimizations.
Adaptive MPI avoids such modification to the program structure, at the cost of potential
overhead of context switching and migration.

AMPI implements chunks as user-level threads so as to enable them to issue blocking
receives. Alternatives are to use processes or kernel-level threads. However, process context
switching is costly, because it means switching the page table, and flushing out cache-lines
etc. Process migration is also costlier than thread migration, because it will serialize entire
core image of a process, rather than only the useful part. Kernel-threads are typically
preemptive, thus accessing any shared variable would mean use of locks or mutexes, thus
increasing the overhead. Also, one needs OS support for migrating kernel threads from
one process to another. With user-level threads, one has complete control over scheduling,
and also can maintain information on the communication pattern among chunks, and their
computational and memory requirements. Entire collection of chunks is implemented as a
Charm++ array of objects, where each object has a user-level thread associated with it. All
communication primitives of MPI, both blocking and non-blocking, have been implemented
in AMPI.

Since multiple chunks are mapped to one processor, data that were originally processor-
private are now shared among the chunks. Thus, to convert an MPI program to use AMPI,
we need to localize these data. One can do this by clubbing together the processor-private
data into a user-defined type, and by making a variable of this type a local variable of the
main subroutine, so that it resides on the thread’s stack. If the processor-private data is
too large to be accommodated on the thread’s stack, one can dynamically allocate data for
each chunk. These data are then registered with the runtime system, which makes them
available to each chunk in each subroutine. Thus, references to global variables have to be
changed to an indirect reference via the registered chunk data pointer. One also has to
write serialization subroutines that will be called by the runtime system, when it decides to
migrate a chunk to another processor for load balancing.

It is however tricky to migrate user-level threads by making sure that any references to
the stack are valid after migration to different processors. Note that a chunk may migrate
anytime when it is blocking for messages. At that time, if the thread’s local variables refer
to other local variables, these references may not be valid on another processor, because
the stack may be located in a different location in memory. Thus, we need a mechanism
for making sure that these references remain valid across processors. In the absence of any
compiler support, this means that the thread-stacks should span the same range of virtual
addresses on any processor where it may migrate.



Our preliminary implementation of migratable threads was based on a stack-copy mech-
anism, where contents of the thread-stack were copied at every context-switch between two
threads. Thus, all threads execute with the same stack and refer to valid addresses even
after migration (assuming that the main process stack on all processors begins at the same
virtual address.) This has two drawbacks. First, it is inefficient because of the copy overhead
on every context-switch (figure 3), and second, one thread cannot access another thread’s
local variables, thus making it mandatory to copy it to some shared location. Since the user
program is written such that a process does not access other process’s variables directly, the
second restriction does not impact the application programmer. In order to ensure efficiency
with this mechanism, it is recommended to keep the stack size as low as possible at the time
of a context-switch.

Our current implementation of migratable threads uses a new scalable variant of the
isomalloc functionality of PM?* [ABN99]. In this implementation, each thread’s stack is
allocated such that it spans the same reserved virtual addresses across all the processors. This
is achieved by splitting the unused virtual address space among physical processors. When
a thread is created, its stack is allocated from a portion of the virtual address space assigned
to the creating processor. This ensures that no thread encroaches upon addresses spanned
by others’ stacks on any processor. Allocation and deallocation within the assigned portion
of virtual address space is done using the mmap and munmap functionality of Unix. Since we
use isomalloc for fixed size thread stacks only, we can eliminate several overheads associated
with PM? implementation of isomalloc. This results in context-switching overheads as low
as non-migrating threads, irrespective of the stack-size, while allowing migration of threads.
However, it is still more efficient to keep the stack size down at the time of migration to
reduce the thread migration overhead.

4.1 Conversion to AMPI

In order to convert existing MPI programs to AMPI, one has to make sure that variables
global in scope (such as common blocks, global variables etc) are not defined before and used
after a blocking call, such as MPI Recv. The reason for this restriction is straightforward.
If a global variable is defined before a blocking call, it may be modified by another user-
level thread when the defining thread blocks and another thread is scheduled. Thus, after
returning from a blocked MPI call, the original thread will see a different value of that
variable. Careful inspection of the program may reveal such variables. In order to use
AMPI, such variables should be localized, i.e. copied to variables local to the subroutines,
which are on stack.

However, sometimes such careful inspection may not be possible. In that case, we have
devised a method to systematically put all the global variables in a private area allocated
dynamically or on thread’s stack. The idea is to make a user-defined type, and make all the
global variables members of that type. In the main program, we allocate a variable of that
type, and then pass a pointer to that variable to every subroutine that makes use of global
variables. Access to the previously global variables in such subroutines should be made
through this pointer. A simple source-to-source translator can recognize all global variables
and automatically make such modifications to the program. We are currently working on
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Figure 3: Comparison of context-switching times of stack-copying and isomalloc-based mi-
grating threads with non-migrating threads. This experiment was performed on NCSA
Origin2000, with 250 MHz MIPS R10000 processor.

modifying the front-end of a parallelizing compiler [BEF94] to incorporate this translation.
However, currently, this has to be done by hand.

