Recent Advances in Heterogeneous Computing using Charm++

Jaemin Choi, Michael Robson

Parallel Programming Laboratory
University of Illinois Urbana-Champaign

April 12, 2018
Heterogeneous Computing

- Computing with different types of devices
- In this talk: using GPUs to boost performance

GPU
- Throughput oriented
- Data parallel (SIMD)
- Many simple, low frequency cores
- Teraflops of computing power
- Separate memory (GDDR or HBM)
- Data transfer overhead

- Now a critical factor of performance

How to Utilize GPUs in Charm++

1. Use CUDA directly
 ▶ Let each chare offload (small) kernels
 ▶ Or manually aggregate data at a synchronization point and offload one big kernel

2. Use **GPU Manager** library of Charm++
 ▶ Why? What good is it?
Problems with Using GPUs in Charm++

- Due to **overdecomposition** and **asynchrony**

1. Granularity of work
2. Blocking offload API
3. Responsiveness
Problem 1: Granularity of Work

- Each chare is fine-grained
- Contain little data and work → small kernels
- Kernels should be able to execute concurrently
- Or need to aggregate kernels
Problem 2: Blocking Offload API

- Commonly used CUDA API are blocking
 - E.g. `cudaDeviceSynchronize()`, `cudaStreamSynchronize()`
- PEs are implemented as persistent threads on CPU cores
- Blocking call thus prevents another chare from executing
- Another problem: number of concurrent kernels limited to the number of PEs
- Offload API should be **non-blocking** for Charm++
Problem 3: Responsiveness

1. Slow initiation
 - Method offloading work must wait if target PE is busy (even if the GPU is free)

2. Slow response
 - Handling completed GPU work delayed if target PE is busy
Current GPU Manager

- Addresses Problem 2 (blocking offload API)
- User constructs and submits a WorkRequest object, specifying
 - Data buffers and directions of transfer
 - Kernel to be executed and its specifications (e.g. grid size, block size)
- Runtime tracks WorkRequests, overlapping data transfers with kernel execution
 - But does NOT overlap multiple kernel executions
 - Because only one CUDA stream is used for kernels
- Execution continues without blocking after WorkRequest submission
- 3 CUDA streams used internally: Data-in, Kernel, Data-out

Problems
- Only one CUDA stream for all kernels
- Unnecessarily complex API
New GPU Manager: Release 6.9.0

- Partially addresses Problem 1 (granularity of work)
 - Allows kernels to execute in separate CUDA streams
 - Runtime support for kernel aggregation is ongoing research

- Non-blocking feature implemented using CUDA events

- Much simpler API (almost identical to CUDA API)
 - **Hybrid API**: `hapi` prefix instead of `cuda`
 - `hapiAddCallback()`: invoke provided Charm++ callback function when data transfer/kernel execution completes, replaces `cudaStreamSynchronize()`

- Ongoing research to address Problem 3 (responsiveness)
Non-blocking Implementation of Offloading

- Use CUDA events to detect completion of GPU work
- Each PE maintains a queue of events
- Queue is checked in the scheduler before choosing what to execute next
- Charm++ callback invoked on completion to continue program flow
- Impractical for the user to implement
 - Unclear where in the program flow the queue should be checked
 - Unclear how frequent the checking should occur
- Alternative: CUDA callback, but single callback thread becomes a bottleneck
Matmul Code Comparison: Current GPU Manager
Matmul Code Comparison: CUDA, New GPU Manager

Figure: CUDA

```c
void cudaMatMul(ElementType *h_A, ElementType *h_B, ElementType *h_C,
                 ElementType *d_A, ElementType *d_B, ElementType *d_C,
                 cudaStream_t stream, int matrixSize) {
    int size = matrixSize * matrixSize * sizeof(ElementType);
    din3 block(BLOCK_SIZE, BLOCK_SIZE);
    din3 grid(cell((float)matrixSize / block.x),
               cell((float)matrixSize / block.y));
    cudaMempyAsync(d_A, h_A, size, cudaMemcpyHostToDevice, stream);
    cudaMempyAsync(d_B, h_B, size, cudaMemcpyHostToDevice);
    matrixMul<<<grid, block, 0, stream>>>(d_C, d_A, d_B, matrixSize, matrixSize);
    cudaMempyAsync(h_C, d_C, size, cudaMemcpyDeviceToHost, stream);
    cudaStreamSynchronize(stream);
}
```

