
Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

Converse Extensions
Library Manual

Version 5.4 (Release 1)

University of Illinois
Charm++/Converse Parallel Programming System Software

Non-Exclusive, Non-Commercial Use License

Upon execution of this Agreement by the party identified below (“Licensee”), The Board of Trustees of the University of Illinois (“Illinois”), on behalf of
The Parallel Programming Laboratory (“PPL”) in the Department of Computer Science, will provide the Charm++/Converse Parallel Programming System
software (“Charm++”) in Binary Code and/or Source Code form (“Software”) to Licensee, subject to the following terms and conditions. For purposes of
this Agreement, Binary Code is the compiled code, which is ready to run on Licensee’s computer. Source code consists of a set of files which contain the
actual program commands that are compiled to form the Binary Code.

1. The Software is intellectual property owned by Illinois, and all right, title and interest, including copyright, remain with Illinois. Illinois grants,
and Licensee hereby accepts, a restricted, non-exclusive, non-transferable license to use the Software for academic, research and internal business
purposes only, e.g. not for commercial use (see Clause 7 below), without a fee.

2. Licensee may, at its own expense, create and freely distribute complimentary works that interoperate with the Software, directing others to the PPL
server (http://charm.cs.illinois.edu) to license and obtain the Software itself. Licensee may, at its own expense, modify the Software to make derivative
works. Except as explicitly provided below, this License shall apply to any derivative work as it does to the original Software distributed by Illinois.
Any derivative work should be clearly marked and renamed to notify users that it is a modified version and not the original Software distributed by
Illinois. Licensee agrees to reproduce the copyright notice and other proprietary markings on any derivative work and to include in the documentation
of such work the acknowledgement:

“This software includes code developed by the Parallel Programming Laboratory in the Department of Computer Science at the
University of Illinois at Urbana-Champaign.”

Licensee may redistribute without restriction works with up to 1/2 of their non-comment source code derived from at most 1/10 of the non-comment
source code developed by Illinois and contained in the Software, provided that the above directions for notice and acknowledgement are observed.
Any other distribution of the Software or any derivative work requires a separate license with Illinois. Licensee may contact Illinois (kale@illinois.edu)
to negotiate an appropriate license for such distribution.

3. Except as expressly set forth in this Agreement, THIS SOFTWARE IS PROVIDED “AS IS” AND ILLINOIS MAKES NO REPRESENTATIONS
AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OR
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY
PATENT, TRADEMARK, OR OTHER RIGHTS. LICENSEE ASSUMES THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF
THE SOFTWARE AND/OR ASSOCIATED MATERIALS. LICENSEE AGREES THAT UNIVERSITY SHALL NOT BE HELD LIABLE FOR ANY
DIRECT, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES WITH RESPECT TO ANY CLAIM BY LICENSEE OR ANY THIRD
PARTY ON ACCOUNT OF OR ARISING FROM THIS AGREEMENT OR USE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.

4. Licensee understands the Software is proprietary to Illinois. Licensee agrees to take all reasonable steps to insure that the Software is protected and
secured from unauthorized disclosure, use, or release and will treat it with at least the same level of care as Licensee would use to protect and secure
its own proprietary computer programs and/or information, but using no less than a reasonable standard of care. Licensee agrees to provide the
Software only to any other person or entity who has registered with Illinois. If licensee is not registering as an individual but as an institution or
corporation each member of the institution or corporation who has access to or uses Software must agree to and abide by the terms of this license.
If Licensee becomes aware of any unauthorized licensing, copying or use of the Software, Licensee shall promptly notify Illinois in writing. Licensee
expressly agrees to use the Software only in the manner and for the specific uses authorized in this Agreement.

5. By using or copying this Software, Licensee agrees to abide by the copyright law and all other applicable laws of the U.S. including, but not limited
to, export control laws and the terms of this license. Illinois shall have the right to terminate this license immediately by written notice upon
Licensee’s breach of, or non-compliance with, any terms of the license. Licensee may be held legally responsible for any copyright infringement that
is caused or encouraged by its failure to abide by the terms of this license. Upon termination, Licensee agrees to destroy all copies of the Software
in its possession and to verify such destruction in writing.

6. The user agrees that any reports or published results obtained with the Software will acknowledge its use by the appropriate citation as follows:

“Charm++/Converse was developed by the Parallel Programming Laboratory in the Department of Computer Science at the University
of Illinois at Urbana-Champaign.”

Any published work which utilizes Charm++ shall include the following reference:

“L. V. Kale and S. Krishnan. Charm++: Parallel Programming with Message-Driven Objects. In ’Parallel Programming using C++’
(Eds. Gregory V. Wilson and Paul Lu), pp 175-213, MIT Press, 1996.”

Any published work which utilizes Converse shall include the following reference:

“L. V. Kale, Milind Bhandarkar, Narain Jagathesan, Sanjeev Krishnan and Joshua Yelon. Converse: An Interoperable Framework for
Parallel Programming. Proceedings of the 10th International Parallel Processing Symposium, pp 212-217, April 1996.”

Electronic documents will include a direct link to the official Charm++ page at http://charm.cs.illinois.edu/

7. Commercial use of the Software, or derivative works based thereon, REQUIRES A COMMERCIAL LICENSE. Should Licensee wish to make commer-
cial use of the Software, Licensee will contact Illinois (kale@illinois.edu) to negotiate an appropriate license for such use. Commercial use includes:

(a) integration of all or part of the Software into a product for sale, lease or license by or on behalf of Licensee to third parties, or

(b) distribution of the Software to third parties that need it to commercialize product sold or licensed by or on behalf of Licensee.

8. Government Rights. Because substantial governmental funds have been used in the development of Charm++/Converse, any possession, use or
sublicense of the Software by or to the United States government shall be subject to such required restrictions.

9. Charm++/Converse is being distributed as a research and teaching tool and as such, PPL encourages contributions from users of the code that
might, at Illinois’ sole discretion, be used or incorporated to make the basic operating framework of the Software a more stable, flexible, and/or
useful product. Licensees who contribute their code to become an internal portion of the Software agree that such code may be distributed by Illinois
under the terms of this License and may be required to sign an “Agreement Regarding Contributory Code for Charm++/Converse Software” before
Illinois can accept it (contact kale@illinois.edu for a copy).

UNDERSTOOD AND AGREED.
Contact Information:
The best contact path for licensing issues is by e-mail to kale@illinois.edu or send correspondence to:

Prof. L. V. Kale
Dept. of Computer Science
University of Illinois
201 N. Goodwin Ave
Urbana, Illinois 61801 USA
FAX: (217) 244-6500

2

Contents

1 Introduction 5

2 Tag Matching 6

3 Converse Master-Slave Library 7
3.1 Introduction . 7
3.2 Available Functions . 7
3.3 Example Program . 8

4 Data Structures 10
4.1 Queues, Lists, FIFOs etc. 10

5 Converse Pseudorandom Number Generator 12

6 Automatic Parameter Marshalling 13
6.1 CPM Basics . 13
6.2 CPM Packing and Unpacking . 15
6.3 Inventing New Types of CpmDestinations . 17

7 Load Balancing 21
7.1 Using Converse Load Balancers . 21
7.2 How to Write a Load Balancer for Converse/Charm++ . 24

7.2.1 Introduction . 24
7.2.2 Existing Load Balancers and Provided Utilities . 24

7.3 A Sample Load Balancer . 24
7.3.1 Minimal Requirements . 24
7.3.2 Provided Load Balancing Facilities . 28
7.3.3 Finishing the Test Balancer . 29

8 Futures 32

9 Converse-POSIX threads 33
9.1 Pthreads and Converse . 33
9.2 Suppressing Name Conflicts . 33
9.3 Interoperating with Other Thread Packages . 33
9.4 Preemptive Context Switching . 33
9.5 Limits on Blocking Operations in main . 34
9.6 CpthreadModuleInit . 34

3

10 Parallel Arrays of Threads 35
10.1 Creating Arrays of Threads . 35
10.2 Mapping Functions for Arrays of Threads . 35
10.3 Thread Functions for Arrays of Threads . 36
10.4 Sending Messages to Threads . 36
10.5 Performing Reductions over Array Elements . 37

4

Chapter 1

Introduction

The Converse Extensions Library is a collection of modules that have been implemented on top of the
Converse API. Each of these modules was deemed potentially useful to other Converse users, thus, we
distribute these modules along with Converse as a convenience. You don’t need to read any part of this
manual to use Converse.

5

Chapter 2

Tag Matching

The message manager is a data structure that can be used to put together runtime systems for languages
that support tag-based message retrieval.

The purpose of the message manager is to store, index, and retrieve messages according to a set of integer
tags. It provides functions to create tables, functions to insert messages into tables (specifying their tags),
and functions to selectively retrieve messages from tables according to their tags. Wildcard tags can be
specified in both storage and retrieval.

