ChaNGa: from cosmology to a flexible, parallel tree-code framework

Thomas Quinn
University of Washington
Fabio Governato
Isaac Backus
Michael Tremmel
Joachim Stadel
James Wadsley
Spencer Wallace

Laxmikant Kale
Filippo Gioachin
Pritish Jetley
Lukasz Wesolowski
Gengbin Zheng
Harshitha Menon
Orion Lawlor

Others:
Jianquo Liu, Purdue
Tim Haines, UW-Madison
Phil Chang, UW-Milwaukee
Dark Matter in the Universe

- Cosmic Microwave Background (Gigapc)
- Galaxy Rotation Curves (Kilopc)

Image courtesy ESA/Planck

Begeman, Broels & Sanders, 1991
Fundamental Problem: Dark Matter and Energy: What is it?

- Not baryons
- Gravitates!
- Simulations show: not known neutrinos
- Candidates:
 - Sterile Neutrinos
 - Axions
 - Lightest SUSY Particle (LSP)
Modeling Dark Matter

- Physics is simple: Newton’s Laws
- Computation is challenging: Naively order N^2
- Large spacial dynamic range: > 100 Mpc to < 1 kpc
 - Hierarchical, adaptive gravity solver is needed
- Large temporal dynamic range: 10 Gyr to < 1 Myr
 - Multiple timestep algorithm is needed
- Gravity is a long range force
 - Hierarchical information needs to go across processor domains
Basic Gravity algorithm ...

- Newtonian gravity interaction
 - Each particle is influenced by all others: $O(n^2)$ algorithm
- Barnes-Hut approximation: $O(n \log n)$
 - Influence from distant particles combined into center of mass
TreePiece: basic data structure

- A “vertical slice” of the tree, all the way to the root.
- Nodes are either:
 - Internal
 - External
 - Boundary (shared)
Overall treewalk structure
Speedups for 2 billion clustered particles
Light vs. Matter
Smooth Particle Hydrodynamics

- Making testable predictions needs Gastrophysics
 - High Mach number
 - Large density contrasts
- Gridless, Lagrangian method
- Galilean invariant
- Monte-Carlo Method for solving Navier-Stokes equation.
- Natural extension of particle method for gravity.
Charm Nbody GrAvity solver

- Massively parallel SPH
- SNe feedback creating realistic outflows
- SF linked to shielded gas
- SMBHs
- Optimized SF parameters
- AGORA participant

Menon+ 2015, Governato+ 2014
Fundamental Origins

Questions:

How did the Universe begin?
How did stars form?
How did planets form?
How did life begin?
How did intelligent life develop?
Protoplanetary Disks

- Likely result of cloud collapse with conserved angular momentum
- Disks can be gravitationally unstable
- Fragmentation depends on details of gas dynamics
ChaNGa: unprecedented resolution

Resolution comparison: density after 1.89 ORPs

10^8 particles 10^7 particles 10^6 particles

Isaac Backus, Ph. D. Thesis
Terrestrial Planet Formation

- Terrestrial planets are enhanced in refractory elements
- Elements initially condense into grains out of the protoplanetary nebula
- Grains grow (quickly) to ~kilometer size bodies (planetesimals)
- Planetesimals collide to build larger bodies (protoplanets)
- Left over planetesimals remain as small bodies (asteroids, comets, and minor moons)
The simulation model

Planetesimals represented by spherical particles.

Particles gravitationally interact with each other, planets and Sun.

Heuristic collision model: particles stick or bounce when they collide.

Particles acquire spin through collisions.

Need a fast collision finder: ChaNGa
The simulation model

Planetesimals represented by spherical particles.

Particles gravitationally interact with each other, planets and Sun.

Heuristic collision model: particles stick or bounce when they collide.

Particles acquire spin through collisions.

Need a fast collision finder: ChaNGa
Collision scaling: 50M particles
Orders of magnitude better resolution

Spencer Wallace
Moving Mesh Hydrodynamics

- More accurate hydrodynamics requires Riemann solvers
- Galilean invariance: mesh needs to follow the fluid flow
- Mesh needs to have arbitrary geometry
- Need a fast Voronoi mesh generator: ChaNGa (MANGA)
Sedov Test

- **SPH t = 33 min**
- **MM**
- **SPH t = 133 min**
- **MM**
- **t = 233 min**
- **t = 333 min**

Density (g/cm³)

-10⁻⁴ to 10⁻⁶
More Physics

- Magnetic fields (with constrained transport)
- Radiative Transfer (Flux limited diffusion and ray tracing)

Phil Chang, UW-Milwaukee
Magnetic fields and outflows

No CRs
Advection
Isotropic Diffusion
Anisotropic Diffusion
Streaming

100 x 100 kpc

Iryna Butsky
Simulations of Star Formation

Norm Murray, 2018
Other Applications

- N-point correlation functions
- Gravitational Lensing maps
- Granular Dynamics
- Cluster finding
- High dimensional classification
- Identification of cytoskeletal structures
- Ray tracing
- Surface reconstruction
Paratreet: parallel framework for tree algorithms
Availability

- ChaNGa: http://github.com/N-bodyShop/changa
 - See the Wiki for a developer's guide
- Paratreet: http://github.com/paratreet
 - Some design discussion and sample code
Acknowledgments

- NSF ITR
- NSF Astronomy
- NSF SSI
- NSF XSEDE program for computing
- BlueWaters Petascale Computing
- NASA HST
- NASA Advanced Supercomputing
CPU Scaling Summary

- Load balancing the big steps is (mostly) solved
- Load balancing/optimizing the small steps is what is needed:
 - Small steps dominate the total time
 - Small steps increase throughput even when not optimal
 - Plenty of opportunity for improvement
GPU Implementation: Gravity Only

- Load (SMP node) local tree/particle data onto the GPU
- Load prefetched remote tree onto the GPU
- CPUs walk tree and pass interaction lists
 - Lists are batched to minimize number of data transfers
- “Missed” treenodes: walk is resumed when data arrives: interaction list plus new tree data sent to the GPU.
Grav/SPH scaling with GPUs

Piz Daint timing for 40M disk

Gravity (+ SPH) time (seconds)

Number of CPU cores

- SMP
- GPU
- SMP with SPH
- GPU with SPH
- SMP GPU with SPH
Tree walking on the GPU