Figure: New API

```c
void cudaMatMul(ElementType *h_A, ElementType *h_B, ElementType *h_C,
                 ElementType *d_A, ElementType *d_B, ElementType *d_C,
                 void *cb, int matrixSize) {
    int size = matrixSize * matrixSize * sizeof(ElementType);
    din3 block(BLOCK_SIZE, BLOCK_SIZE);
    din3 grid(cell((float)matrixSize / block.x),
               cell((float)matrixSize / block.y));
    cudaStream_t stream = hipGetStream();
    hipCheck(hipMemcpyAsync(d_A, h_A, size, cudaMemcpyHostToDevice, stream));
    hipCheck(hipMemcpyAsync(d_B, h_B, size, cudaMemcpyHostToDevice));
    matrixMul<<<grid, block, 0, stream>>>(d_C, d_A, d_B, matrixSize, matrixSize);
    hipCheck(hipMemcpyAsync(h_C, d_C, size, cudaMemcpyDeviceToHost, stream));
    hipAddCallback(stream, cb);
}
```
Performance Evaluation: Test Environment

- Single compute node of OLCF Titan
- Up to 8 cores of AMD Opteron 6274 CPU
- 32GB DDR3 memory
- NVIDIA Tesla K20X GPU
Performance Evaluation: busywait

- Benchmark designed to validate new GPU Manager
- Tasks (kernels on GPU) busywait both on CPU and GPU
- Vary how much work out of total is offloaded, and how long they take
- 3 configurations of task duration:
 - CPU 1 ms, GPU 10 ms
 - CPU 10 ms, GPU 1 ms
 - CPU 10 ms, GPU 10 ms
- 8 PEs, 16 chares per PE, 128 chares total, 100 iterations
- 32 concurrent kernels with new GPU Manager (vs. 8 without)
- Up to 4.79x speedup compared to directly using CUDA
- Effectiveness of runtime support depends on application characteristics
Performance Evaluation: busywait

Figure: Speedup of busywait benchmark
Performance Evaluation: stencil2d

- 2D 5-point iterative stencil benchmark
- Evaluate effectiveness under realistic workload
- 16,384 x 16,384 grid, decomposed into 512 x 512 blocks (chares)
- 8 PEs, 128 chares per PE, 1,024 chares total, 100 iterations
- Vary percentage of chares that offload work to GPU
- 32 concurrent kernels with new GPU Manager (vs. 8 without)
- Up to $2.75x$ speedup compared to directly using CUDA
Performance Evaluation: stencil2d

Figure: Execution Time and Speedup of stencil2d benchmark
GPU Applications: ChaNGa

- Cosmological N-body simulations
- Leverages GPU Manager
- Offloads physics kernels
- Active work in optimization

Figure: ChaNGa GPU Manager Design
Figure: ChaNGa dwf1 on 4 XK Nodes of BlueWaters
GPU Applications: ChaNGa GPU Tree Walk

Figure: Strategy Comparison
Jianqiao Liu, Purdue University
GPU Applications: ChaNGa GPU Tree Walk

4.85X speedup over baseline best case
3.66X speedup on average

Figure: Strategy Comparison
Jianqiao Liu, Purdue University
GPU Applications: ChaNGa on GPU Generations

Mert Hidayetoglu, University of Illinois
Conclusion

- New GPU Manager: presented as a ACM SRC poster at SC’17
- 3 main issues with using GPUs in Charm++
 1. Granularity
 2. Blocking
 3. Responsiveness
- Mostly resolved issue #2, but need more work on issues #1 and #3
- Interesting research topics with fine-grain tasks and GPUs
- Increasing importance of accelerators even for irregular applications
Thank You