To use the message manager, you must include converse.h and link with the Converse library.
In actuality, the term “message manager” is unnecessarily specific. The message manager can store and

retrieve arbitrary pointers according to a set of tags. The pointers do not necessarily need to be pointers to
Converse messages. They can be pointers to anything.
typedef struct CmmTableStruct *CmmTable

This opaque type is defined in converse.h. It represents a table which can be used to store messages.
No information is publicized about the format of a CmmTableStruct.
#define CmmWildCard (-1)

This #define is in converse.h. The tag -1 is the “wild card” for the tag-based lookup functions in the
message manager.
CmmTable CmmNew();

This function creates a new message-table and returns it.
void CmmPut(CmmTable t, int ntags, int *tags, void *msg)

This function inserts a message into a message table, along with an array of tags. ntags specifies the
length of the tags array. The tags array contains the tags themselves. msg and t specify the message and
table, respectively.
void *CmmGet(CmmTable t, int ntags, int *tags, int *ret tags)

This function looks up a message from a message table. A message will be retrieved that “matches” the
specified tags array. If a message is found that “matches”, the tags with which it was stored are copied
into the ret tags array, a pointer to the message will be returned, and the message will be deleted from the
table. If no match is found, 0 will be returned.

To “match”, the array tags must be of the same length as the stored array. Similarly, all the individual
tags in the stored array must “match” the tags in the tags array. Two tags match if they are equal to each
other, or if either tag is equal to CmmWildCard (this means one can store messages with wildcard tags,
making it easier to find those messages on retrieval).
void *CmmProbe(CmmTable t, int ntags, int *tags, int *ret tags)

This function is identical to CmmGet above, except that the message is not deleted from the table.
void CmmFree(CmmTable t);

This function frees a message-table t. WARNING: It also frees all the messages that have been inserted
into the message table. It assumes that the correct way to do this is to call CmiFree on the message. If this
assumption is incorrect, a crash will occur. The way to avoid this problem is to remove and properly dispose
all the messages in a table before disposing the table itself.

6

Chapter 3

Converse Master-Slave Library

3.1 Introduction

CMS is the implementation of the master-slave (or manager-worker or agenda) parallel programming paradigm
on top of Converse.

3.2 Available Functions

Following functions are available in this library:
typedef int (*CmsWorkerFn) (void *, void *);

Prototype for the worker function. See below.
typedef int (*CmsConsumerFn) (void *, int);

Prototype for the consumer function. See below.
void CmsInit(CmsWorkerFn worker, int max);

This function must be called before firing any tasks for the workers. max is the largest possible number
of tasks you will fire before calling either CmsAwaitResponses or CmsProcessResponses next. (So the system
know how many it may have to buffer).
int worker(void *t, void **r)

The user writes this function. Its name does not have to be worker; It can be anything. worker can be
any function that the use writes to perform the task on the slave processors. It must allocate and compute
the response data structure, and return a pointer to it, by assigning to r; It must also return the size of the
response data structure as its return value.
void CmsFireTask(int ref, void * t, int size)

Creates task to be worked on by a worker. The task description is pointed to by t, and goes on for size
bytes. ref must be a unique serial number between 0 and max (see CmsInit).
void CmsAwaitResponses(void);

This call allows the system to use processor 0 as a worker. It returns after all the tasks have sent back
their responses. The responses themselves can be extracted using CmsGetResponse.
void *CmsGetResponse(int ref);

Extracts the response associated with the reference number ref from the system’s buffers.
void CmsProcessResponses(CmsConsumerFn consumer);

Instead of using CmsAwaitResponses/CmsGetResponse pair, you can use this call alone. It turns the
control over to the CMS system on processor 0, so it can be used as a worker. As soon as a response is
available on processor 0, cms calls the user specified consumer function with two parameters: the response
(a void *) and an integer refnum. (Question: should the size of the response be passed as a parameter to β
the consumer? User can do that as an explicit field of the response themselves, if necessary.)
void CmsExit(void);

Must be called on all processors to terminate execution.

7

Once either CmsProcessResponses or CmsAwaitResponses returns, you may fire the next batch of tasks
via CmsFireTask again.

3.3 Example Program

#include "cms.h"

#define MAX 10

typedef struct {
float a;

} Task;

typedef struct {
float result;

} Response;

Task t;

int worker(Task *t, Response **r)

{
/* do work and generate a single response */

int i;

Task *t1;

int k;

CmiPrintf("%d: in worker %f \n", CmiMyPe(), t->a);

*r = (Response *) malloc(sizeof(Response));

(*r)->result = t->a * t->a;

return sizeof(Response);

}

int consumer(Response * r, int refnum)

{
CmiPrintf("consumer: response with refnum = %d is %f\n", refnum,

r->result);

}

main(int argc, char *argv[])

{
int i, j, k, ref;

/* 2nd parameter is the max number of tasks

* fired before "awaitResponses"

*/

CmsInit((CmsWorkerFn)worker, 20);

if (CmiMyPe() == 0) { /* I am the manager */

CmiPrintf("manager inited\n");

for (i = 0; i < 3; i++) { /* number of iterations or phases */

/* prepare the next generation of problems to solve */

/* then, fire the next batch of tasks for the worker */

for (j = 0; j < 5; j++) {
t.a = 10 * i + j;

ref = j; /* a ref number to associate with the task, */

8

/* so that the reponse for this task can be identified. */

CmsFireTask(ref, &t, sizeof(t));

}
/* Now wait for the responses */

CmsAwaitResponses(); /* allows proc 0 to be used as a worker. */

/* Now extract the resoneses from the system */

for (j = 0; j < 5; j++) {
Response *r = (Response *) CmsGetResponse(j);

CmiPrintf("Response %d is: %f \n", j, r->result);

}
/* End of one mast-slave phase */

CmiPrintf("End of phase %d\n", i);

}
}

CmiPrintf("Now the consumerFunction mode\n");

if (CmiMyPe() == 0) { /* I am the manager */

for (i = 0; i < 3; i++) {
t.a = 5 + i;

CmsFireTask(i, &t, sizeof(t));

}
CmsProcessResponses((CmsConsumerFn)consumer);

/* Also allows proc. 0 to be used as a worker.

* In addition, responses will be processed on processor 0

* via the "consumer" function as soon as they are available

*/

}
CmsExit();

}

9

Chapter 4

Data Structures

In the course of developing Converse and Charm++ we had to implement a number of data structures
efficiently. If the ANSI standard C++ library were available to us on all platforms, we could have used it,
but that was not the case. Also, we needed both the C and C++ bindings of most data structures. In
most cases, the functionality we needed was also a subset of the C++ standard library functionality, and
by avoiding virtual methods etc, we have tried to code the most efficient implementations of those data
structures.

Since these data structures are already part of Converse and Charm++, they are available to the users
of these system free of cost :-<). In this chapter we document the available functions.

4.1 Queues, Lists, FIFOs etc.

This data structure is based on circular buffer, and can be used both like a FIFO and a Stack.
Following functions are available for use in C:

typedef ... CdsFifo;
An opaque data type representing a queue of void* pointers.

CdsFifo CdsFifo Create(void);
Creates a queue in memory and returns its pointer.

CdsFifo CdsFifo Create len(int len);
Creates a queue in memory with the initial buffer size of len entries and returns its pointer.

void CdsFifo Enqueue(CdsFifo q, void *elt);
Appends elt at the end of q.

void *CdsFifo Dequeue(CdsFifo q);
Removes an element from the front of the q, and returns it. Returns 0 if the queue is empty.

void *CdsFifo Pop(CdsFifo q);
Removes an element from the front of the q, and returns it. Returns 0 if the queue is empty. An alias

for the dequeue function.
void CdsFifo Push(CdsFifo q, void *elt);

Inserts elt in the beginning of q.
int CdsFifo Empty(CdsFifo q);

Returns 1 if the q is empty, 0 otherwise.
int CdsFifo Length(CdsFifo q);

Returns the length of the q.
int CdsFifo Peek(CdsFifo q);

Returns the element from the front of the q without removing it.
void CdsFifo Destroy(CdsFifo q);

Releases memory used by q.
Following Templates are available for use in C++:

10

template<class T>

class CkQ {
CkQ(); // default constructor

CkQ(int initial_size); // constructor with initial buffer size

~CkQ(); // destructor

int length(void); // returns length of the q

bool isEmpty(void); // returns true if q is empty, false otherwise

T deq(void); // removes and returns the front element

void enq(const T&); // appends at the end of the list

void push(const T&); // inserts in the beginning of the list

T& operator[](size_t n); // returns the n’th element

};

11

Chapter 5

Converse Pseudorandom Number
Generator

Converse provides three different Linear Congruential Random Number Generators. Each random number
stream has a cycle length of 264 as opposed to ANSI C standard’s 248. Also, each of the three random number
streams can be split into a number of per processor streams, so that the random number sequences can be
computed in parallel, and are reproducible. Furthermore, there is no implicit critical section in the random
number generator,and yet, this functionality is thread-safe, because all the state information is stored in the
structure allocated by the programmer. Further, this state information is stored in a first class object, and
can be passed to other processors through messages. This module of Converse is based on the public-domain
SPRNG1 package developed by Ashok Srinivasan2 at NCSA.

For minimal change to programs already using C functions rand(), srand(), and drand48(), Converse
also maintains a “default” random number stream.