We have converted some large MPI applications using this approach. The techniques
used, efforts involved, and preliminary performance data are given in the next section.

5 Case Studies

We have compared AMPI with the original message-driven multi-partitioning approach to
evaluate overheads associated with each of them using a typical Computational Fluid Dy-
namics (CFD) kernel that performs Jacobi relaxation on large grids (where each partition
contains 1000 grid points.) We ran this application on a single 250 MHz MIPS R10000
processor, with different number of chunks, keeping the chunk-size constant. Two different
decompositions, 1-D and 3-D, were used. These decompositions vary in number of context-
switches (blocking receives) per chunk. While the 1-D chunks have 2 blocking receive calls
per chunk per iteration, the 3-D chunks have 6 blocking receive calls per chunk per iteration.
However, in both cases, only half of these calls actually block waiting for data, resulting
in 1 and 3 context switches per chunk per iteration respectively. As can be seen from fig-
ure 4, the optimization due to availability of local variables across blocking calls, as well as
larger subroutines in the AMPI version neutralizes thread context-switching overheads for
a reasonable number of chunks per processor. Thus, the load balancing framework can be
effectively used with user-level threads without incurring any significant overheads.
Encouraged by these results, we converted some large MPI applications using AMPI as
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ROCFLO AMPI(sec.)

No. of Processors || ROCFLO MPI(sec.)
1 1637.55
2 957.94
4 450.13
8 234.90
16 142.49
32 61.21

1679.91
916.73
437.64
278.93
126.59

63.82

Table 1: Comparison of MPI and AMPI versions of ROCFLO.

part of the Center for Simulation of Advanced Rockets (CSAR) at University of Illinois.
The goal of CSAR is to produce a detailed multi-physics rocket simulation and virtual
prototyping tool [HD98|. GENI, a first generation integrated simulation code is composed
of three coupled modules: ROCFLO (an explicit fluid dynamics code), ROCSOLID (an
implicit structural simulation code), and ROCFACE (a parallel interface between ROCFLO
and ROCSOLID) [PANT99]. ROCFACE and ROCSOLID have been written using Fortran
90 (about 10000 and 12000 lines respectively), and use MPI as parallel environment. We
converted each of these codes to AMPI. This conversion, using the techniques described in
the last section, resulted in very few changes to original code (In fact, the changed codes
can be made to run with original MPI, with about 10 preprocessor directives), and did not
take much time for authors of this paper, who were unfamiliar with the codes (about a week
for one person for each of these codes.) In addition, the overhead of using AMPI instead of
MPT is shown (tables 1 and 2) to be minimal, even with the original decomposition of one
partition per processor. We expect the performance of AMPI to be better when multiple
partitions are mapped per processor, as depicted in figure 2. Also, the ability of AMPI to
respond to dynamic load variations outweighs these overheads.
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No. of Processors || ROCSOLID MPI(sec.) | ROCSOLID AMPI(sec.)
1 67.19 63.42
8 69.81 71.09
32 70.70 69.99
64 73.94 75.47

Table 2: Comparison of MPI and AMPI versions of ROCSOLID. Note that this is a scaled
problem.

6 Conclusion

Efficient implementations of an increasing number of dynamic and irregular computational
science and engineering applications require dynamic load balancing. Many such appli-
cations have been written in procedural languages such as Fortran with message-passing
parallel programming paradigm. Traditional implementation of message-passing libraries
such as MPI do not support dynamic load balancing. Charm++ parallel programming en-
vironment supports dynamic load balancing using object-migration. Applications developed
using Charm++ have been shown to adaptively balance load in presence of dynamically
changing load conditions caused even by factors external to the application, such as in time-
shared clusters of workstations. However, converting existing procedural message-passing
codes to use object-based Charm+-+ can be cumbersome. We have developed Adaptive
MPI, an implementation of MPI based on message-driven object-based runtime system, and
user-level threads, that run existing MPI applications with minimal change, and insignificant
overhead. Conversion of legacy MPI programs to Adaptive MPI does not need significant
changes to the original code structure; the changes that are needed are mechanical and can
be fully automated. We have converted two large scientific applications to use Adaptive MPI
and the dynamic load-balancing framework, and have shown that for these applications, the
overhead of AMPI, if any, is very small. We are currently working on reducing the messaging
overhead of AMPI, and also automating the code conversion methods.
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