Interface to the Converse Pseudorandom Number Generator module is as follows:
typedef ... CrnStream;

State information for generating the next random number in the sequence.
void CrnInitStream(CrnStream *stream, int seed, int type)

Initializes the new random number stream stream of type using seed. type can have values 0, 1, or 2
to represent three types of linear congruential random number generators.
int CrnInt(CrnStream *stream)

Returns an integer between 0 and 231 − 1 corresponding to the next random number in the sequence
associated with stream. Advances stream by one in the sequence.
double CrnDouble(CrnStream *stream)

Returns an double precision floating point number between 0 and 1 corresponding to the next random
number in the sequence associated with stream. Advances stream by one in the sequence.
float CrnFloat(CrnStream *stream)

Returns a single precision floating point number between 0 and 1 corresponding to the next random
number in the sequence associated with stream. Advances stream by one in the sequence.
void CrnSrand(int seed)

Specifies a different seed for the default random number stream. Replaces srand().
int CrnRand(void)

Generate the next integer random number from the default random number stream. Replaces rand().
double CrnDrand(void)

Generate the next double precision random number from the default random number stream. Replaces
drand48().

1URL:http://www.ncsa.uiuc.edu/Apps/SPRNG/www/
2Email:ashoks@ncsa.uiuc.edu

12

Chapter 6

Automatic Parameter Marshalling

Automatic Parameter Marshalling is a concise means of invoking functions on remote processors. The CPM
module handles all the details of packing, transmitting, translating, and unpacking the arguments. It also
takes care of converting function pointers into handler numbers. With all these details out of the way, it is
possible to perform remote function invocation in a single line of code.

6.1 CPM Basics

The heart of the CPM module is the CPM scanner. The scanner reads a C source file. When it sees the
keyword CpmInvokable in front of one of the user’s function declarations, it generates a launcher for that
particular function. The launcher is a function whose name is Cpm concatenated to the name of the user’s
function. The launcher accepts the same arguments as the user’s function, plus a destination argument.
Calling the launcher transmits a message to another processor determined by the destination argument.
When the message arrives and is handled, the user’s function is called.

For example, if the CPM scanner sees the following function declaration

CpmInvokable myfunc(int x, int y) { ... }

The scanner will generate a launcher named Cpm myfunc. The launcher has this prototype:

void Cpm_myfunc(CpmDestination destination, int x, int y);

If one were to call Cpm myfunc as follows:

Cpm_myfunc(CpmSend(3), 8, 9);

a message would be sent to processor 3 ordering it to call myfunc(8,9). Notice that the destination
argument isn’t just an integer processor number. The possible destinations for a message are described later.

When the CPM scanner is applied to a C source file with a particular name, it generates a certain amount
of parameter packing and unpacking code, and this code is placed in an include file named similarly to the
original C file: the .c is replaced with .cpm.h. The include file must be included in the original .c file,
after the declarations of the types which are being packed and unpacked, but before all uses of the CPM
invocation mechanisms.

Note that the .cpm.h include file is not for prototyping. It contains the C code for the packing and
unpacking mechanisms. Therefore, it should only be included in the one source file from which it was
generated. If the user wishes to prototype his code, he must do so normally, by writing a header file of his
own.

Each .cpm.h file contains a function CpmInitializeThisModule, which initializes the code in that .cpm.h
file. The function is declared static, so it is possible to have one in each .cpm.h file without conflicts. It is
the responsibility of the CPM user to call each of these CpmInitializeThisModule functions before using
any of the CPM mechanisms.

We demonstrate the use of the CPM mechanisms using the following short program myprog.c:

13

1: #include "myprog.cpm.h"

2:

3: CpmInvokable print_integer(int n)

4: {
5: CmiPrintf("%d\n", n);

6: }
7:

8: user_main(int argc, char **argv)

9: {
10: int i;

11: CpmModuleInit();

12: CpmInitializeThisModule();

13: if (CmiMyPe()==0)

14: for (i=1; i<CmiNumPes(); i++)

15: Cpm_print_integer(CpmSend(i), rand());

16: }
17:

18: main(int argc, char **argv)

19: {
20: ConverseInit(argc, argv, user_main, 0, 0);

21: }

Lines 3-6 of this program contain a simple C function that prints an integer. The function is marked with
the word CpmInvokable. When the CPM scanner sees this word, it adds the function Cpm print integer

to the file myprog.cpm.h. The program includes myprog.cpm.h on line 1, and initializes the code in there
on line 12. Each call to Cpm print integer on line 15 builds a message that invokes print integer. The
destination-argument CpmSend(i) causes the message to be sent to the i’th processor.

The effect of this program is that the first processor orders each of the other processors to print a random
number. Note that the example is somewhat minimalist since it doesn’t contain any code for terminating
itself. Also note that it would have been more efficient to use an explicit broadcast. Broadcasts are described
later.

All launchers accept a CpmDestination as their first argument. A CpmDestination is actually a pointer
to a small C structure containing routing and handling information. The CPM module has many built-in
functions that return CpmDestinations. Therefore, any of these can be used as the first argument to a
launcher:

CpmSend(pe) - the message is transmitted to processor pe with maximum priority.

CpmEnqueue(pe, queueing, priobits, prioptr) - The message is transmitted to processor pe, where
it is enqueued with the specified queueing strategy and priority. The queueing, priobits, and prioptr
arguments are the same as for CqsEnqueueGeneral.

CpmEnqueueFIFO(pe) - the message is transmitted to processor pe and enqueued with the middle
priority (zero), and FIFO relative to messages with the same priority.

CpmEnqueueLIFO(pe) - the message is transmitted to processor pe and enqueued with the middle
priority (zero), and LIFO relative to messages with the same priority.

CpmEnqueueIFIFO(pe, prio) - the message is transmitted to processor pe and enqueued with the
specified integer-priority prio, and FIFO relative to messages with the same priority.

CpmEnqueueILIFO(pe, prio) - the message is transmitted to processor pe and enqueued with the
specified integer-priority prio, and LIFO relative to messages with the same priority.

CpmEnqueueBFIFO(pe, priobits, prioptr) - the message is transmitted to processor pe and enqueued
with the specified bitvector-priority, and FIFO relative to messages with the same priority.

14

CpmEnqueueBLIFO(pe, priobits, prioptr) - the message is transmitted to processor pe and enqueued
with the specified bitvector-priority, and LIFO relative to messages with the same priority.

CpmMakeThread(pe) - The message is transmitted to processor pe where a CthThread is created,
and the thread invokes the specified function.

All the functions shown above accept processor numbers as arguments. Instead of supplying a processor
number, one can also supply the special symbols CPM ALL or CPM OTHERS, causing a broadcast. For
example,

Cpm_print_integer(CpmMakeThread(CPM_ALL), 5);

would broadcast a message to all the processors causing each processor to create a thread, which would
in turn invoke print integer with the argument 5.

6.2 CPM Packing and Unpacking

Functions preceded by the word CpmInvokable must have simple argument lists. In particular, the argu-
ment list of a CpmInvokable function can only contain cpm-single-arguments and cpm-array-arguments, as
defined by this grammar:

cpm-single-argument :== typeword varname

cpm-array-argument :== typeword ’*’ varname

When CPM sees the cpm-array-argument notation, CPM interprets it as being a pointer to an array. In
this case, CPM attempts to pack an entire array into the message, whereas it only attempts to pack a single
element in the case of the cpm-single-argument notation.

Each cpm-array-argument must be preceded by a cpm-single-argument of type CpmDim. CpmDim is simply
an alias for int, but when CPM sees an argument declared CpmDim, it knows that the next argument will be
a cpm-array-argument, and it interprets the CpmDim argument to be the size of the array. Given a pointer
to the array, its size, and its element-type, CPM handles the packing of array values as automatically as it
handles single values.

A second program, example2.c, uses array arguments:

1: #include "example2.cpm.h"

2:

3: CpmInvokable print_program_arguments(CpmDim argc, CpmStr *argv)

4: {
5: int i;

6: CmiPrintf("The program’s arguments are: ");

7: for (i=0; i<argc; i++) CmiPrintf("%s ", argv[i]);

8: CmiPrintf("\n");

9: }
10:

11: user_main(int argc, char **argv)

12: {
13: CpmModuleInit();

14: CpmInitializeThisModule();

15: if (CmiMyPe()==0)

16: Cpm_print_program_arguments(CpmSend(1), argc, argv);

17: }
18:

19: main(int argc, char **argv)

20: {
21: ConverseInit(argc, argv, user_main, 0, 0);

22: }

15

The word CpmStr is a CPM built-in type, it represents a null-terminated string:

typedef char *CpmStr;

Therefore, the function print program arguments takes exactly the same arguments as user main. In
this example, the main program running on processor 0 transmits the arguments to processor 1, which prints
them out.

Thus far, we have only shown functions whose prototypes contain builtin CPM types. CPM has built-in
knowledge of the following types: char, short, int, long, float, double, CpmDim, and CpmStr (pointer to a
null-terminated string). However, you may also transmit user-defined types in a CPM message.

For each (non-builtin) type the user wishes to pack, the user must supply some pack and unpack routines.
The subroutines needed depend upon whether the type is a pointer or a simple type. Simple types are defined
to be those that contain no pointers at all. Note that some types are neither pointers, nor simple types.
CPM cannot currently handle such types.

CPM knows which type is which only through the following declarations:

CpmDeclareSimple(typeword);

CpmDeclarePointer(typeword);

The user must supply such declarations for each type that must be sent via CPM.
When packing a value v which is a simple type, CPM uses the following strategy. The generated code

first converts v to network interchange format by calling CpmPack typename(&v), which must perform the
conversion in-place. It then copies v byte-for-byte into the message and sends it. When the data arrives, it
is extracted from the message and converted back using CpmUnpack typename(&v), again in-place. The user
must supply the pack and unpack routines.

When packing a value v which is a pointer, the generated code determines how much space is needed
in the message buffer by calling CpmPtrSize typename(v). It then transfers the data pointed to by v into
the message using CpmPtrPack typename(p, v) , where p is a pointer to the allocated space in the message
buffer. When the message arrives, the generated code extracts the packed data from the message by calling
CpmPtrUnpack typename(p). The unpack function must return a pointer to the unpacked data, which is
allowed to still contain pointers to the message buffer (or simply be a pointer to the message buffer). When
the invocation is done, the function CpmPtrFree typename(v) is called to free any memory allocated by the
unpack routine. The user must supply the size, pack, unpack, and free routines.

The following program fragment shows the declaration of two user-defined types:

1:

2: typedef struct { double x,y; } coordinate;

3: CpmDeclareSimple(coordinate);

4:

5: void CpmPack_coordinate(coordinate *p)

6: {
7: CpmPack_double(&(p->x));

8: CpmPack_double(&(p->y));

9: }
10:

11: void CpmPack_coordinate(coordinate *p)

12: {
13: CpmUnpack_double(&(p->x));

14: CpmUnpack_double(&(p->y));

15: }
16:

17: typedef int *intptr;

18: CpmDeclarePointer(intptr);

19:

20: #define CpmPtrSize_intptr(p) sizeof(int)

16

21:

22: void CpmPtrPack_intptr(void *p, intptr v)

23: {
24: *(int *)p = *v;

25: CpmPack_int((int *)p);

26: }
27:

28: intptr CpmPtrUnpack_intptr(void *p)

29: {
30: CpmUnpack_int((int *)p);

31: return (int *)p;

32: }
33:

34: #define CpmPtrFree_intptr(p) (0)

35:

36: #include "example3.cpm.h"

37: ...

The first type declared in this file is the coordinate. Line 2 contains the C type declaration, and line 3
notifies CPM that it is a simple type, containing no pointers. Lines 5-9 declare the pack function, which
receives a pointer to a coordinate, and must pack it in place. It makes use of the pack-function for doubles,
which also packs in place. The unpack function is similar.

The second type declared in this file is the intptr, which we intend to mean a pointer to a single integer.
On line 18 we notify CPM that the type is a pointer, and that it should therefore use CpmPtrSize intptr,
CpmPtrPack intptr, CpmPtrUnpack intptr, and CpmPtrFree intptr. Line 20 shows the size function, a
constant: we always need just enough space to store one integer. The pack function copies the int into the
message buffer, and packs it in place. The unpack function unpacks it in place, and returns an intptr, which
points right to the unpacked integer which is still in the message buffer. Since the int is still in the message
buffer, and not in dynamically allocated memory, the free function on line 34 doesn’t have to do anything.

Note that the inclusion of the .cpm.h file comes after these type and pack declarations: the .cpm.h file
will reference these functions and macros, therefore, they must already be defined.

6.3 Inventing New Types of CpmDestinations

It is possible for the user to create new types of CpmDestinations, and to write functions that return these
new destinations. In order to do this, one must have a mental model of the steps performed when a Cpm
message is sent. This knowledge is only necessary to those wishing to invent new kinds of destinations.
Others can skip this section.

The basic steps taken when sending a CPM message are:

1. The destination-structure is created. The first argument to the launcher is a CpmDestination.
Therefore, before the launcher is invoked, one typically calls a function (like CpmSend) to build the
destination-structure.

2. The launcher allocates a message-buffer. The buffer contains space to hold a function-pointer
and the function’s arguments. It also contains space for an “envelope”, the size of which is determined
by a field in the destination-structure.

3. The launcher stores the function-arguments in the message buffer. In doing so, the
launcher converts the arguments to a contiguous sequence of bytes.

4. The launcher sets the message’s handler. For every launcher, there is a matching function
called an invoker. The launcher’s job is to put the argument data in the message and send the message.
The invoker’s job is to extract the argument data from the message and call the user’s function. The
launcher uses CmiSetHandler to tell Converse to handle the message by calling the appropriate invoker.

17

5. The message is sent, received, and handled. The destination-structure contains a pointer to
a send-function. The send-function is responsible for choosing the message’s destination and making
sure that it gets there and gets handled. The send-function has complete freedom to implement this in
any manner it wishes. Eventually, though, the message should arrive at a destination and its handler
should be called.

6. The user’s function is invoked. The invoker extracts the function arguments from the message
buffer and calls the user’s function.

The send-function varies because messages take different routes to get to their final destinations. Com-
pare, for example, CpmSend to CpmEnqueueFIFO. When CpmSend is used, the message goes straight to
the target processor and gets handled. When CpmEnqueueFIFO is used, the message goes to the target
processor, goes into the queue, comes out of the queue, and then gets handled. The send-function must im-
plement not only the transmission of the message, but also the possible “detouring” of the message through
queues or into threads.

We now show an example CPM command, and describe the steps that are taken when the command is
executed. The command we will consider is this one:

Cpm_print_integer(CpmEnqueueFIFO(3), 12);

Which sends a message to processor 3, ordering it to call print integer(12).
The first step is taken by CpmEnqueueFIFO, which builds the CpmDestination. The following is the

code for CpmEnqueueFIFO:

18

typedef struct CpmDestinationSend

{
void *(*sendfn)();

int envsize;

int pe;

}
*CpmDestinationSend;

CpmDestination CpmEnqueueFIFO(int pe)

{
static struct CpmDestinationSend ctrl;

ctrl.envsize = sizeof(int);

ctrl.sendfn = CpmEnqueueFIFO1;

ctrl.pe = pe;

return (CpmDestination)&ctrl;

}

Notice that the CpmDestination structure varies, depending upon which kind of destination is being
used. In this case, the destination structure contains a pointer to the send-function CpmEnqueueFIFO1, a
field that controls the size of the envelope, and the destination-processor. In a CpmDestination, the sendfn

and envsize fields are required, additional fields are optional.
After CpmEnqueueFIFO builds the destination-structure, the launcher Cpm print integer is invoked.

Cpm print integer performs all the steps normally taken by a launcher:

1. It allocates the message buffer. In this case, it sets aside just enough room for one int as an
envelope, as dictated by the destination-structure’s envsize field.

2. It stores the function-arguments in the message-buffer. In this case, the function-arguments
are just the integer 12.

3. It sets the message’s handler. In this case, the message’s handler is set to a function that will
extract the arguments and call print integer.

4. It calls the send-function to send the message.

The code for the send-function is here:

void *CpmEnqueueFIFO1(CpmDestinationSend dest, int len, void *msg)

{
int *env = (int *)CpmEnv(msg);

env[0] = CmiGetHandler(msg);

CmiSetHandler(msg, CpvAccess(CpmEnqueueFIFO2_Index));

CmiSyncSendAndFree(dest->pe,len,msg);

}

The send-function CpmEnqueueFIFO1 starts by switching the handler. The original handler is removed
using CmiGetHandler. It is set aside in the message buffer in the “envelope” space described earlier —
notice the use of CpmEnv to obtain the envelope. This is the purpose of the envelope in the message — it is
a place where the send-function can store information. The destination-function must anticipate how much
space the send-function will need, and it must specify that amount of space in the destination-structure field
envsize. In this case, the envelope is used to store the original handler, and the message’s handler is set to
an internal function called CpmEnqueueFIFO2.

After switching the handler, CpmEnqueueFIFO1 sends the message. Eventually, the message will be
received by CsdScheduler, and its handler will be called. The result will be that CpmEnqueueFIFO2 will be
called on the destination processor. Here is the code for CpmEnqueueFIFO2:

19

void CpmEnqueueFIFO2(void *msg)

{
int *env;

CmiGrabBuffer(&msg);

env = (int *)CpmEnv(msg);

CmiSetHandler(msg, env[0]);

CsdEnqueueFIFO(msg);

}

This function takes ownership of the message-buffer from Converse using CmiGrabBuffer. It extracts the
original handler from the envelope (the handler that calls print integer), and restores it using CmiSetHandler.
Having done so, it enqueues the message with the FIFO queueing policy. Eventually, the scheduler picks the
message from the queue, and print integer is invoked.

In summary, the procedure for implementing new kinds of destinations is to write one send-function, one
function returning a CpmDestination (which contains a reference to the send-function), and one or more
Converse handlers to manipulate the message.

The destination-function must return a pointer to a “destination-structure”, which can in fact be any
structure matching the following specifications:

• The first field must be a pointer to a send-function,

• The second field must the an integer, the envelope-size.

This pointer must be coerced to type CpmDestination.
The send-function must have the following prototype:

void sendfunction(CpmDestination dest, int msglen, void *msgptr)

It can access the envelope of the message using CpmEnv:

int *CpmEnv(void *msg);

It can also access the data stored in the destination-structure by the destination-function.

20

Chapter 7

Load Balancing

7.1 Using Converse Load Balancers

This module defines a function CldEnqueue that sends a message to a lightly-loaded processor. It automates
the process of finding a lightly-loaded processor.

The function CldEnqueue is extremely sophisticated. It does not choose a processor, send the message,
and forget it. Rather, it puts the message into a pool of movable work. The pool of movable work gradually
shrinks as it is consumed (processed), but in most programs, there is usually quite a bit of movable work
available at any given time. As load conditions shift, the load balancers shifts the pool around, compensating.
Any given message may be shifted more than once, as part of the pool.

CldEnqueue also accounts for priorities. Normal load-balancers try to make sure that all processors have
some work to do. The function CldEnqueue goes a step further: it tries to make sure that all processors
have some reasonably high-priority work to do. This can be extremely helpful in AI search applications.

The two assertions above should be qualified: CldEnqueue can use these sophisticated strategies, but it
is also possible to configure it for different behavior. When you compile and link your program, you choose a
load-balancing strategy. That means you link in one of several implementations of the load-balancer. Most
are sophisticated, as described above. But some are simple and cheap, like the random strategy. The process
of choosing a strategy is described in the manual Converse Installation and Usage.

Before you send a message using CldEnqueue, you must write an info function with this prototype:
void InfoFn(void *msg, CldPackFn *pfn, int *len, int *queueing, int *priobits, unsigned int *prioptr);

The load balancer will call the info function when it needs to know various things about the message.
The load balancer will pass in the message via the parameter msg. The info function’s job is to “fill in”
the other parameters. It must compute the length of the message, and store it at *len. It must determine
the pack function for the message, and store a pointer to it at *pfm. It must identify the priority of the
message, and the queueing strategy that must be used, storing this information at *queueing, *priobits,
and *prioptr. Caution: the priority will not be copied, so the *prioptr should probably be made to point
to the message itself.

After the user of CldEnqueue writes the “info” function, the user must register it, using this:
int CldRegisterInfoFn(CldInfoFn fn)

Accepts a pointer to an info-function. Returns an integer index for the info-function. This index will be
needed in CldEnqueue.

Normally, when you send a message, you pack up a bunch of data into a message, send it, and unpack it
at the receiving end. It is sometimes possible to perform an optimization, though. If the message is bound
for a processor within the same address space, it isn’t always necessary to copy all the data into the message.
Instead, it may be sufficient to send a message containing only a pointer to the data. This saves much
packing, unpacking, and copying effort. It is frequently useful, since in a properly load-balanced program, a
great many messages stay inside a single address space.

With CldEnqueue, you don’t know in advance whether a message is going to cross address-space bound-
aries or not. If it’s to cross address spaces, you need to use the “long form”, but if it’s to stay inside an

21

address space, you want to use the faster “short form”. We call this “conditional packing.” When you send
a message with CldEnqueue, you should initially assume it will not cross address space boundaries. In
other words, you should send the “short form” of the message, containing pointers. If the message is about
to leave the address space, the load balancer will call your pack function, which must have this prototype:
void PackFn(void **msg)

The pack function is handed a pointer to a pointer to the message (yes, a pointer to a pointer). The pack
function is allowed to alter the message in place, or replace the message with a completely different message.
The intent is that the pack function should replace the “short form” of the message with the “long form” of
the message. Note that if it replaces the message, it should CmiFree the old message.

Of course, sometimes you don’t use conditional packing. In that case, there is only one form of the
message. In that case, your pack function can be a no-op.

Pack functions must be registered using this:
int CldRegisterPackFn(CldPackFn fn)

Accepts a pointer to an pack-function. Returns an integer index for the pack-function. This index will
be needed in CldEnqueue.

Normally, CldEnqueue sends a message to a lightly-loaded processor. After doing this, it enqueues the
message with the appropriate priority. The function CldEnqueue can also be used as a mechanism to simply
enqueue a message on a remote processor with a priority. In other words, it can be used as a prioritized
send-function. To do this, one of the CldEnqueue parameters allows you to override the load-balancing
behavior and lets you choose a processor yourself.

The prototype for CldEnqueue is as follows:
void CldEnqueue(int pe, void *msg, int infofn)

The argument msg is a pointer to the message. The parameter infofn represents a function that can
analyze the message. The parameter packfn represents a function that can pack the message. If the
parameter pe is CLD ANYWHERE, the message is sent to a lightly-loaded processor and enqueued with the
appropriate priority. If the parameter pe is a processor number, the message is sent to the specified processor
and enqueued with the appropriate priority. CldEnqueue frees the message buffer using CmiFree.

The following simple example illustrates how a Converse program can make use of the load balancers.
hello.c:

#include <stdio.h>

#include "converse.h"

#define CHARES 10

void startup(int argc, char *argv[]);

void registerAndInitialize();

typedef struct pemsgstruct

{
char header[CmiExtHeaderSizeBytes];

int pe, id, pfnx;

int queuing, priobits;

unsigned int prioptr;

} pemsg;

CpvDeclare(int, MyHandlerIndex);

CpvDeclare(int, InfoFnIndex);

CpvDeclare(int, PackFnIndex);

int main(int argc, char *argv[])

{
ConverseInit(argc, argv, startup, 0, 0);

CsdScheduler(-1);

}

22

void startup(int argc, char *argv[])

{
pemsg *msg;

int i;

registerAndInitialize();

for (i=0; i<CHARES; i++) {
msg = (pemsg *)malloc(sizeof(pemsg));

msg->pe = CmiMyPe();

msg->id = i;

msg->pfnx = CpvAccess(PackFnIndex);

msg->queuing = CQS_QUEUEING_FIFO;

msg->priobits = 0;

msg->prioptr = 0;

CmiSetHandler(msg, CpvAccess(MyHandlerIndex));

CmiPrintf("[%d] sending message %d\n", msg->pe, msg->id);

CldEnqueue(CLD_ANYWHERE, msg, CpvAccess(InfoFnIndex));

/* CmiSyncSend(i, sizeof(pemsg), &msg); */

}
}

void MyHandler(pemsg *msg)

{
CmiPrintf("Message %d created on %d handled by %d.\n", msg->id, msg->pe,

CmiMyPe());

}

void InfoFn(pemsg *msg, CldPackFn *pfn, int *len, int *queuing, int *priobits,

unsigned int *prioptr)

{
*pfn = (CldPackFn)CmiHandlerToFunction(msg->pfnx);

*len = sizeof(pemsg);

*queuing = msg->queuing;

*priobits = msg->priobits;

prioptr = &(msg->prioptr);

}

void PackFn(pemsg **msg)

void registerAndInitialize()

CpvInitialize(int, MyHandlerIndex);

CpvAccess(MyHandlerIndex) = CmiRegisterHandler(MyHandler);

CpvInitialize(int, InfoFnIndex);

CpvAccess(InfoFnIndex) = CldRegisterInfoFn((CldInfoFn)InfoFn);

CpvInitialize(int, PackFnIndex);

CpvAccess(PackFnIndex) = CldRegisterPackFn((CldPackFn)PackFn);

23

7.2 How to Write a Load Balancer for Converse/Charm++

7.2.1 Introduction

This manual details how to write your own general-purpose message-based load balancer for Converse. A
Converse load balancer can be used by any Converse program, but also serves as a seed load balancer
for Charm++ chare creation messages. Specifically, to use a load balancer, you would pass messages to
CldEnqueue rather than directly to the scheduler. This is the default behavior with chare creation message
in Charm++. Thus, the primary provision of a new load balancer is an implementation of the CldEnqueue
function.

7.2.2 Existing Load Balancers and Provided Utilities

Throughout this manual, we will occasionally refer to the source code of two provided load balancers,
the random initial placement load balancer (cldb.rand.c) and the virtual topology-based load balancer
(cldb.neighbor.c) which applies virtual topology including dense graph to construct neighbors. The func-
tioning of these balancers is described in the Charm++ manual load balancing section.

In addition, a special utility is provided that allows us to add and remove load-balanced messages from
the scheduler’s queue. The source code for this is available in cldb.c. The usage of this utility will also be
described here in detail.

7.3 A Sample Load Balancer

This manual steps through the design of a load balancer using an example which we will call test. The
test load balancer has each processor periodically send half of its load to its neighbor in a ring. Specifically,
for N processors, processor K will send approximately half of its load to (K+1)%N, every 100 milliseconds
(this is an example only; we leave the genius approaches up to you).

7.3.1 Minimal Requirements

The minimal requirements for a load balancer are illustrated by the following code.

#include <stdio.h>

#include "converse.h"

char *CldGetStrategy(void)

{
return "test";

}

CpvDeclare(int, CldHandlerIndex);

void CldHandler(void *msg)

{
CldInfoFn ifn; CldPackFn pfn;

int len, queueing, priobits; unsigned int *prioptr;

CmiGrabBuffer((void **)&msg);

CldRestoreHandler(msg);

ifn = (CldInfoFn)CmiHandlerToFunction(CmiGetInfo(msg));

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}

24

void CldEnqueue(int pe, void *msg, int infofn)

{
int len, queueing, priobits; unsigned int *prioptr;

CldInfoFn ifn = (CldInfoFn)CmiHandlerToFunction(infofn);

CldPackFn pfn;

if (pe == CLD_ANYWHERE) {
/* do what you want with the message; in this case we’ll just keep

it local */

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

CmiSetInfo(msg,infofn);

CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}
else {
/* pe contains a particular destination or broadcast */

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

if (pfn) {
pfn(&msg);

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

}
CldSwitchHandler(msg, CpvAccess(CldHandlerIndex));

CmiSetInfo(msg,infofn);

if (pe==CLD_BROADCAST)

CmiSyncBroadcastAndFree(len, msg);

else if (pe==CLD_BROADCAST_ALL)

CmiSyncBroadcastAllAndFree(len, msg);

else CmiSyncSendAndFree(pe, len, msg);

}
}

void CldModuleInit()

{
CpvInitialize(int, CldHandlerIndex);

CpvAccess(CldHandlerIndex) = CmiRegisterHandler(CldHandler);

CldModuleGeneralInit();

}

The primary function a load balancer must provide is the CldEnqueue function, which has the following
prototype:

void CldEnqueue(int pe, void *msg, int infofn);

This function takes three parameters: pe, msg and infofn. pe is the intended destination of the msg. pe
may take on one of the following values:

• Any valid processor number - the message must be sent to that processor

• CLD ANYWHERE - the message can be placed on any processor

• CLD BROADCAST - the message must be sent to all processors excluding the local processor

• CLD BROADCAST ALL - the message must be sent to all processors including the local processor

CldEnqueue must handle all of these possibilities. The only case in which the load balancer should
get control of a message is when pe = CLD ANYWHERE. All other messages must be sent off to their intended
destinations and passed on to the scheduler as if they never came in contact with the load balancer.

The integer parameter infofn is a handler index for a user-provided function that allows CldEnqueue to
extract information about (mostly components of) the message msg.

25

Thus, an implementation of the CldEnqueue function might have the following structure:

void CldEnqueue(int pe, void *msg, int infofn)

{
...

if (pe == CLD_ANYWHERE)

/* These messages can be load balanced */

else if (pe == CmiMyPe())

/* Enqueue the message in the scheduler locally */

else if (pe==CLD_BROADCAST)

/* Broadcast to all but self */

else if (pe==CLD_BROADCAST_ALL)

/* Broadcast to all plus self */

else /* Specific processor number was specified */

/* Send to specific processor */

}

In order to fill in the code above, we need to know more about the message before we can send it off to
a scheduler’s queue, either locally or remotely. For this, we have the info function. The prototype of an info
function must be as follows:
void ifn(msg, pfn, len, queueing, priobits, prioptr);

void *msg;

CldPackFn *pfn;

int *len, *queueing, *priobits;

unsigned int **prioptr;

Thus, to use the info function, we need to get the actual function via the handler index provided to
CldEnqueue. Typically, CldEnqueue would contain the following declarations:

int len, queueing, priobits;

unsigned int *prioptr;

CldPackFn pfn;

CldInfoFn ifn = (CldInfoFn)CmiHandlerToFunction(infofn);

Subsequently, a call to ifn would look like this:

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

The info function extracts information from the message about its size, queuing strategy and priority,
and also a pack function, which will be used when we need to send the message elsewhere. For now, consider
the case where the message is to be locally enqueued:

...

else if (pe == CmiMyPe())

{
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}
...

Thus, we see the info function is used to extract info from the message that is necessary to pass on to
CsdEnqueueGeneral.

In order to send the message to a remote destination and enqueue it in the scheduler, we need to pack
it up with a special pack function so that it has room for extra handler information and a reference to the
info function. Therefore, before we handle the last three cases of CldEnqueue, we have a little extra work
to do:

26

...

else

{
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

if (pfn) {
pfn(&msg);

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

}
CldSwitchHandler(msg, CpvAccess(CldHandlerIndex));

CmiSetInfo(msg,infofn);

...

Calling the info function once gets the pack function we need, if there is one. We then call the pack
function which rearranges the message leaving space for the info function, which we will need to call on the
message when it is received at its destination, and also room for the extra handler that will be used on the
receiving side to do the actual enqueuing. CldSwitchHandler is used to set this extra handler, and the
receiving side must restore the original handler.

In the above code, we call the info function again because some of the values may have changed in the
packing process.

Finally, we handle our last few cases:

...

if (pe==CLD_BROADCAST)

CmiSyncBroadcastAndFree(len, msg);

else if (pe==CLD_BROADCAST_ALL)

CmiSyncBroadcastAllAndFree(len, msg);

else CmiSyncSendAndFree(pe, len, msg);

}
}

The above example also provides CldHandler which is used to receive messages that CldEnqueue
forwards to other processors.

CpvDeclare(int, CldHandlerIndex);

void CldHandler(void *msg)

{
CldInfoFn ifn; CldPackFn pfn;

int len, queueing, priobits; unsigned int *prioptr;

CmiGrabBuffer((void **)&msg);

CldRestoreHandler(msg);

ifn = (CldInfoFn)CmiHandlerToFunction(CmiGetInfo(msg));

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}

Note that the CldHandler properly restores the message’s original handler using CldRestoreHandler,
and calls the info function to obtain the proper parameters to pass on to the scheduler. We talk about this
more below.

Finally, Converse initialization functions call CldModuleInit to initialize the load balancer module.

void CldModuleInit()

{
CpvInitialize(int, CldHandlerIndex);

27

CpvAccess(CldHandlerIndex) = CmiRegisterHandler(CldHandler);

CldModuleGeneralInit();

/* call other init processes here */

CldBalance();

}

7.3.2 Provided Load Balancing Facilities

Converse provides a number of structures and functions to aid in load balancing (see cldb.c). Foremost
amongst these is a method for queuing tokens of messages in a processor’s scheduler in a way that they can
be removed and relocated to a different processor at any time. The interface for this module is as follows:

void CldSwitchHandler(char *cmsg, int handler)

void CldRestoreHandler(char *cmsg)

int CldCountTokens()

int CldLoad()

void CldPutToken(char *msg)

void CldGetToken(char **msg)

void CldModuleGeneralInit()

Messages normally have a handler index associated with them, but in addition they have extra space for
an additional handler. This is used by the load balancer when we use an intermediate handler (typically
CldHandler) to handle the message when it is received after relocation. To do this, we use CldSwitch-
Handler to temporarily swap the intended handler with the load balancer handler. When the message is
received, CldRestoreHandler is used to change back to the intended handler.

CldPutToken puts a message in the scheduler queue in such a way that it can be retrieved from the
queue. Once the message gets handled, it can no longer be retrieved. CldGetToken retrieves a message that
was placed in the scheduler queue in this way. CldCountTokens tells you how many tokens are currently
retrievable. CldLoad gives a slightly more accurate estimate of message load by counting the total number
of messages in the scheduler queue.

CldModuleGeneralInit is used to initialize this load balancer helper module. It is typically called
from the load balancer’s CldModuleInit function.

The helper module also provides the following functions:

void CldMultipleSend(int pe, int numToSend)

int CldRegisterInfoFn(CldInfoFn fn)

int CldRegisterPackFn(CldPackFn fn)

CldMultipleSend is generally useful for any load balancer that sends multiple messages to one processor.
It works with the token queue module described above. It attempts to retrieve up to numToSend messages,
and then packs them together and sends them, via CmiMultipleSend, to pe. If the number and/or size of the
messages sent is very large, CldMultipleSend will transmit them in reasonably sized parcels. In addition,
the CldBalanceHandler and its associated declarations and initializations are required to use it.

You may want to use the three status variables. These can be used to keep track of what your LB is
doing (see usage in cldb.neighbor.c and itc++queens program).

CpvDeclare(int, CldRelocatedMessages);

CpvDeclare(int, CldLoadBalanceMessages);

CpvDeclare(int, CldMessageChunks);

The two register functions register info and pack functions, returning an index for the functions. Info
functions are used by the load balancer to extract the various components from a message. Amongst these
components is the pack function index. If necessary, the pack function can be used to pack a message that is
about to be relocated to another processor. Information on how to write info and pack functions is available
in the load balancing section of the Converse Extensions manual.

28

7.3.3 Finishing the Test Balancer

The test balancer is a somewhat silly strategy in which every processor attempts to get rid of half of its
load by periodically sending it to someone else, regardless of the load at the destination. Hopefully, you
won’t actually use this for anything important!

The test load balancer is available in charm/src/Common/conv-ldb/cldb.test.c. To try out your own
load balancer you can use this filename and SUPER INSTALL will compile it and you can link it into your
Charm++ programs with -balance test. (To add your own new balancers permanently and give them another
name other than ”test” you will need to change the Makefile used by SUPER INSTALL. Don’t worry about
this for now.) The cldb.test.c provides a good starting point for new load balancers.

Look at the code for the test balancer below, starting with the CldEnqueue function. This is almost
exactly as described earlier. One exception is the handling of a few extra cases: specifically if we are running
the program on only one processor, we don’t want to do any load balancing. The other obvious difference is
in the first case: how do we handle messages that can be load balanced? Rather than enqueuing the message
directly with the scheduler, we make use of the token queue. This means that messages can later be removed
for relocation. CldPutToken adds the message to the token queue on the local processor.

#include <stdio.h>

#include "converse.h"

#define PERIOD 100

#define MAXMSGBFRSIZE 100000

char *CldGetStrategy(void)

{
return "test";

}

CpvDeclare(int, CldHandlerIndex);

CpvDeclare(int, CldBalanceHandlerIndex);

CpvDeclare(int, CldRelocatedMessages);

CpvDeclare(int, CldLoadBalanceMessages);

CpvDeclare(int, CldMessageChunks);

void CldDistributeTokens()

int destPe = (CmiMyPe()+1)%CmiNumPes(), numToSend;

numToSend = CldLoad() / 2;

if (numToSend > CldCountTokens())

numToSend = CldCountTokens() / 2;

if (numToSend > 0)

CldMultipleSend(destPe, numToSend);

CcdCallFnAfter((CcdVoidFn)CldDistributeTokens, NULL, PERIOD);

void CldBalanceHandler(void *msg)

CmiGrabBuffer((void **)&msg);

CldRestoreHandler(msg);

CldPutToken(msg);

void CldHandler(void *msg)

29

CldInfoFn ifn; CldPackFn pfn;

int len, queueing, priobits; unsigned int *prioptr;

CmiGrabBuffer((void **)&msg);

CldRestoreHandler(msg);

ifn = (CldInfoFn)CmiHandlerToFunction(CmiGetInfo(msg));

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

void CldEnqueue(int pe, void *msg, int infofn)

int len, queueing, priobits; unsigned int *prioptr;

CldInfoFn ifn = (CldInfoFn)CmiHandlerToFunction(infofn);

CldPackFn pfn;

if ((pe == CLD_ANYWHERE) && (CmiNumPes() > 1))

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

CmiSetInfo(msg,infofn);

CldPutToken(msg);

else if ((pe == CmiMyPe()) || (CmiNumPes() == 1))

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

CmiSetInfo(msg,infofn);

CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

else

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

if (pfn)

pfn(&msg);

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

CldSwitchHandler(msg, CpvAccess(CldHandlerIndex));

CmiSetInfo(msg,infofn);

if (pe==CLD_BROADCAST)

CmiSyncBroadcastAndFree(len, msg);

else if (pe==CLD_BROADCAST_ALL)

CmiSyncBroadcastAllAndFree(len, msg);

else CmiSyncSendAndFree(pe, len, msg);

void CldModuleInit()

CpvInitialize(int, CldHandlerIndex);

CpvAccess(CldHandlerIndex) = CmiRegisterHandler(CldHandler);

CpvInitialize(int, CldBalanceHandlerIndex);

CpvAccess(CldBalanceHandlerIndex) = CmiRegisterHandler(CldBalanceHandler);

CpvInitialize(int, CldRelocatedMessages);

CpvInitialize(int, CldLoadBalanceMessages);

CpvInitialize(int, CldMessageChunks);

CpvAccess(CldRelocatedMessages) = CpvAccess(CldLoadBalanceMessages) =

CpvAccess(CldMessageChunks) = 0;

30

CldModuleGeneralInit();

if (CmiNumPes() > 1)

CldDistributeTokens();

Now look two functions up from CldEnqueue. We have an additional handler besides the CldHandler:
the CldBalanceHandler. The purpose of this special handler is to receive messages that can be still be
relocated again in the future. Just like the first case of CldEnqueue uses CldPutToken to keep the message
retrievable, CldBalanceHandler does the same with relocatable messages it receives. CldHandler is only
used when we no longer want the message to have the potential for relocation. It places messages irretrievably
in the scheduler queue.

Next we look at our initialization functions to see how the process gets started. The CldModuleInit
function gets called by the common Converse initialization code and starts off the periodic load distribution
process by making a call to CldDistributeTokens. The entirety of the balancing is handled by the periodic
invocation of this function. It computes an approximation of half of the PE’s total load (CsdLength()),
and if that amount exceeds the number of movable messages (CldCountTokens()), we attempt to move
all of the movable messages. To do this, we pass this number of messages to move and the number of the
PE to move them to, to the CldMultipleSend function.

31

Chapter 8

Futures

This library supports the future abstraction, defined and used by Halstead and other researchers.
Cfuture CfutureCreate()
Returns the handle of an empty future. The future is said to reside on the processor that created it.

The handle is a global reference to the future, in other words, it may be copied freely across processors.
However, while the handle may be moved across processors freely, some operations can only be performed
on the processor where the future resides.

Cfuture CfutureSet(Cfuture future, void *value, int nbytes)
Makes a copy of the value and stores it in the future. CfutureSet may be performed on processors other

than the one where the future resides. If done remotely, the copy of the value is created on the processor
where the future resides.

void *CfutureWait(Cfuture fut)
Waits until the future has been filled, then returns a pointer to the contents of the future. If the future

has already been filled, this happens immediately (without blocking). Caution: CfutureWait can only be
done on the processor where the Cfuture resides. A second caution: blocking operations (such as this one)
can only be done in user-created threads.

void CfutureDestroy(Cfuture f)
Frees the space used by the specified Cfuture. This also frees the value stored in the future. Caution:

this operation can only be done on the processor where the Cfuture resides.
void* CfutureCreateValue(int nbytes)
Allocates the specified amount of memory and returns a pointer to it. This buffer can be filled with data

and stored into a future, using CfutureStoreBuffer below. This combination is faster than using CfutureSet
directly.

void CfutureStoreValue(Cfuture fut, void *value)
Make a copy of the value and stores it in the future, destroying the original copy of the value. This may

be significantly faster than the more general function, CfutureSet (it may avoid copying). This function can
only used to store values that were previously extracted from other futures, or values that were allocated
using CfutureCreateValue.

void CfutureModuleInit()
This function initializes the futures module. It must be called once on each processor, during the handler-

registration process (see the Converse manual regarding CmiRegisterHandler).

32

Chapter 9

Converse-POSIX threads

We have implemented the POSIX threads API on top of Converse threads. To use the Converse-pthreads,
you must include the header file:

#include <cpthreads.h>

Refer to the POSIX threads documentation for the documentation on the pthreads functions and types.
Although Converse-pthreads threads are POSIX-compliant in most ways, there are some specific things one
needs to know to use our implementation.

9.1 Pthreads and Converse

Our pthreads implementation is designed to exist within a Converse environment. For example, to send
messages inside a POSIX program, you would still use the usual Converse messaging primitives.

9.2 Suppressing Name Conflicts

Some people may wish to use Converse pthreads on machines that already have a pthreads implementation in
the standard library. This may cause some name-conflicts as we define the pthreads functions, and the system
include files do too. To avoid such conflicts, we provide an alternative set of names beginning with the word
Cpthread. These names are interchangeable with their pthread equivalents. In addition, you may prevent
Converse from defining the pthread names at all with the preprocessor symbol SUPPRESS PTHREADS:

#define SUPPRESS_PTHREADS

#include <cpthreads.h>

9.3 Interoperating with Other Thread Packages

Converse programs are typically multilingual programs. There may be modules written using POSIX threads,
but other modules may use other thread APIs. The POSIX threads implementation has the following re-
striction: you may only call the pthreads functions from inside threads created with pthread create. Threads
created by other thread packages (for example, the CthThread package) may not use the pthreads functions.

9.4 Preemptive Context Switching

Most implementations of POSIX threads perform time-slicing: when a thread has run for a while, it automat-
ically gives up the CPU to another thread. Our implementation is currently nonpreemptive (no time-slicing).
Threads give up control at two points:

• If they block (eg, at a mutex).

33

• If they call pthread yield().

Usually, the first rule is sufficient to make most programs work. However, a few programs (particularly,
those that busy-wait) may need explicit insertion of yields.

9.5 Limits on Blocking Operations in main

Converse has a rule about blocking operations — there are certain pieces of code that may not block. This
was an efficiency decision. In particular, the main function, Converse handlers, and the Converse startup
function (see ConverseInit) may not block. You must be aware of this when using the POSIX threads
functions with Converse.

There is a contradiction here — the POSIX standard requires that the pthreads functions work from
inside main. However, many of them block, and Converse forbids blocking inside main. This contradiction
can be resolved by renaming your posix-compliant main to something else: for example, mymain. Then,
through the normal Converse startup procedure, create a POSIX thread to run mymain. We provide a
convenience function to do this, called Cpthreads start main. The startup code will be much like this:

void mystartup(int argc, char **argv)

{
CpthreadModuleInit();

Cpthreads_start_main(mymain, argc, argv);

}

int main(int argc, char **argv)

{
ConverseInit(mystartup, argc, argv, 0, 0);

}

This creates the first POSIX thread on each processor, which runs the function mymain. The mymain
function is executing in a POSIX thread, and it may use any pthread function it wishes.

9.6 CpthreadModuleInit

On each processor, the function CpthreadModuleInit must be called before any other pthread function is
called. This is shown in the example in the previous section.

34

Chapter 10

Parallel Arrays of Threads

This module is CPath: Converse Parallel Array of Threads. It makes it simple to create arrays of threads,
where the threads are distributed across the processors. It provides simple operations like sending a message
to a thread, as well as group operations like multicasting to a row of threads, or reducing over an array of
threads.

10.1 Creating Arrays of Threads

This module defines a data type CPath, also known as an “array descriptor”. Arrays are created by the
function CPathMakeArray, and individual threads are created using CPathMakeThread:
void CPathMakeArray(CPath *path, int threadfn, int mapfn, ...)

This function initiates the creation of an array of threads. It fills in the array descriptor *path. Each
thread in the array starts executing the function represented by threadfn. The function mapfn represents
a mapping function, controlling the layout of the array. This parameter must be followed by the dimensions
of the array, and then a zero.
void CPathMakeThread(CPath *path, int startfn, int pe)

This function makes a zero-dimensional array of threads, in other words, just one thread.

10.2 Mapping Functions for Arrays of Threads

One of the parameters to CPathMakeArray is a “mapping function”, which maps array elements to proces-
sors. Mapping functions must be registered. The integer index returned by the registration process is the
number which is passed to CPathMakeArray. Mapping functions receive the array descriptor as a parameter,
and may use it to determine the dimensions of the array.
unsigned int MapFn(CPath *path, int *indices)

This is a prototype map function, all mapping functions must have this parameter list. It accepts an
array descriptor and a set of indices. It returns the processor number of the specified element.
int CPathRegisterMapper(void *mapfn)

Accepts a pointer to a mapping function, and returns an integer index for the function. This number
can be used as a parameter to CPathMakeArray.
int CPathArrayDimensions(CPath *path)

Returns the number of dimensions in the specified array.
int CPathArrayDimension(CPath *path, int n)

Returns the nth dimension of the specified array.

35

10.3 Thread Functions for Arrays of Threads

Thread functions (the functions that the threads execute) must have the following prototype, and must be
registered using the following registration function. The integer index returned by the registration process
is the number which is passed to CPathMakeArray.
void ThreadFn(CPath *self, int *indices)

This is a prototype thread function. All thread-functions must have these parameters. When an array
of threads is created, each thread starts executing the specified thread function. The function receives a
pointer to a copy of the array’s descriptor, and the array element’s indices.
int CPathRegisterThreadFn(void *mapfn)

Accepts a pointer to a thread function, and returns an integer index for the function. This number can
be used as a parameter to CPathMakeArray.

10.4 Sending Messages to Threads

Threads may send messages to each other using CPathSend, which takes a complicated set of parameters.
The parameters are most easily described by a context-free grammar:
void CPathSend(dest-clause, tag-clause, data-clause, end-clause)
Where:

dest-clause :== CPATH_DEST ’,’ pathptr ’,’ index ’,’ index ’,’ ...

tag-clause :== CPATH_TAG ’,’ tag

tag-clause :== CPATH_TAGS ’,’ tag ’,’ tag ’,’ ... ’,’ 0

tag-clause :== CPATH_TAGVEC ’,’ numtags ’,’ tagvector

data-clause :== CPATH_BYTES ’,’ numbytes ’,’ bufptr

end-clause :== CPATH_END

The symbols CPATH DEST, CPATH TAG, CPATH TAGS, CPATH TAGVEC, CPATH BYTES, CPATH END, and the
comma are terminal symbols. The symbols descriptor, index, tag, numtags, tagvector, numbytes, and bufptr
all represent C expressions.

The dest-clause specifies which array and which indices the message is to go to. One must provide a
pointer to an array descriptor and a set of indices. Any index may be either a normal index, or the wildcard
CPATH ALL. Using the wildcard causes a multicast. The tag-clause provides several notations, all of which
specify an array of one or more integer tags to be sent with the message. These tags can be used at the
receiving end for pattern matching. The data-clause specifies the data to go in the message, as a sequence
of bytes. The end-clause represents the end of the parameter list.

Messages sent with CPathSend can be received using CPathRecv, analyzed using CPathMsgDecodeBytes,
and finally discarded with CPathMsgFree:
void *CPathRecv(tag-clause, end-clause)

The tag-clause and end-clause match the grammar for CPathSend. The function will wait until a message
with the same tags shows up (it waits using the thread-blocking primitives, see Converse threads). If any
position in the CPathRecv tag-vector is CPATH WILD, then that one position is ignored. CPathRecv returns
an “opaque CPath message”. The message contains the data somewhere inside it. The data can be located
using CPathMsgDecodeBytes, below. The opaque CPath message can be freed using CPathMsgFree below.
void CPathMsgDecodeBytes(void *msg, int *len, void *bytes)

Given an opaque CPath message (as sent by CPathSend and returned by CPathRecv), this function will
locate the data inside it. The parameter *len is filled in with the data length, and *bytes is filled in with
a pointer to the data bytes. Bear in mind that once you free the opaque CPath message, this pointer is no
longer valid.
void CPathMsgFree(void *msg)

Frees an opaque CPath message.

36

10.5 Performing Reductions over Array Elements

An set of threads may participate in a reduction. All the threads wishing to participate must call CPathRe-
duce. The parameters to CPathReduce are most easily described by a context-free grammar:
void CPathReduce(over-clause, tag-clause, red-clause, data-clause, dest-clause, end-clause)
Where:

over-clause :== CPATH_OVER ’,’ pathptr ’,’ index ’,’ index ’,’ ...

dest-clause :== CPATH_DEST ’,’ pathptr ’,’ index ’,’ index ’,’ ...

tag-clause :== CPATH_TAG ’,’ tag

tag-clause :== CPATH_TAGS ’,’ tag ’,’ tag ’,’ ... ’,’ 0

tag-clause :== CPATH_TAGVEC ’,’ numtags ’,’ tagvector

data-clause :== CPATH_BYTES ’,’ vecsize ’,’ eltsize ’,’ data

red-clause :== CPATH_REDUCER ’,’ redfn

end-clause :== CPATH_END

The over-clause specifies the set of threads participating in the reduction. One or more of the indices
should be CPATH ALL, the wildcard value. All array elements matching the pattern are participating in the
reduction. All participants must supply the same over-clause. The tags-clause specifies a vector of integer
tags. All participants must supply the same tags. The reducer represents the function used to combine data
pairwise. All participants must supply the same reducer. The data-clause specifies the input-data, which is
an array of arbitrary-sized values. All participants must agree on the vecsize and eltsize. The dest-clause
specifies the recipient of the reduced data (which may contain CPATH ALL again). The data is sent to the
recipient. The results can be received with CPathRecv using the same tags specified in the CPathReduce.
The results may be analyzed with CPathMsgDecodeReduction, and freed with CPathMsgFree.
void CPathMsgDecodeReduction(void *msg,int *vecsize,int *eltsize,void *bytes)

This function accepts an opaque CPath message which was created by a reduction. It locates the data
within the message, and determines the vecsize and eltsize.

The function that combines elements pairwise must match this prototype, and be registered with the
following registration function. It is the number returned by the registration function which must be passed
to CPathReduce:
void ReduceFn(int vecsize, void *data1, void *data2)

The reduce function accepts two equally-sized arrays of input data. It combines the two arrays pairwise,
storing the results in array 1.
int CPathRegisterReducer(void *fn)

Accepts a pointer to a reduction function, and returns an integer index for the function. This number
can be used as a parameter to CPathReduce.

37

	Introduction
	Tag Matching
	Converse Master-Slave Library
	Introduction
	Available Functions
	Example Program

	Data Structures
	Queues, Lists, FIFOs etc.

	Converse Pseudorandom Number Generator
	Automatic Parameter Marshalling
	CPM Basics
	CPM Packing and Unpacking
	Inventing New Types of CpmDestinations

	Load Balancing
	Using Converse Load Balancers
	How to Write a Load Balancer for Converse/Charm++
	Introduction
	Existing Load Balancers and Provided Utilities

	A Sample Load Balancer
	Minimal Requirements
	Provided Load Balancing Facilities
	Finishing the Test Balancer

	Futures
	Converse-POSIX threads
	Pthreads and Converse
	Suppressing Name Conflicts
	Interoperating with Other Thread Packages
	Preemptive Context Switching
	Limits on Blocking Operations in main
	CpthreadModuleInit

	Parallel Arrays of Threads
	Creating Arrays of Threads
	Mapping Functions for Arrays of Threads
	Thread Functions for Arrays of Threads
	Sending Messages to Threads
	Performing Reductions over Array Elements

